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Abstract
In this paper, we propose a Gated Recurrent Unit(GRU) neural network traffic prediction 
algorithm based on transfer learning. By introducing two gate structures, such as reset gate 
and update gate, the GRU neural network avoids the problems of gradient disappearance 
and gradient explosion. It can effectively represent the characteristics of long correlation 
traffic, and can realize the expression of nonlinear, self-similar, long correlation and other 
characteristics of satellite network traffic. The paper combines the transfer learning method 
to solve the problem of insufficient online traffic data and uses the particle filter online 
training algorithm to reduce the training time complexity and achieve accurate prediction 
of satellite network traffic. The simulation results show that the average relative error of the 
proposed traffic prediction algorithm is 35.80% and 8.13% lower than FARIMA and SVR, 
and the particle filter algorithm is 40% faster than the gradient descent algorithm.

Keywords Low-earth orbit satellite network · Traffic prediction · GRU neural network · 
Transfer learning · Particle filter

1 Introduction

The satellite network traffic is affected by the periodic changes of the satellite network 
topology, the frequent switching of the satellite inter-satellite links, and the dynamic 
change of the inter-satellite link on–off relationship with time. The load of the satellite 
network traffic is adjacent to the geographical location of the satellite. Satellite network 
traffic has more complex and nonlinear characteristics [1]. To prevent network congestion 
and improve the utilization of network resources, reasonable network traffic management 
is especially important. The prediction of network traffic can grasp the changing character-
istics and trends of network traffic in advance, to specify a reasonable and effective traffic 
management strategy to meet the requirements of users for quality of service (QoS) [2]. 
Therefore, it is of great practical significance to establish a high-precision traffic prediction 
model for satellite network.
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The traditional autoregressive model (AR), moving average model (MA), autoregres-
sive moving average model (ARMA), and autoregressive Integrated moving average model 
(ARIMA) can only express short correlation traffic characteristics [3]. With the continuous 
introduction of technologies such as neural networks and support vector machines, predic-
tion models based on machine learning algorithms have emerged, such as artificial neural net-
works, least squares support vector machines (LSSVM), extreme learning machines (ELM), 
etc. [4]. The problem with the above algorithm is the lack of consideration of the temporal 
correlation of time series data, the limited prediction accuracy, and the satellite network traf-
fic cannot be predicted effectively [5]. The recurrent neural network (RNN) is a deep neural 
network that introduces cyclic feedback [6]. Long short-term memory (LSTM) network is a 
special model of RNN. It can learn the long-term dependence between time series data and 
can effectively solve the gradient disappearance and gradient explosion problem in traditional 
RNN training process. However, the LSTM network introduces three types of gate structures 
and state space, resulting in greater time complexity [7]. To alleviate computing resources of 
satellite, reduce computational complexity, this paper proposes a GRU neural network, which 
simplifies the three gate structures in LSTM into two kinds of gate structures, the update gate 
and the reset gate, and combines the cell state and output into one state [8]. In this simplified 
way, it not only retains the LSTM’s ability to store long-term state, but also greatly reduce the 
computational complexity. GRU can greatly improve the training efficiency of the model and 
retain the effect like LSTM [9].

To further reduce the consumption of satellite computing resources, and to solve the prob-
lem of insufficient real-time data on the star and sufficient historical data, a transfer learning 
method is introduced. By learning accumulated knowledge from data from similar domains, 
the transfer learning approach facilitates the formation of predictive models from data in the 
target domain. [10]. At the same time, in order to reduce the complexity of online update 
parameters on the satellite, we abandon the traditional Stochastic Gradient Descent (SGD)-
based training method and study the low- computational complexity of particle filtering (PF) 
online training. The method further determines the optimal parameters of the model, improves 
the accuracy of the model prediction, and reduces the training time of the model.

2  GRU Neural Network

The GRU neural network retains the ability to remember long-term states by using update 
gates and reset gate structures, and greatly reduces computational complexity [11]. The GRU 
neural network diagram is below (Fig. 1). 

