Skip to main content

Advertisement

Log in

An Optimum Transmission Distance and Adaptive Clustering Based Routing Protocol for Cognitive Radio Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Adaptive transmission strategies for cognitive radio sensor network provide flexibility to the nodes based on data packets. In this paper, an optimum transmission distance is formulated by considering the energy consumption in the inter-cluster and intra-cluster data forwarding. The nodes are arranged in the clustered form and the size of cluster is adaptable with respect to the number of packets in the cluster. Furthermore, due to cognitive capability of sensor node, it is possible to calculate the residual time of unused licensed channels by taking into consideration the primary users activity. The proposed routing protocol uses the concept of optimal transmission distance and cognitive technique for data forwarding and the objective of the routing protocol is to forward the data packets through energy efficient paths. The comparison with other state-of-the-art algorithm validates that the proposed routing protocol improves the network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, Y., He, S., & Chen, J. (2015). Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. IEEE/ACM Transactions on Networking, 24(3), 1632–1646.

    Article  Google Scholar 

  2. Sohraby, K., Minoli, D., & Znati, T. (2007). Wireless sensor networks: Technology, protocols and applications. New York: Willey.

    Book  Google Scholar 

  3. Hammoudeh, M., Al-Fayez, F., Lloyd, H., Newman, R., Adebisi, B., Bounceur, A., et al. (2017). A wireless sensor network border monitoring system: Deployment issues and routing protocols. IEEE Sensors Journal, 17(8), 2572–2582.

    Article  Google Scholar 

  4. Ali, S., Ashraf, A., Qaisar, S. B., Afridi, M. K., Saeed, H., Rashid, S., et al. (2016). Simplimote: A wireless sensor network monitoring platform for oil and gas pipelines. IEEE Systems Journal, 12(1), 778–789.

    Article  Google Scholar 

  5. Ren, J., Zhang, Y., Zhang, K., & Shen, X. (2015). Exploiting mobile crowdsourcing for pervasive cloud services: Challenges and solutions. IEEE Communications Magazine, 53(3), 98–105.

    Article  Google Scholar 

  6. Raza, M., Aslam, N., Le-Minh, H., Hussain, S., Cao, Y., & Khan, N. M. (2017). A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks. IEEE Communications Surveys & Tutorials, 20(1), 39–95.

    Article  Google Scholar 

  7. Oyewobi, S. S., & Hancke, G. P. (2017). A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Journal of Network and Computer Applications, 97, 140–156.

    Article  Google Scholar 

  8. Zhang, N., Liang, H., Cheng, N., Tang, Y., Mark, J. W., & Shen, X. S. (2014). Dynamic spectrum access in multi-channel cognitive radio networks. IEEE Journal on Selected Areas in Communications, 32(11), 2053–2064.

    Article  Google Scholar 

  9. Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Communications Surveys & Tutorials, 17(2), 888–917.

    Article  Google Scholar 

  10. Singh, K., & Moh, S. (2016). Routing protocols in cognitive radio ad hoc networks: A comprehensive review. Journal of Network and Computer Applications, 72, 28–37.

    Article  Google Scholar 

  11. Joshi, G. P., Nam, S. Y., & Kim, S. W. (2013). Cognitive radio wireless sensor networks: Applications, challenges and research trends. Sensors, 13(9), 11196–11228.

    Article  Google Scholar 

  12. Tao, Y., Zhang, Y., & Ji, Y. (2013). Flow-balanced routing for multi-hop clustered wireless sensor networks. Ad Hoc Networks, 11(1), 541–554.

    Article  Google Scholar 

  13. Nazir, B., & Hasbullah, H. (2013). Energy efficient and QoS aware routing protocol for clustered wireless sensor network. Computers & Electrical Engineering, 39(8), 2425–2441.

    Article  Google Scholar 

  14. Gherbi, C., Aliouat, Z., & Benmohammed, M. (2016). An adaptive clustering approach to dynamic load balancing and energy efficiency in wireless sensor networks. Energy, 114, 647–662.

