Skip to main content

Advertisement

Log in

Crop Nutrition and Computer Vision Technology

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Crop nutrition status can be reflected via leaf state and surface color. Traditional crop nutrition testing is mainly dominated by expert experience and chemical measurement, and expert experience is greatly affected by subjective factors. Although chemical measurement has high detection accuracy, its poor timeliness makes it difficult to achieve dynamic feedback control of nutrient solution, and the sampling process will bring certain damage to the crop. Computer vision technology such as hyperspectral remote sensing, visual image and 3D scanning detection technology has become a hotspot of crop nutrition detection because of its non-destructive, rapid and real-time characteristics. It is expected to develop into the main technology for real-time diagnosis of crop nutrition, provide basis for online information monitoring of crop nutrition and timely fertilization, thereby achieving automated and intelligent management of agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thomas, J. R., & Oerther, G. F. (1972). Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal, 64(1), 11–13.

    Article  Google Scholar 

  2. Shibayama, M., & Akiyama, T. (1986). A spectroradiometer for field use IV. Radiometric estimation for chlorophyll index of rice canopy. Japanese Journal of Crop Science, 55(4), 433.

    Article  Google Scholar 

  3. Juan, Y. H., Wang, R., Xing, Y. H., & Gong, L. (2012). Nitrogen nutrient diagnosis of spring maize based on scanning of visible spectrum. Journal of Maize Sciences., 20(5), 126–130.

    Google Scholar 

  4. Borhan, M. S., Panigrahi, S., Lorenzen, J. H., & Gu, H. (2004). Multispectral and color imaging techniques for nitrate and chlorophyll determination of potato leaves in a controlled environment. Transactions of the ASAE, 47(2), 599–608.

    Article  Google Scholar 

  5. Casady, et al. (1996). Machine vision for measurement of rice canopy dimensions. Transactions of ASAE, 39(5), 1899–1904.

    Article  Google Scholar 

  6. Petersen, C. T., Jensen, C. R., & Mogensen, V. O. (2002). Analysis of variation of spectral vegetation index measured in differently fertilized field barley. Communications in Soil Science and Plant Analysis, 33(9–10), 1485–1506.

    Article  Google Scholar 

  7. Tian, X. L., & Huang, Y. L. (2017). Study on the color image of tomato leaves under the computer vision system. Journal of Agricultural Mechanization Research., 39(7), 175–179.

    Google Scholar 

  8. Yue, Y. J., Yang, X., Zhao, H., & Wang, H. J. (2015). Diagnosis of rape nutrient deficiency based on support vector machine. Guangdong Agricultural Sciences, 39(7), 175–179.

    Google Scholar 

  9. Wang, Q., Xi, L., Ren, Y. N., & Ma, X. M. (2012). Determination of tobacco leaf maturity degree based on computer vision technology. Transactions of the Chinese Society of Agricultural Engineering., 28(4), 175–179.

    Google Scholar 

  10. Li, L. (2016). Research on nutrition information of facility crops growth and development of mobile detection platform. Jiangsu University.

  11. Cao, M. (2005). Detecting research of soybean’s plant nitrogen based on image processing technology. Jilin University.

  12. Xu, G. L., Cheng, Y., & Mao, H. (2003). Features selection of leaves image for diagnosing tomato disease of nutrient deficiency based on genetic algorithm. Computer Engineering, 29(11), 129–131.

    Article  Google Scholar 

  13. Zhang, Y., Li, M., Zhang, X., Zhang, J., & Xu, Z. (2005) Nutrition information extraction of the cucumber leaves in the greenhouse based on computer vision technology. Transactions of the Chinese Society of Agricultural Engineering, 21(8), 102–105.

    Google Scholar 

  14. Yan, L. I., Wang, J., Teng-Fei, M. A., Zhu, J., Wei, C. Z., & Chu, G. X. (2007). A primary study on N evaluating of processing tomato leaves based on color features. Acta Agriculturae Boreali-Occidentalis Sinica, 16(3), 175–179.

    Google Scholar 

  15. Ahmad, I. S., & Reid, J. F. (1996). Evaluation of colour representations for maize images ☆. Journal of Agricultural Engineering Research, 63(3), 185–195.

    Article  Google Scholar 

  16. Story, D., Kacira, M., Kubota, C., Akoglu, A., & An, L. L. (2010). Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments. Computers and Electronics in Agriculture, 74(2), 238–243.

    Article  Google Scholar 

  17. Jia, L. L., Fan, M. S., Zhang, F. S., Chen, X. P., Lu, S. H., & Sun, Y. M. (2009). Nitrogen status diagnosis of rice by using a digital camera. Spectroscopy and Spectral Analysis., 29(8), 2176–2179.

    Google Scholar 

  18. Zhang, Y. E., Li, M. Z., Zhang, X. J., Zhang, J. P., & Xu, Z. H. (2005). Nutrition information extraction of the cucumber leaves in the greenhouse based on computer vision technology. Transactions of the Chinese Society of Agricultural Engineering., 21(8), 114–117.

    Google Scholar 

  19. Li, Y., Wang, J., Chu, G. X., Ma, F. Y., & Wei, C. Z. (2008). Tomato growth monitoring under different N treatments based on digital image analysis. Plant Nutrition and Fertilizer Science., 14(1), 139–143.

    Google Scholar 

  20. Li, C. Y., Teng, G. H., Zhao, C. J., Qiao, X. J., & Wu, C. L. (2003). Development of non-contact measurement on plant growth in greenhouse using computer vision. Transactions of the Chinese Society of Agricultural Engineering., 19(3), 140–143.