Use the formula to express:

(1)rt = �
(
Wr ⋅

[
ht−1, xt

])

(2)zt = �
(
Wz ⋅

[
ht−1, xt

])

(3)h̃t = tanh
(
Wh̃ ⋅

[
rt ⊗ ht−1, xt

])

(4)ht =
(
1 − zt

)
⊗ ht−1 + zt ⊗ ht
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The square brackets indicate that two vectors are connected, and ⨂ is matrix elements 
multiplication. � is a sigmoid function whose output is between 0 and 1, indicating the 
update and forgetting degree of information. rt indicates the update gate, which is used to 
determine how much information is saved to the next moment at the previous moment. 
The larger the value of the update gate, the more information from the previous moment is 
retained. zt indicates the reset gate, which is used to determine the status information of the 
previous moment. Among them, the parameters we need to learn training are Wr , Wz , Wh̃ 
and Wo , the input of the output layer is yi

t
= Woh , and the output is yo

t
= �

(
yi
t

)
.

3  Traffic Prediction Framework of GRU Neural Network Based 
on Transfer Learning

To solve the problem of satellite network traffic prediction, this paper proposes a GRU 
neural prediction framework of network traffic based on transfer learning. The framework 
is mainly composed of three parts: data processing module, model training module, and 
model transfer module. The data processing module is mainly responsible for pre-process-
ing the data, converting the continuous flow data into discrete flow data to meet the input 
requirements of the model. The model building module is the core of the traffic prediction 
framework. This paper proposes a model tuning method such as batch normalization and 
dropout. A low complexity training method of particle filter model is proposed. The model 
transfer module is another important model. It transfers a training model with large num-
ber of offline traffic data into online model of satellite to avoid the problem of insufficient 
online traffic data. Finally, the GRU neural network traffic prediction is constructed.

3.1  Data Processing Module

The data processing module samples the flow data at a fixed time interval t to obtain input 
discrete flow data. Time window is used to convert discrete flow data into a supervised 
model input data format

(5)yt = �
(
Wo ⋅ ht

)

Fig. 1  GRU cycle neural network
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In the manner of port sliding, discrete data is divided according to a fixed time window 
size m sliding window, and finally the traffic data is obtained as X =

[
x1, x2, x3,… , xm−1, xm

]
 . 

Taking the data xm of the last m time as the predicted target output Y of the model, that is, the 
label with the supervised data. After that, the supervised data sequence is divided into training 
set test sets according to a certain proportion, and finally the data set for model training test is 
obtained.

3.2  Model Building Module

As the core of the traffic prediction framework, the model building module considers the time-
liness of satellite network traffic data and limited satellite computing resources and designs 
a single-layer GRU network structure. This can not only ensure the prediction effect of the 
model, but also reduce the time for the model to optimize parameters. The overall model 
structure is a three-layer network model, the first layer is the input layer, and the number of 
neurons in the input layer is equal to the input traffic data dimension. The second layer is a 
hidden layer, and the number of neurons in the hidden layer is determined according to the 
experimental results. The third layer is the output layer, because the model finally predicts that 
the output is a single flow value, and the number of neurons in the output layer is set to 1.

Model training module: Model training refers to the optimization of the square loss func-
tion. The model training reduces the loss function value by constantly adjusting the weight 
matrix of the network. Usually, the gradient weight reduction method is used to optimize the 
model weight matrix. However, the gradient descent optimization process may suffer from 
over-fitting or falling into a local optimal solution. Section 4 details how the ion filter algo-
rithm solves this problem.

Model tuning module: network structure tuning and network parameter tuning. Network 
structure tuning increases the model’s generalization ability, reduces the training time of the 
model, reduces the possibility of model overfitting, and adds a Dropout layer before the hid-
den layer [12]. In order to solve the problem of inconsistent data distribution of each batch, 
batch normalization processing is performed before the activation function [13].

The Dropout layer is an indirect discard, and the output of each neuron is still calculated, 
and then selecting some neurons with a random probability and their outputs are set to zero. 
This random discarding method is simple in design, but still needs to calculate discarding neu-
rons, which increases the computational cost of some satellites. This paper designs a pre-drop 
mode to set the output of neurons, which need to be set to zero. Although the problem of 
inconsistent data distribution in each batch is solved in the literature [13], some characteristics 
of the original data itself are lost. This paper introduces the learning parameters � and � to 
overcome this problem.