    Article  Google Scholar 

  15. Saleem, Y., Salim, F., & Rehmani, M. H. (2015). Routing and channel selection from cognitive radio network’s perspective: A survey. Computers & Electrical Engineering, 42, 117–134.

    Article  Google Scholar 

  16. Liu, Y., Cai, L. X., & Shen, X. S. (2012). Spectrum-aware opportunistic routing in multi-hop cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(10), 1958–1968.

    Article  Google Scholar 

  17. Ping, S., Aijaz, A., Holland, O., & Aghvami, A. H. (2015). SACRP: A spectrum aggregation-based cooperative routing protocol for cognitive radio ad-hoc networks. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2015.2424239.

    Article  Google Scholar 

  18. Wang, J., Yue, H., Hai, L., & Fang, Y. (2016). Spectrum-aware anypath routing in multi-hop cognitive radio networks. IEEE Transactions on Mobile Computing, 16(4), 1176–1187.

    Article  Google Scholar 

  19. Yadav, R. N., Misra, R., & Saini, D. (2018). Energy aware cluster based routing protocol over distributed cognitive radio sensor network. Computer Communications, 129, 54–66.

    Article  Google Scholar 

  20. Zhang, H., Zhang, Z., Dai, H., Yin, R., & Chen, X. (2011, December). Distributed spectrum-aware clustering in cognitive radio sensor networks. In 2011 IEEE global telecommunications conference-GLOBECOM 2011, IEEE, pp. 1–6.

  21. Ji, S., Yan, M., Beyah, R., & Cai, Z. (2015). Semi-structure routing and analytical frameworks for cognitive radio networks. IEEE Transactions on Mobile Computing, 15(4), 996–1008.

    Google Scholar 

  22. Badarneh, O. S., & Salameh, H. B. (2011, December). Opportunistic routing in cognitive radio networks: exploiting spectrum availability and rich channel diversity. In 2011 IEEE global telecommunications conference-GLOBECOM 2011, IEEE, pp. 1–5.

  23. Zhang, L., Cai, Z., Li, P., Wang, L., & Wang, X. (2017). Spectrum-availability based routing for cognitive sensor networks. IEEE Access, 5, 4448–4457.

    Article  Google Scholar 

  24. Shah, G. A., Alagoz, F., Fadel, E. A., & Akan, O. B. (2014). A spectrum-aware clustering for efficient multimedia routing in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 63(7), 3369–3380.

    Article  Google Scholar 

  25. Jiang, C., Chen, Y., Liu, K. R., & Ren, Y. (2013). Renewal-theoretical dynamic spectrum access in cognitive radio network with unknown primary behavior. IEEE Journal on Selected Areas in Communications, 31(3), 406–416.

    Article  Google Scholar 

  26. Ren, J., Zhang, Y., Zhang, N., Zhang, D., & Shen, X. (2016). Dynamic channel access to improve energy efficiency in cognitive radio sensor networks. IEEE Transactions on Wireless Communications, 15(5), 3143–3156.

    Article  Google Scholar 

  27. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000, January). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, IEEE, 10 pp.

  28. Bertsekas, D. P., Gallager, R. G., & Humblet, P. (1992). Data networks (Vol. 2). New Jersey: Prentice-Hall International.

    MATH  Google Scholar 

  29. The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/index.html.

Download references

Acknowledgements

This work is supported by the council of science and technology under the project entitled “wireless sensor network (WSN) routing protocol for industrial applications: algorithm design and hardware”. Project Grant Number is CST/2872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, Y., Prakash, A. & Tripathi, R. An Optimum Transmission Distance and Adaptive Clustering Based Routing Protocol for Cognitive Radio Sensor Network. Wireless Pers Commun 116, 907–926 (2021). https://doi.org/10.1007/s11277-020-07745-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07745-w

Keywords

Navigation