Skip to main content
Log in

Review on Positioning Technology of Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the large-scale application of wireless sensor network, the position information of sensor nodes is more and more important. The position information of the unknown nodes are mainly depended on the beacon node the in wireless sensor network. First, the concept and characteristics of wireless sensor networks of the positioning technologies are briefly described. Then, the calculation methods of existing node positioning technologies are introduced. Next, the wireless sensors are described in detail from two aspects: range-based and range-free. Finally, summarizes the possible defects of positioning technology and looks forward to the future development of the node positioning technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fei, Z., Li, B., Yang, S., et al. (2016). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms and open problems. IEEE Communications Surveys and Tutorials, 99, 1–1.

    Google Scholar 

  2. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Google Scholar 

  3. Sohrabi, K., Gao, J., Ailawadhi, V., et al. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communications, 7(5), 16–27.

    Google Scholar 

  4. Mao, G., Fidan, B., & Anderson, B. D. O. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553.

    MATH  Google Scholar 

  5. Yang, Z., & Liu, Y. (2010). Quality of trilateration: Confidence-based iterative localization. IEEE Transactions on Parallel and Distributed Systems, 21(5), 631–640.

    Google Scholar 

  6. Keppel, E. (2010). Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development, 19(1), 2–11.

    MathSciNet  MATH  Google Scholar 

  7. Bialer, O., Dan, R., & Weiss, A. J. (2013). Maximum-likelihood direct position estimation in dense multipath. IEEE Transactions on Vehicular Technology, 62(5), 2069–2079.

    Google Scholar 

  8. Shah, S. F. A., Srirangarajan, S., & Tewfik, A. H. (2010). Implementation of a directional beacon-based position location algorithm in a signal processing framework. IEEE Transactions on Wireless Communications, 9(3), 1044–1053.

    Google Scholar 

  9. Chan, F. K. W., & So, H. C. (2009). Accurate distributed range-based positioning algorithm for wireless sensor networks. IEEE Transactions on Signal Processing, 57(10), 4100–4105.

    MathSciNet  MATH  Google Scholar 

  10. Alavi, B., & Pahlavan, K. (2006). Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Communications Letters, 10(4), 275–277.

    Google Scholar 

  11. Cong, L., & Zhuang, W. (2001). Non-line-of-sight error mitigation in TDOA mobile location. Proceedings of IEEE Globecom Telecommunications, 1(2), 560–573.

    Google Scholar 

  12. Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In Joint conference of the IEEE computer and communications. IEEE societies. IEEE (Vol. 3, pp. 1734–1743).

  13. Paul, A. S., & Wan, E. A. (2009). RSSI-based indoor localization and tracking using sigma-point Kalman Smoothers. IEEE Journal of Selected Topics in Signal Processing, 3(5), 860–873.

    Google Scholar 

  14. Li, X., & Pahlavan, K. (2004). Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Transactions on Wireless Communications, 3(1), 224–234.

    Google Scholar 

  15. Tomic, S., & Beko, M. (2018). Exact Robust solution to TW-ToA-based target localization problem with clock imperfections. IEEE Signal Processing Letters, 25(4), 531–535.

    Google Scholar 

  16. Wang, Y., Ma, S., & Chen, C. L. P. (2014). TOA-based passive localization in quasi-synchronous networks. IEEE Communications Letters, 18(4), 592–595.

    Google Scholar 

  17. Tomic, S., Beko, M., Rui, D., et al. (2017). A robust bisection-based estimator for TOA-based target localization in NLOS environments. IEEE Communications Letters, 99, 1–1.

    Google Scholar 

  18. Wang, W., Wang, G., Zhang, J., et al. (2017). Robust weighted least squares method for TOA-based localization under mixed LOS/NLOS conditions. IEEE Communications Letters, 21(10), 2226–2229.

    Google Scholar 

  19. Pak, J. M., Ahn, C. K., Peng, S., et al. (2017). Distributed hybrid particle/FIR filtering for mitigating NLOS effects in TOA-based localization using wireless sensor networks. IEEE Transactions on Industrial Electronics, 64(6), 5182–5191.

    Google Scholar 

  20. Gao, S., Zhang, F., & Wang, G. (2017). NLOS error mitigation for TOA-based source localization with unknown transmission time. IEEE Sensors Journal, 99, 1–1.

    Google Scholar 

  21. Abu-Shaban, Z., Zhou, X., & Abhayapala, T. D. (2016). A novel TOA-based mobile localization technique under mixed LOS/NLOS conditions for cellular networks. IEEE Transactions on Vehicular Technology, 65(11), 8841–8853.