Finally, the overall process of model training and tuning is described as follows: The train-
ing of the GRU neural network model can be described as the optimization of the network 
parameters Θ, so that the difference between the predicted value and the true value of the 
model is reduced as much as possible:

(6)� = argmin
�

1

N

N∑

i=1

�oss
(
Xi, Yi,�

)
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Among them: 
{
X1, Y1,X2, Y2,… ,XN , YN

}
 are training data sets, and � is the weight 

parameter in the GRU neural network. The loss function of the model is the mean 
square error, where Ŷi is the predicted output of the model. Add a Dropout layer before 
the hidden layer:

where pl
j
 is the Bernoulli probability, designed according to the characteristics of each 

batch of satellite flow data, x̃l is randomly discarded based on input xl with probability pl
j
 , 

and the output of discarded neurons is set zero. Batch normalization means that we normal-
ize a batch of data for a sample:

Where:x =
{
x1, x2,… , xd

}
 is a batch of data, � is the expectation of the input flow data 

x, and � is the standard deviation of the input flow data x . This batch standardization pro-
cess can reduce the problem of data inconsistency, but directly inputting the standardized 
processing x̂i into the network ignores the feature distribution of the data itself. Therefore, 
this paper adds two learning parameters �i and �i to maintain the feature distribution of the 
original data. After batch normalization, the data input into the activation function is:

Where �i and �i are parameters learned for a batch data model, �i and �i parameters can 
retain part of the data features lost due to the normalization operation. Finally, the data 
distribution input to the activation function is more consistent and has the original data 
characteristics, and the convergence speed of the model can be improved.

3.3  Model Transfer Module

The model transfer module is to realize the migration of the source data model to the 
destination data model and train the network to learn the neural network feature rep-
resentation based on the historical large amount of traffic data, and then migrate the 
model to the online traffic data for training model.

Firstly, the offline flow data is transformed with the data to obtain the input data 
format of the model, and then the model building module is used to obtain the offline 
traffic prediction model. Based on the same processing and online traffic prediction 
model, online traffic data is added, and the model building module is used to retrain 
and obtain the online traffic prediction model.

(7)loss =
1

N

N∑

i=1

(
Yi − Ŷi

)2

(8)pl
j
∼ Bernonlli(p)

(9)x̃l = pl
j
∗ xl

(10)x̂i =
xi − 𝜇

𝜎

(11)yi = 𝛾ix̂i + 𝛽i
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4  Efficient Online Training Method Based on Particle Filter

The key of particle filter algorithm is to determine the state transition equation and 
observation equation of the system [14]. For the traffic prediction model of GRU neu-
ral network, the discrete time value is the number of iterations of the model, and the 
state of each system is the optimal solution of the model. Equations (1)-(5) as the state 
transition equation of the system, the mean square error loss function (7) as the system 
Observe the equation. The training process of GRU neural network model based on par-
ticle filter algorithm is as follows:

First, a discrete system dynamic model is established. The mathematical model is 
expressed as follows:

Where Xt is the system state variable, Zt is the true observation of the system, vt is the sys-
tem noise, and et is the measurement noise of the system.

Particle initialization: Each particle is considered that having equal weight if the sys-
tem state is unknown. The initial particle set is generated by sampling with probability 
density p

(
x0
)
 : 
{
xi
0
,
1

N
;i = 1, 2,… ,N

}
.

Initialize system state: Calculate the network output value y according to the param-
eters of the GRU neural network and Eqs. (1)-(5). Set the minimum threshold of the sys-
tem, Nthr . Let the total number of particles in the particle filter algorithm be N , the total 
number of iterations is tf  , set the end loss value l , and randomly generate N particles 
according to the prior probability density p

(
x0
)
.

Importance sampling: When k = 1, 2,… ,N , to avoid particle degradation, it is nec-
essary to copy some of the particles with higher weight and remove the particles with 
lower weight.

