Skip to main content
Log in

Performance Analysis of Satellite-Terrestrial Network of Weibull Fading Channel

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Unlike Rayleigh or Nakagami-m fading which has been widely studied in hybrid satellite-terrestrial relay network, the multi-branch Weibull fading which can be an alternative has been less studied due to its high intractability. In the proposed satellite-terrestrial Weibull system, by applying multi-branch optimal transmitting beamforming/receiving combination strategy, an upper bound of signal to noise (SNR) based outage probability (OP) is analyzed compared with the exact OP. Besides, two different methods are used to calculate the intractable Ergodic Capacity. Moreover, the closed-form expressions of the average symbol error rate (ASER) and Effective Capacity are hard to derive. Hence, simplified theoretical results of ASER and Effective Capacity are presented via the proposed upper bound of SNR scheme. Finally, various parameters are verified to illustrate the performance of the proposed model and demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhatnagar, M. R., & Arti M. K. (2013). Performance analysis of AF based hybrid satellite-terrestrial cooperative network over generalized fading channels. IEEE Communications Letters, 17(10), 1912-1915.

    Article  Google Scholar 

  2. Upadhyay, P. K., & Sharma, P. K. (2016). Max-Max user-relay selection scheme in multiuser and multirelay hybrid satellite-terrestrial relay systems. IEEE Communications Letters, 20(2), 268–271.

    Article  Google Scholar 

  3. Upadhyay, P. K., & Sharma, P. K. (2016). Multiuser hybrid satellite-terrestrial relay networks with co-channel interference and feedback latency. In 2016 European Conference on Networks and Communications (EuCNC), Athens (pp. 174–178).

  4. Sharma, P. K., Gupta, D., & Kim, D. I. (2020). Cooperative AF-based 3D mobile UAV relaying for hybrid satellite-terrestrial networks. In IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Antwerp, Belgium (pp. 1–5).

  5. Sharma, P. K., & Kim, D. I. (2020). Secure 3D mobile UAV relaying for hybrid satellite-terrestrial networks. IEEE Transactions on Wireless Communications, 19(4), 2770–2784.

    Article  Google Scholar 

  6. Sharma, P. K., Deepthi, D., & Kim, D. I. (2020). Outage probability of 3-D mobile UAV relaying for hybrid satellite-terrestrial networks. IEEE Communications Letters, 24(2), 418–422.

    Article  Google Scholar 

  7. An, K., Li, Y., Yan, X., & Liang, T. (2019). On the Performance of Cache-Enabled Hybrid Satellite-Terrestrial Relay Networks. IEEE Wireless Communications Letters, 8(5), 1506–1509. https://doi.org/10.1109/LWC.2019.2924631.

    Article  Google Scholar 

  8. Yan, X., Xiao, H., Wang, C., & An, K. (2018). Outage performance of NOMA-based hybrid satellite-terrestrial relay networks. IEEE Wireless Communications Letters, 7(4), 538–541.

    Article  Google Scholar 

  9. Zhang, X., An, K., Zhang, B., Chen, Z., Yan, Y., & Guo, D. (2020). Vickrey auction-based secondary relay selection in cognitive hybrid satellite-terrestrial overlay networks with non-orthogonal multiple access. IEEE Wireless Communications Letters, 9(5), 628–632.

    Article  Google Scholar 

  10. Bithas, P. S., Karagiannidis, G. K., Sagias, N. C., Mathiopoulos, P. T., Kotsopoulos, S. A., & Corazza, G. E. (2005). Performance analysis of a class of GSC receivers over nonidentical Weibull fading channels. IEEE Transactions on Vehicular Technology, 54(6), 1963–1970.

    Article  Google Scholar 

  11. Sagias, N. C., Zogas, D. A., & Karagiannidis, G. K. (2005). Selection diversity receivers over nonidentical Weibull fading channels. IEEE Transactions on Vehicular Technology, 54(6), 2146–2151.

    Article  Google Scholar 

  12. Kwan, R., & Leung, C. (2007). General order selection combining for Nakagami and Weibull fading channels. IEEE Transactions on Wireless Communications, 6(6), 2027–2032.

    Article  Google Scholar 

  13. Kolawole, O. Y., Vuppala, S., Sellathurai, M., & Ratnarajah, T. (2017). On the performance of cognitive satellite-terrestrial networks. IEEE Transactions on Cognitive Communications and Networking, 3(4), 668–683.