    Google Scholar 

  22. .Ke M, Xu Y, Anpalagan A, et al. Distributed TOA-based Positioning in Wireless Sensor Networks: A Potential Game Approach[J]. IEEE Communications Letters, 2017, PP(99):1-1.

  23. .Li Y Y, Qi G Q, Sheng A D. Performance Metric on the Best Achievable Accuracy for Hybrid TOA/AOA Target Localization[J]. IEEE Communications Letters, 2018, PP(99):1-1.

  24. Chen, L., Thevenon, P., Seco-Granados, G., et al. (2016). Analysis on the TOA tracking with DVB-T signals for positioning. IEEE Transactions on Broadcasting, 62(4), 957–961.

    Google Scholar 

  25. Nguyen, N. H., & Doğançay, K. (2016). Optimal geometry analysis for multistatic TOA localization. IEEE Transactions on Signal Processing, 64(16), 4180–4193.

    MathSciNet  MATH  Google Scholar 

  26. Ho, K. C., & Chan, Y. T. (2002). Solution and performance analysis of geolocation by TDOA. IEEE Transactions on Aerospace and Electronic Systems, 29(4), 1311–1322.

    Google Scholar 

  27. Li, X., Guo, F., Yang, L., et al. (2018). Improved solution for geolocating a known altitude source using TDOA and FDOA under random sensor location errors. Electronics Letters, 54(9), 597–599.

    Google Scholar 

  28. Hmam, H. (2017). Optimal sensor velocity configuration for TDOA-FDOA geolocation. IEEE Transactions on Signal Processing, 99, 1–1.

    MathSciNet  MATH  Google Scholar 

  29. Guo, F., Zhang, Z., & Yang, L. (2016). TDOA/FDOA estimation method based on dechirp. IET Signal Processing, 10(5), 486–492.

    Google Scholar 

  30. Kim, D. G., Park, G. H., Park, J. O., et al. (2018). Computationally efficient TDOA/FDOA estimation for unknown communication signals in electronic warfare systems. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1.

    Google Scholar 

  31. Wang, Y., & Wu, Y. (2017). An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Communications Letters, 99, 1–1.

    Google Scholar 

  32. Wang, G., Cai, S., Li, Y., et al. (2016). A bias-reduced nonlinear WLS method for TDOA/FDOA-based source localization. IEEE Transactions on Vehicular Technology, 65(10), 8603–8615.

    Google Scholar 

  33. Noroozi, A., Oveis, A. H., Hosseini, M. R., et al. (2017). Improved algebraic solution for source localization from TDOA and FDOA measurements. IEEE Wireless Communications Letters, 99, 1–1.

    Google Scholar 

  34. Qu, X., Xie, L., & Tan, W. (2017). Iterative constrained weighted least squares source localization using TDOA and FDOA measurements. IEEE Transactions on Signal Processing, 99, 1–1.

    MathSciNet  MATH  Google Scholar 

  35. Cui, X., Yu, K., & Lu, S. (2018). Approximate closed-form TDOA-based estimator for acoustic direction finding via constrained optimization. IEEE Sensors Journal, 99, 1–1.

    Google Scholar 

  36. Salari, S., Chan, F., Chan, Y. T., et al. (2018). TDOA estimation with compressive sensing measurements and hadamard matrix. IEEE Transactions on Aerospace and Electronic Systems, 99, 1–1.

    Google Scholar 

  37. Zhu, Y., Deng, B., Jiang, A., et al. (2018). ADMM-based TDOA estimation. IEEE Communications Letters, 99, 1–1.

    Google Scholar 

  38. Cao, H., Chan, Y. T., & So, H. C. (2017). Maximum likelihood TDOA estimation from compressed sensing samples without reconstruction. IEEE Signal Processing Letters, 24(5), 564–568.

    Google Scholar 

  39. Zhang, Z., & Zhan, X. (2018). Statistical analysis of spoofing detection based on TDOA. IEEJ Transactions on Electrical and Electronic Engineering, 13(8), 190.

    Google Scholar 

  40. Wang, Y., & Ho, K. C. (2018). Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings. IEEE Transactions on Wireless Communications, 17(2), 1242–1254.

    Google Scholar 

  41. Chen, C. Y., & Wu, W. R. (2018). Joint AoD, AoA, and channel estimation for MIMO-OFDM systems. IEEE Transactions on Vehicular Technology, 99, 1–1.

