Skip to main content
Log in

Highly Directive Microstrip Array Antenna with FSS for Future Generation Cellular Communication at THz Band

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To establish a successful future generation cellular communication system in the Terahertz (THz) regime, there is a need to design high-directivity antennas, which will allow the signal to propagate beyond 0.1 km. Simultaneously, design wide bandwidth (BW) antennas to facilitate transmitting the information at a data rate up to 0.1 Tb/s. Two sets of microstrip array antennas have been designed, optimized, and simulated with the CST MWS simulator, in a hybrid fed with uniform amplitude distribution technique, the \(1{\text{st}}\) one without frequency selective surface (FSS) feature and \(2{\text{nd}}\) one with the FSS feature for further enhancing the antenna gain. To verify the simulation results of the \(1{\text{st}} - 2{\text{nd }}\) antennas design, which simulated with the CST MWS simulator, these designs have been validated with the ANSYS HFSS simulator, and the simulation results obtained out of both simulators were close to each other. These antennas can establish a successful short-range 6G cellular communication system at the THz band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jha, K. R., & Singh, G. (2011). Analysis of narrow terahertz microstrip transmission-line on multilayered substrate. Journal of Computational Electronics, 10, 186–194.

    Article  Google Scholar 

  2. Federici, J., & Moeller, L. (2010). Review of terahertz and sub-terahertz wireless communications. Applied Physics Letters, 107(11), 111101.

    Google Scholar 

  3. Dai, J., Clough, B., Ho, I. C., Lu, X., Liu, J., & Zhang, X.-C. (2011). Recent progress in terahertz wave air photonics. IEEE Transactions on Terahertz Science and Technology, 1(1), 274–281.

    Article  Google Scholar 

  4. Markelz, A. G., & Roitberg, A. (2000). Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 1.0 and 2.0 THz. Chemical Physics Letters, 320, 42–48.

    Article  Google Scholar 

  5. Cavalleri, A., Wall, S., & Pson, C. S. (2006). Tracking the motion of charges in a terahertz light field by femtosecond x-ray diffraction. Nature, 442(7103), 664–666.

    Article  Google Scholar 

  6. Kemp, M. C., Taday, P. F., Cole, B. E., Cluff, J. A., Fitzgerald, A. J., & Tribe, W. R. (2003). Security applications of terahertz imaging in Terahertz for military and security applications. Proceedings SPIE, 5070, 44–52.

    Article  Google Scholar 

  7. Wang, J., Ding, Y., Bian, S., Peng, Y., Liu, M., & Gui, G. (2019). ULCSI data-driven deep learning for predicting DLCSI in cellular FDD systems. IEEE Access, 7(1), 96105–96112.

    Article  Google Scholar 

  8. Gui, G., Huang, H., Song, Y., & Sari, H. (2018). Deep learning for an effective non-orthogonal multiple access scheme. IEEE Transactions on Vehicular Technology, 67(9), 8440–8450.

    Article  Google Scholar 

  9. Wang, Y., Liu, M., Yang, J., & Gui, G. (2019). Data-driven deep learning for automatic modulation recognition in cognitive radios. IEEE Transactions on Vehicular Technology, 68(4), 4074–4077.

    Article  Google Scholar 

  10. Jha, K. R., & Singh, G. (2014). Terahertz planar antennas for next generation communication. Switzerland: Springer International Publishing.

    Book  Google Scholar 

  11. Tekbiyik, K., Ekti, A. R., Kurt, G. K., & Gorcin, A. (2019). Terahertz band communication systems: Challenges, novelties and standardization efforts. ELSEVIER Physical Communication, 35(100700), 1–18.

    Google Scholar 

  12. Akyildiz, I. F., Han, C., & Nie, S. (2018). Combating the distance problem in the millimeter-wave and Terahertz frequency bands. IEEE Communications Magazine, 56, 102–108.

    Article  Google Scholar 

  13. Han, C., & Chen, Y. (June 2018). Propagation modeling for wireless communications in the Terahertz band. IEEE Communications Magazine, 56, 96–101.