    Google Scholar 

  21. Fitzgerald, G., Rodriguez, D., & Garry, O. (2010). Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crops Research, 116(3), 318–324.

    Article  Google Scholar 

  22. Chen, Q. C., Tian, Y. C., Yao, X., Zhu, Y., & Cao, W. X. (2010). Effects of nitrogen fertilizer top-dressing based on canopy reflectance spectra in rice. Scientia Agricultura Sinica., 43(20), 149–4157.

    Google Scholar 

  23. Zhang, L. (2019). Research on nutrient deficiency identification of tomato based on computer vision. Journal of Agricultural Mechanization Research, 41(3), 232–235.

    Google Scholar 

  24. Wu, X. M., Mao, H. P., & Li, T. Q. (2008). Recognition of tomato nutrient deficiency based o wavelet transform. Computer Applications and Software., 25(7), 28–30.

    Google Scholar 

  25. Li, L. T., Zhang, M., Ren, T., Li, X. K., Cong, R. H., Wu, L. S., et al. (2015). Diagnosis of N nutrition of rice using digital image processing technique. Plant Nutrition and Fertilizer Science, 21(1), 259–268.

    Google Scholar 

  26. Yuan, D. J., Liu, A. G., Yuan, B. Z., Hu, L. Y., Liu, Z. X., & Zhang, F. F. (2009). Nutrition information extraction of rape canopy based on computer-vision technology. Transactions of the Chinese Society of Agricultural Engineering, 25(12), 174–179.

    Google Scholar 

  27. Scharf, P. C., & Lory, J. A. (2002). Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agronomy Journal, 94(3), 397–404.

    Article  Google Scholar 

  28. Li, J., Zhang, F., Qian, X., Zhu, Y., & Shen, G. (2015). Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sensing Letters., 6(3), 183–189.

    Article  Google Scholar 

  29. Tisdale, S. L., Nelson, W. L., & Beaton, J. D. (1966). Soil fertility and fertilizers. Quarterly Review of Biology, 101(4), 193.

    Google Scholar 

  30. Wallace, T. (1951). The diagnosis of mineral deficiencies in plants by visual symptoms. A colour atlas and guide. International Journal of Plant Sciences, 94(5), 709.

    Google Scholar 

  31. Ponzoni, F. J., De, J. L., & Goncalves, M. (1999). Spectral features associated with nitrogen, phosphorus, and potassium deficiencies in Eucalyptus saligna seedling leaves. International Journal of Remote Sensing, 20(11), 2249–2264.

    Article  Google Scholar 

  32. Ayala-Silva, T., & Beyl, C. A. (2005). Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research the Official Journal of the Committee on Space Research, 35(2), 305–317.

    Article  Google Scholar 

  33. Shi, J. Y. (2012). Study on diagnostics of nutrient elements deficiencies in establishment planting crop using hyper-spectral imaging technology. Jiangsu University.

  34. Zhang, K. B., Zhang, A. Q., & Li, C. S. (2016). Nutrient deficiency diagnosis method for rape leaves using color histogram on HSV space. Transactions of the Chinese Society of Agricultural Engineering, 32(19), 179–187.

    Google Scholar 

  35. Osborne, S. L., Schepers, J. S., Francis, D. D., & Schlemmer, M. R. (2002). Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agronomy Journal, 94(6), 1215–1221.

    Article  Google Scholar 

  36. Sartin, M. A., & Da Silva, R. C. (2014). Image segmentation with artificial neural network for nutrient deficiency in cotton crop. Journal of Computer Science, 10(6), 1084–1093.

    Article  Google Scholar 

  37. Pimstein, A., Bansal, A., Karnieli, S. K., & Bonfil, D. J. (2011). Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crops Research., 121(1), 125–135.

    Article  Google Scholar 

  38. Xu, S. Y., Lin, W. G., & Wu, W. B. (2015). Nutrient deficiency image diagnose of rapeseed based on color feature. Chinese Journal of Oil Crop Sciences, 37(4), 576–582.

    Google Scholar 

  39. Lu, Y., Savage, L. J., & Last, R. L. (2011). Chloroplast phonemics: systematic phenotypic screening of chloroplast protein mutants in Arabidopsis. Methods in Molecular Biology, 775, 161–185.

    Article  Google Scholar 

  40. Gomez-Casero, M. T., Lopez-Granados, F., Pena-Barragan, J. M., Jurado-Exposito, M., Garcia-Torres, L., & Fernandez-Escobar, R. (2007). Assessing nitrogen and potassium deficiencies in olive orchards through discriminant analysis of hyperspectral data. Journal of the American Society for Horticultural Science, 132(5), 611–618.

    Article  Google Scholar 

  41. Shi, Y. Y., Deng, J. S., Chen, L. S., Zhang, D. Y., Ding, X. D., & Wang, K. (2010). Leaf characteristics extraction of rice under potassium stress based on static scan and spectral segmentation technique. Spectroscopy and Spectral Analysis, 30(1), 214–219.

    Google Scholar 

  42. Mao, H. P., Xu, G. L., & Li, P. P. (2003). Extracting and selecting features of leaf images for diagnosing nutrient deficiency diseases in tomatoes. Transactions of the Chinese Society of Agricultural Engineering, 19(2), 133–136.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Fund of China Agriculture Research System (CARS-23), and the National Key Research and Development Program of China (2018YFD0201200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Xu, W. Crop Nutrition and Computer Vision Technology. Wireless Pers Commun 117, 887–899 (2021). https://doi.org/10.1007/s11277-020-07901-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07901-2

Keywords

Navigation