    Google Scholar 

  42. Zhu, D., Choi, J., & Heath, R. W. (2017). Two-dimensional AoD and AoA acquisition for wideband mmWave systems with dual-polarized MIMO. IEEE Transactions on Wireless Communications, 99, 1–1.

    Google Scholar 

  43. Zhu, D., Choi, J., & Heath, R. W. (2017). Auxiliary beam pair enabled AoD and AoA estimation in closed-loop large-scale millimeter-wave MIMO systems. IEEE Transactions on Wireless Communications, 16(7), 4770–4785.

    Google Scholar 

  44. Amiri, R., Behnia, F., & Zamani, H. (2017). Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems. IEEE Communications Letters, 99, 1–1.

    Google Scholar 

  45. Noroozi, A., & Sebt, M. A. (2017). Algebraic solution for 3-D TDOA/AOA localization in MIMO passive radar. IET Radar Sonar Navigation, 12(1), 69.

    Google Scholar 

  46. Tomic, S., Beko, M., & Rui, D. (2016). Distributed RSS-AoA based localization with unknown transmit powers. IEEE Wireless Communications Letters, 5(4), 392–395.

    Google Scholar 

  47. Tomic, S., Beko, M., & Rui, D. (2017). 3-D target localization in wireless sensor network using RSS and AoA measurements. IEEE Transactions on Vehicular Technology, 99, 1–1.

    Google Scholar 

  48. Tomic, S., Beko, M., Rui, D., et al. (2016). A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wireless Communications Letters, 99, 1–1.

    Google Scholar 

  49. Yin, J., Wan, Q., Yang, S., et al. (2015). A simple and accurate TDOA-AOA localization method using two stations. IEEE Signal Processing Letters, 23(1), 144–148.

    Google Scholar 

  50. Chuang, S. F., Wu, W. R., & Liu, Y. T. (2015). High-resolution AoA estimation for hybrid antenna arrays. IEEE Transactions on Antennas and Propagation, 63(7), 2955–2968.

    MathSciNet  MATH  Google Scholar 

  51. Shao, H. J., Zhang, X. P., & Wang, Z. (2014). Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables. IEEE Transactions on Signal Processing, 62(10), 2580–2594.

    MathSciNet  MATH  Google Scholar 

  52. Steendam, H. (2018). A 3-D positioning algorithm for AOA-based VLP with an aperture-based receiver. IEEE Journal on Selected Areas in Communications, 36(1), 23–33.

    Google Scholar 

  53. Fascista, A., Ciccarese, G., Coluccia, A., et al. (2017). IEEE Signal Processing Letters, 24(99), 1–1.

    Google Scholar 

  54. Tazawa, R., Honma, N., Miura, A., et al. (2018). RSSI-based localization using wireless beacon with three-element array. Ieice Transactions on Communications, 101(2), 67.

    Google Scholar 

  55. Xue, W., Qiu, W., Hua, X., et al. (2017). Improved Wi-Fi RSSI measurement for indoor localization. IEEE Sensors Journal, 99, 1–1.

    Google Scholar 

  56. Cho, S. Y. (2016). Measurement error observer-based IMM filtering for mobile node localization using WLAN RSSI measurement. IEEE Sensors Journal, 16(8), 2489–2499.

    Google Scholar 

  57. Luo, Q., Peng, Y., Li, J., et al. (2016). RSSI-based localization through uncertain data mapping for wireless sensor networks. IEEE Sensors Journal, 16(9), 3155–3162.

    Google Scholar 

  58. Pathak, P. H., Feng, X., Hu, P., et al. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047–2077.

    Google Scholar 

  59. Bianchi, V., Ciampolini, P., & Munari, I. D. (2018). RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Transactions on Instrumentation and Measurement, 99, 1–10.

    Google Scholar 

  60. Buffi, A., Michel, A., Nepa, P., et al. (2018). RSSI measurements for RFID tag classification in smart storage systems. IEEE Transactions on Instrumentation and Measurement, 99, 1–11.

    Google Scholar 

  61. Booranawong, A., Jindapetch, N., & Saito, H. (2018). A system for detection and tracking of human movements using RSSI signals. IEEE Sensors Journal, 99, 1–1.

    Google Scholar 

  62. Mahjoub, H. N., Tahmasbi-Sarvestani, A., Gani, S. M. O., et al. (2018). Composite α − μ based DSRC channel model using large data set of RSSI measurements. IEEE Transactions on Intelligent Transportation Systems, 99, 1–13.