    Article  Google Scholar 

  14. Liu, X., Kong, H., Lin, M., & Zhu, W. (2019). Outage performance of the integrated satellite-terrestrial network based on the SNR threshold. In 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). Suzhou, China (pp. 1–5).

  15. Abdi, A., Lau, W. C., Alouini, M., & Kaveh, M. (2003). A new simple model for land mobile satellite channels: Lfirst- and second-order statistics. IEEE Transactions on Wireless Communications, 2(3), 519-528.

    Article  Google Scholar 

  16. El Bouanani, F., & Ben-Azza, H. (2015). Efficient performance evaluation for EGC, MRC and SC receivers over Weibull multipath fading channel. In: Conference: 10th International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM’15), Doha, Qatar, pp. 346-357.

  17. Di Renzo, M., Graziosi, F., & Santucci, F. (2010). Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Transactions on Vehicular Technology, 59(1), 127–149.

    Article  Google Scholar 

  18. Yang, N., Yeoh, P. L., Elkashlan, M., Yuan, J., & Collings, I. B. (2012). Cascaded TAS/MRC in MIMO multiuser relay networks. IEEE Transactions on Wireless Communications, 11(10), 3829–3839.

    Article  Google Scholar 

  19. Adamchik, V.S., & Marichev, O.I. (1990). The algorithm for calculating integrals of hypergeometric type functions and its realization in reduce systems. In Proc. Int. Conf. Symp. Algebraic Comput, pp. 212–224.

  20. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products (7th ed.). New York, NY, USA: Academic.

    MATH  Google Scholar 

  21. Agrawal, R. P. (1970). Certain transformation formulae and Meijer’s G function of two variables. Indian Journal of Pure Applied and Mathematics, 1(4), 537–551.

    MathSciNet  Google Scholar 

  22. Wolfram. The Wolfram functions site (online) available at http://functions.wolfram.com

  23. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.

Download references

Acknowledgements

This work is supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX20-0202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangbin Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

As is depicted in Eq. (7), \(I_1\) is derived as

$$\begin{aligned} {I_1} = \int _0^\infty {\frac{{{{\left( {x + {r_{th}} + 1} \right) }^p}{{\left( {x + {r_{th}}} \right) }^{\varPhi - 1}}}}{{{x^p}}}\exp \left( { - \frac{{\left( {\beta - \delta } \right) {r_{th}}\left( {{r_{th}} + 1} \right) }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}x}} - \varPsi x} \right) } dx, \end{aligned}$$
(43)

With the help of polynomial expansion Eq.(1.111) in [20], then we make use of the transformation of Meijer’s G-function in Eq.(07.34.03.0046.01) in [22] and Eq. (10) in [19], the integral operation can be solved by Eq. (3.1) in [21]. The closed form of \(I_1\) is shown as:

$$\begin{aligned} \begin{array}{l} {I_1} = \sum \limits _{l = 0}^p {\left( {\begin{array}{*{20}{c}} p\\ l \end{array}} \right) \int _0^\infty {{x^{ - p}}{{\left( {x + {r_{th}}} \right) }^{l + \varPhi - 1}}\exp \left( { - \frac{{\left( {\beta - \delta } \right) {r_{th}}\left( {{r_{th}} + 1} \right) }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}x}}} \right) } \exp \left( { - \varPsi x} \right) dx} \\ \quad = \sum \limits _{l = 0}^p {\left( {\begin{array}{*{20}{c}} p\\ l \end{array}} \right) \frac{{{b^{a - 1}}{r_{th}}^{l + \varPhi - 1}}}{{\varGamma \left( { - c} \right) }}} {\varPsi ^{ - 1}}\mathop G\nolimits _{1,[1:1],0,[0:1]}^{1,1,1,0,1} \left( {\begin{array}{*{20}{c}} {\frac{1}{{b\varPsi }}}\\ {\frac{1}{{{r_{th}}\varPsi }}} \end{array}\left| {\begin{array}{*{20}{c}} 0\\ {1 - a, - c}\\ - \\ { - ,0} \end{array}} \right. } \right) \end{array}. \end{aligned}$$
(44)

where b denotes \({{\left[ {\left( {\beta - \delta } \right) {r_{th}}\left( {{r_{th}} + 1} \right) } \right] } \big / {\left( {{c_{sr}}{{{{\bar{\gamma }}} }_s}} \right) }}\), a represents \(1-p\), c is \(l + \varPhi - 1\).