    Article  Google Scholar 

  14. Choudhury, B., Sonde, A. R., & Jha, R. M. (2016). Terahertz antenna technology for space applications. New York: Springer.

    Book  Google Scholar 

  15. Vettikalladi, H., Sethi, W. T., Abas, A. F. B., Ko, W., Alkanhal, M. A., & Himdi, M. (2019). Sub-THz antenna for high-speed wireless communication systems. Hindawi International Journal of Antennas and Propagation, 2019, 1–9.

    Article  Google Scholar 

  16. Y. Huang, X. Li, Z. Qi, H. Zhu, J. Xiao, and J. Chu, "A 140-GHz high-gain broadband tapered box-horn array antenna, " IEEE Asia Pacific Microwave Conference, 2017, pp. 765–767.

  17. Li, C. H., & Chiu, T. Y. (2017). 340-GHz low-cost and high-gain on-chip higher order mode dielectric resonator antenna for THz applications. IEEE Transactions on Terahertz Science and Technology, 7(3), 284–294.

    Article  Google Scholar 

  18. Miao, Z. W., Hao, Z. C., Wang, Y., Jin, B. B., Wu, J. B., & Hong, W. (2018). A 400-GHz wideband high-gain quartz-based single-layered folded reflectarray antenna for terahertz. IEEE Transactions on Terahertz Science and Technology, 9, 1–11.

    Google Scholar 

  19. P. V. Testa, B. Klein, R. Hahnel, C. Carta1, D. Plettemeier, and F. Ellinger, "140–220-GHz Distributed Antenna and Amplifier Co-Integrated in SiGe BiCMOS Process for UWB Receivers, " IEEE International Microwave Symposium (IMS) conference, Philadelphia, 10–15 June 2018, pp. 1515–1518.

  20. Gonzalez, A., Kaneko, K., Kojima, T., Asayama, S., & Uzawa, Y. (2017). Terahertz corrugated horns (1.25–1.57 THz): Design, gaussian modeling, and measurements. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 7(1), 42–52.

    Google Scholar 

  21. Konstantinidis, K., Feresidis, A. P., Constantinou, C. C., Hoare, E., Gashinova, M., Lancaster, M. J., & Gardner, P. (2017). Low-THz dielectric lens antenna with integrated waveguide feed. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 7(5), 572–581.

    Article  Google Scholar 

  22. Nisamol, T. A., Ansha, K. K., & Abdulla, P. (2020). Design of Sub-THz Beam Scanning Antenna Using Luneburg Lens for 5G Communications or Beyond. Progresses In Electromagnetics Research (PIER) C, 99, 179–191.

    Article  Google Scholar 

  23. Huang, K. C., & Wang, Z. (2011). Terahertz terabit wireless communication. IEEE microwave magazine, 12, 108–116.

    Article  Google Scholar 

  24. Song, H. J., & Nagatsuma, T. (2011). Present and future of Terahertz communication. IEEE Transactions on Terahertz Science and Technology, 1(1), 256–263.

    Article  Google Scholar 

  25. U. Nissanov and G. Singh, " Terahertz Antenna for 5G Cellular Communication Systems: A Holistic Review. Proceedings of IEEE International Conference on Microwave, Communication, Antennas & Electronic System (COMCAS 2019), Tel-Aviv, 4–5 Nov. 2019, pp. 1–6.

  26. Pozar, D. M. (2012). Microwave engineering. Hoboken: Wiley.

    Google Scholar 

  27. Capolino, F. (2009). Theory and phenomena of metamaterials. FL: CRC Press Taylor & Francis Group.

    Google Scholar 

  28. Munk, B. A. (2000). Frequency selective surfaces - theory and design. New York: Wiley.

    Book  Google Scholar 

  29. https://www.3ds.com/products-services/simulia/products/cst-studio-suite.

  30. https://www.ansys.com/products/electronics/ansys-hfss.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Nissanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nissanov, U., Singh, G., Gelbart, E. et al. Highly Directive Microstrip Array Antenna with FSS for Future Generation Cellular Communication at THz Band. Wireless Pers Commun 118, 599–617 (2021). https://doi.org/10.1007/s11277-020-08034-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-08034-2

Keywords

Navigation