    Google Scholar 

  63. Xu, Z., Wang, R., Yue, X., et al. (2018). FaceME: Face-to-machine proximity estimation based on RSSI difference for mobile industrial human machine interaction. IEEE Transactions on Industrial Informatics, 99, 1–1.

    Google Scholar 

  64. Abouzar, P., Michelson, D. G., & Hamdi, M. (2016). RSSI-based distributed self-localization for wireless sensor networks used in precision agriculture. IEEE Transactions on Wireless Communications, 15(10), 6638–6650.

    Google Scholar 

  65. Yiu, S., Dashti, M., Claussen, H., et al. (2017). Wireless RSSI fingerprinting localization. Signal Processing, 131, 235–244.

    Google Scholar 

  66. Chen, W., Wang, W., Li, Q., et al. (2016). A crowd-sourcing indoor localization algorithm via optical camera on a smartphone assisted by Wi-Fi fingerprint RSSI. Sensors, 16(3), 410.

    Google Scholar 

  67. Jiang, R., & Yang, Z. (2016). An improved centroid localization algorithm based on iterative computation for wireless sensor network. Acta Physica Sinica, 65(3), 100.

    Google Scholar 

  68. Zhao, J., & Liu, Y. (2013). An improved Weighted Centroid Localization algorithm based on difference of estimated distances for Wireless Sensor Networks. Telecommunication Systems, 53(1), 25–31.

    MathSciNet  Google Scholar 

  69. Chaudhari, S., & Cabric, D. (2016). Cyclic weighted centroid algorithm for transmitter localization in the presence of interference. IEEE Transactions on Cognitive Communications & Networking, 2(2), 162–177.

    Google Scholar 

  70. Linda, O., & Manic, M. (2012). Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 805–819.

    Google Scholar 

  71. Zhai, D., & Mendel, J. M. (2012). Enhanced centroid-flow algorithm for computing the centroid of general type-2 fuzzy sets. IEEE Transactions on Fuzzy Systems, 20(5), 939–956.

    Google Scholar 

  72. Yu, J., Liang, D., Gong, X., et al. (2019). Impact localization for composite plate based on Detrended Fluctuation Analysis and centroid localization algorithm using FBG sensors. Optik, 167, 50.

    Google Scholar 

  73. Ngoc, M. T., & Park, D. C. (2018). Centroid neural network with pairwise constraints for semi-supervised learning. Neural Processing Letters, 10, 1–27.

    Google Scholar 

  74. Tomic, S., & Mezei, I. (2016). Improvements of DV-Hop localization algorithm for wireless sensor networks. Telecommunication Systems, 61(1), 93–106.

    Google Scholar 

  75. Mehrabi, M., Taheri, H., & Taghdiri, P. (2017). An improved DV-Hop localization algorithm based on evolutionary algorithms. Telecommunication Systems, 64(4), 1–9.

    Google Scholar 

  76. Kaur, A., Kumar, P., & Gupta, G. P. (2018). Nature inspired algorithm-based improved variants of DV-Hop algorithm for randomly deployed 2D and 3D wireless sensor networks. Wireless Personal Communications, 1, 1–16.

    Google Scholar 

  77. Zhou, C., Yang, Y., & Wang, Y. (2018). DV-Hop localization algorithm based on bacterial foraging optimization for wireless multimedia sensor networks. Multimedia Tools and Applications, 16, 1–11.

    Google Scholar 

  78. Sharma, G., & Kumar, A. (2018). Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks. Telecommunication Systems, 67(8), 1–16.

    Google Scholar 

  79. Liu, Y., Chen, J., & Xu, Z. (2017). Improved DV-hop localization algorithm based on bat algorithm in wireless sensor networks. Ksii Transactions on Internet & Information Systems, 75, 11.

    Google Scholar 

  80. Cheikhrouhou, O. M. G. B., & Alroobaea, R. (2018). A hybrid DV-hop algorithm using RSSI for localization in large-scale wireless sensor networks. Sensors, 18(5), 1469.

    Google Scholar 

  81. Gui, L., Xiao, F. U., Zhang, Y., et al. (2018). DV-Hop localization with protocol sequence based access. IEEE Transactions on Vehicular Technology, 1(1), 20.

    Google Scholar 

  82. Gui, L., Zhang, X., Ding, Q., et al. (2017). Reference anchor selection and global optimized solution for DV-hop localization in wireless sensor networks. Wireless Personal Communications, 96(4), 5995–6005.