Finally, by substituting Eq. (44) into Eq. (11) and with several mathematical simplification, we get the expression of Outage Probability given in Eq. (12).

Appendix B

By substituting Eq. (24) into Eq. (23), \({{{\bar{C}}}_3}\) can be transformed as

$$\begin{aligned} {{{{\bar{C}}}}_3} &= - \sum \limits _{{k_1} = 0}^{{m_s} - 1} { \cdots \sum \limits _{{k_M} = 0}^{{m_s} - 1} {\frac{{\varXi \left( M \right) \varLambda !{\varPsi ^\varPhi }}}{{c_{sr}^\varLambda {{\bar{\gamma }}} _s^\varLambda }}} } \underbrace{\int _0^\infty {\frac{{{E_1}\left( { - s} \right) }}{{{{\left( {s + \varPsi } \right) }^\varPhi }{{\left( {\frac{{\beta - \delta }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}} + s} \right) }^{\varLambda + 1}}}}ds} }_{{I_2}}\\ &\quad - \sum \limits _{{k_1} = 0}^{{m_s} - 1} { \cdots \sum \limits _{{k_M} = 0}^{{m_s} - 1} {\frac{{\varXi \left( M \right) \varGamma \left( \varLambda \right) {\varPsi ^\varPhi }\varPhi }}{{c_{sr}^\varLambda {{\bar{\gamma }}} _s^\varLambda }}} } \underbrace{\int _0^\infty {\frac{{{E_1}\left( { - s} \right) }}{{{{\left( {\frac{{\beta - \delta }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}} + s} \right) }^\varLambda }{{\left( {s + \varPsi } \right) }^{\varPhi + 1}}}}ds} }_{{I_3}} , \end{aligned}$$
(45)

With the aid of Eq. (10) in [19] and Eq. (3.1) in [21], we can obtain the results of \(I_2\), \(I_3\) given as follows:

$$\begin{aligned}&\begin{array}{l} {I_2} = \frac{{{\varPsi ^{ - \varPhi }}{{\left( {\frac{{\beta - \delta }}{{{{{{\bar{\gamma }}} }_s}}}} \right) }^{ - \varLambda - 1}}}}{{\varGamma \left( \varPhi \right) \varGamma \left( {\varLambda + 1} \right) }}\int _0^\infty {\mathop G\nolimits _{1,1}^{1,1} \left( {\frac{s}{\varPsi }\left| {\begin{array}{*{20}{c}} {1 - \varPhi }\\ 0 \end{array}} \right. } \right) \mathop G\nolimits _{1,1}^{1,1} \left( {\frac{{{c_{sr}}{{{{\bar{\gamma }}} }_s}s}}{{\beta - \delta }}\left| {\begin{array}{*{20}{c}} { - \varLambda }\\ 0 \end{array}} \right. } \right) \mathop G\nolimits _{1,2}^{2,0} \left( {s\left| {\begin{array}{*{20}{c}} 1\\ {0,0} \end{array}} \right. } \right) ds} \\ \quad = \frac{{{\varPsi ^{ - \varPhi }}{{\left( {\frac{{\beta - \delta }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}}} \right) }^{ - \varLambda - 1}}}}{{\varGamma \left( \varPhi \right) \varGamma \left( {\varLambda + 1} \right) }}\mathop G\nolimits _{2,[1,1],1,[1,1]}^{2,1,1,1,1} \left( {\begin{array}{*{20}{c}} {\frac{1}{\varPsi }}\\ {\frac{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}}{{\beta - \delta }}} \end{array}\left| {\begin{array}{*{20}{c}} {0,0}\\ {\varPhi ;1 + \varLambda }\\ 2\\ {0;0} \end{array}} \right. } \right) \end{array}, \end{aligned}$$
(46)
$$\begin{aligned}&\begin{array}{l} {I_3} = \frac{{{{\left( {\frac{{\beta - \delta }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}}} \right) }^{ - \varLambda }}{\varPsi ^{ - \varPhi - 1}}}}{{\varGamma \left( \varLambda \right) \varGamma \left( {\varPhi + 1} \right) }}\int _0^\infty {\mathop G\nolimits _{1,1}^{1,1} \left( {\frac{s}{\varPsi }\left| {\begin{array}{*{20}{c}} { - \varPhi }\\ 0 \end{array}} \right. } \right) \mathop G\nolimits _{1,1}^{1,1} \left( {\frac{{{c_{sr}}{{{{\bar{\gamma }}} }_s}s}}{{\beta - \delta }}\left| {\begin{array}{*{20}{c}} {1 - \varLambda }\\ 0 \end{array}} \right. } \right) \mathop G\nolimits _{1,2}^{2,0} \left( {s\left| {\begin{array}{*{20}{c}} 1\\ {0,0} \end{array}} \right. } \right) ds} \\ \quad = \frac{{{{\left( {\frac{{\beta - \delta }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}}} \right) }^{ - \varLambda }}{\varPsi ^{ - \varPhi - 1}}}}{{\varGamma \left( \varLambda \right) \varGamma \left( {\varPhi + 1} \right) }}\mathop G\nolimits _{2,[1,1],1,[1,1]}^{2,1,1,1,1} \left( {\begin{array}{*{20}{c}} {\frac{1}{\varPsi }}\\ {\frac{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}}{{\beta - \delta }}} \end{array}\left| {\begin{array}{*{20}{c}} {0,0}\\ {1 + \varPhi ;\varLambda }\\ 2\\ {0;0} \end{array}} \right. } \right) \end{array}. \end{aligned}$$
(47)