    Google Scholar 

  83. Zhao, W., Su, S., & Shao, F. (2017). Improved DV-hop algorithm using locally weighted linear regression in anisotropic wireless sensor networks. Wireless Personal Communications, 98(4), 1–19.

    Google Scholar 

  84. Shahzad, F., Shaltami, T., & Shakshukhi, E. (2017). DV-maxHop: A fast and accurate range-free localization algorithm for anisotropic wireless networks. IEEE Transactions on Mobile Computing, 16(9), 2494–2505.

    Google Scholar 

  85. Fan, L. H., Qiu, X. H., & Tang, Y. B. (2007). Discussion on self-location algorithm for wireless sensor networks. Telecommunications for Electric Power System, 10, 92.

    Google Scholar 

  86. Years, I. R. (2015). Amorphous localization algorithm based on BP artificial neural network. International Journal of Distributed Sensor Networks, 2015, 6.

    Google Scholar 

  87. Shen, S., Yang, B., Qian, K., et al. (2016). An improved amorphous localization algorithm for wireless sensor networks. In International conference on NETWORKING and network applications (pp. 69–72). IEEE.

  88. Shen, S., Qian, K., Yang, B., et al. (2018). An improved amorphous algorithm in wireless sensor network based on approximate equilateral triangle beacon selection. In International conference on NETWORKING and network applications (pp. 54–60). IEEE.

  89. Zhang, R., Claussen, H., Haas, H., et al. (2016). Energy efficient visible light communications relying on amorphous cells. IEEE Journal on Selected Areas in Communications, 34(4), 894–906.

    Google Scholar 

  90. Feng, S., Li, X., Zhang, R., et al. (2016). Hybrid positioning for the amorphous-cell assisted user-centric visible light downlink. IEEE Photonics Journal, 4(3), 100–108.

    Google Scholar 

  91. Li, X., Chen, L., Wang, J., et al. (2015). Fuzzy system and Improved APIT (FIAPIT) combined range-free localization method for WSN. Ksii Transactions on Internet and Information Systems, 9(7), 2414–2434.

    Google Scholar 

  92. Yuan, Y., Huo, L., Wang, Z., et al. (2018). Secure APIT localization scheme against sybil attacks in distributed wireless sensor networks. IEEE Access, 6, 27629–27636.

    Google Scholar 

  93. Liu, Z., Feng, X., Zhang, J., et al. (2016). An improved GPSR algorithm based on energy gradient and APIT grid. Journal of Sensors, 2016(2), 4027–4032.

    Google Scholar 

  94. Li, P., \& Zhang, W. (2010). Based on the cyclic refinement APIT localization algorithm for wireless sensor networks. In Control conference (pp. 4753–4756). IEEE.

  95. Chen, B., Sun, J., Xu, W. B., et al. (2012). A mixed localization algorithm based on RSSI and APIT with fitness analysis and optimization. In International symposium on distributed computing and applications to business, engineering and science (pp. 164–168). IEEE.

  96. Jain, S., Singh, A., Kaur, A., et al. (2017). Improved APIT localization algorithm in wireless sensor networks. In International conference on signal processing, computing and control (pp. 77–81).

  97. Xiong, X., & Yan, C. (2014). Three-dimensional localization algorithm of APIT based on fermat-point divided for wireless sensor networks. In Seventh international symposium on computational intelligence and design (pp. 521–524). IEEE Computer Society.

  98. Wen, W., Dong, Z., Chen, G., et al. (2017). Energy efficient data collection scheme in mobile wireless sensor networks. In International conference on advanced information NETWORKING and applications workshops (pp. 226–230).

  99. Liang, J., Shao, J., Xu, Y., et al. Sensor network localization in constrained 3-D spaces. In IEEE international conference on mechatronics and automation (pp. 49–54). IEEE.

  100. Zhang, P., Lu, J., & Wang, Q. (2016). Performance bounds for relative configuration and global transformation in cooperative localization. Ict Express, 2(1), 14–18.

    Google Scholar 

  101. Tang, T., Liu, H., Song, H., et al. (2016). Support vector machine based range-free localization algorithm in wireless sensor network. In International conference on machine learning and intelligent communications (pp. 150–158). Springer International Publishing.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Jiang, F. & Pei, C. Review on Positioning Technology of Wireless Sensor Networks. Wireless Pers Commun 115, 2023–2046 (2020). https://doi.org/10.1007/s11277-020-07667-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07667-7

Keywords

Navigation