Finally, by substituting the calculation results into Eq. (45) and with several mathematical manipulations, the last term of \({{\bar{C}}}\) is shown as Eq. (24).

Appendix C

As is shown in Eq. (38), we can know that MGF is needed to calculate the Effective Capacity. However, the third term in Eq. (32) cannot be used for calculating directly.Herein, we provide an alternative method based on the approximate instead. Substituting Eq. (13) into Eq. (31), where \(\exp \left[ { - \left( {s + \frac{{\beta - \delta }}{{{{{{\bar{\gamma }}} }_s}}}} \right) x} \right]\) can be approximated by \(\sum \limits _{l = 0}^L {\frac{{{{\left[ { - \left( {s + \frac{{\beta - \delta }}{{{{{{\bar{\gamma }}} }_s}}}} \right) } \right] }^l}}}{{l!}}} {x^l}\) at the time \({{{\bar{\gamma }}} _s}\) goes to infinity, thus the novel MGF can be given as

$$\begin{aligned} {M_r}\left( s \right) &= 1 - s\sum \limits _{{i_1}, \cdots ,{i_M},p} {{\varphi _{{i_1}, \cdots ,{i_M},p}}\frac{{\varGamma \left( {p + 1} \right) }}{{{{\left( {\frac{{\beta - \delta }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}} + s} \right) }^{p + 1}}}}} \\ &\quad - s\sum \limits _{{i_1}, \cdots ,{i_M},p} {\frac{{{\varphi _{{i_1}, \cdots ,{i_M},p}}}}{{\varGamma \left( \varPhi \right) }}\sum \limits _{l = 0}^L {\frac{{{{\left( { - \frac{{\beta - \delta }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}}} \right) }^l}}}{{l!}}} } {s^{ - p - l - 1}}\mathop G\nolimits _{2,2}^{1,2} \left( {\frac{\varPsi }{s}\left| {\begin{array}{*{20}{c}} { - p - l,1}\\ {\varPhi ,0} \end{array}} \right. } \right) . \end{aligned}$$
(48)

where \(\sum \limits _{{i_1}, \cdots ,{i_M},p} {{\varphi _{{i_1}, \cdots ,{i_M},p}}} = \sum \limits _{{i_1} = 0}^{{m_s} - 1} { \cdots \sum \limits _{{i_M} = 0}^{{m_s} - 1} {\frac{{\varXi \left( M \right) }}{{c_{sr}^\varLambda {{\bar{\gamma }}} _s^\varLambda }}\sum \limits _{p = 0}^{\varLambda - 1} {\frac{{\varGamma \left( \varLambda \right) }}{{p!}}} {{\left( {\frac{{\beta - \delta }}{{{c_{sr}}{{{{\bar{\gamma }}} }_s}}}} \right) }^{ - \left( {\varLambda - p} \right) }}} }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, T., Yu, X., Li, M. et al. Performance Analysis of Satellite-Terrestrial Network of Weibull Fading Channel. Wireless Pers Commun 119, 1–19 (2021). https://doi.org/10.1007/s11277-020-07889-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07889-9

Keywords

Navigation