(1) First, randomly extract N particles from a probability distribution function:

(2) Update the weight of the particles and normalize the particle weights:

According to the state transition equation p
(
xi
k
|xi

k−1

)
 , N particles are extracted from 

the initialized particle group. According to the observation Eq.  (7) of the system, the 
matching value of all particles xi

k
 is calculated, and the optimal particle and its cor-

responding optimal target y value are selected. The weight of the particle that does not 
satisfy the constraint is reset to zero. When the constraint is satisfied, according to the 
current observation yi

k
 and the Eqs. (15) and (16) and normalized, updating the weight 

of the particle.
Resampling: Calculate the number of valid particles:

(12)Xt = f
(
Xt−1, vt

)

(13)Zt = h
(
Xt, et

)

(14)xi
k
∼ q

(
xi
k
|xi

k−1
, yk

)
= p

(
xi
k
|xi

k−1

)
, i = 1, 2,… ,N

(15)w
j

k
= w

j

k−1
p
(
yi
k
|xi

k

)

(16)w̃i
k
= wi

k
∕

N∑

i=1

wi
k
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When N̂eff < Nthr , re-sampling is performed according to p
(
x̃
j

k
= xi

k

)
= x̃

j

k
 . We select 

the particles with larger weights for copying, and delete the smaller ones. A new set of 
generated particles is formed: 

{
x
j

k
,
1

N
;j = 1, 2,… ,N

}
.

State Estimation: Estimating System Status and Variance

Let k = k+1, continue the calculation, and judge whether the set loss value termina-
tion condition is satisfied.

The setting of N̂eff  in the particle filter will directly determine the prediction accu-
racy of the model. According to the above steps, iterative iteration, so that the optimal 
state transition equation estimation can be obtained, and the final flow prediction value 
can be obtained.

5  Experiment Results and Analysis

5.1  Evaluation Indicators

In order to measure the prediction results of the model, three error analysis methods 
are used to verify the prediction results, namely mean absolute error (MAE), root mean 
square error (RMSE) and mean relative error(MRE), the formula is as follows [15]:

Where Ŷ(i) is the true value, Ŷ(i) is the predicted value, and N is the total number of 
samples.

(17)N̂eff = 1∕
∑N

i=1

(
w̃i
k

)2

(18)x̂k = E(xk|yk) ≈
N∑

i=1

xi
k
w̃i
k

(19)Pk =

N∑

i=1

w̃i
k

(
x̂k − xi

k

)(
x̂k − xi

k

)T

(20)MAE =
1

N

N∑

i=1

|||Ŷ(i) − Y(i)
|||

(21)RMSE =

√√√√ 1

N

N∑

I=1

(
Ŷ(i) − Y(i)

)2

(22)MRE =
1

N

N∑

i=1

|||||

Ŷ(i) − Y(i)

Y(i)

|||||
× 100%
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5.2  Experimental Environment

The GRU neural traffic prediction model of network proposed in this paper is based on the 
Python2.7 programming language and the tensorflow 1.3 deep learning framework in the 
Ubuntu 16.04 operating system. The data source used in the experiments in this chapter is 
“BC-pOct89”, which extracts 400,000 data volumes.

First, 400,000 data is divided into two parts: a large amount of data sets of 380,000 and 
20,000 online real-time data sets. The 380,000 data was input into the network for training, 
and the offline pre-trained network model was obtained. The 20,000 data sets on the line 
are divided into training sets and test sets, of which the training set accounts for 4/5 and the 
test set accounts for 1/5. The training set is input into the pre-trained GRU neural network 
model and the wavelet filtering method is used for fast training, and the network model 
parameters are adjusted to obtain the optimal network parameters. During the experiment, 
the algorithm was verified by the leave-one method, and the test results of the model were 
obtained. This chapter experiments and compares with the traditional FARIMA, SVR traf-
fic prediction algorithms.

5.3  Analysis of Experimental Results

In order to reflect the superiority of the migration learning GRU neural network traffic 
prediction algorithm proposed in this paper, two comparative experiments are set up in this 
paper. Compared with the FARIMA-based traffic prediction algorithm, FARIMA can only 
process short-term time series, only considering the sequence. Statistical continuity before 
and after, and FARIMA does not have nonlinear fitting ability. Compared with the sec-
ond experiment based on the SVM algorithm, SVM performs well in the classification and 
prediction of traditional data, but it does not apply to time series data, and cannot handle 
data of satellite network traffic well. Both the FARIMA algorithm and the SVM algorithm 
can only fit short-term traffic characteristics and cannot reflect the long-term and complex 
nonlinear characteristics of satellite traffic. The specific experimental results are shown in 
Fig. 2.

Fig. 2  Network traffic forecast results graph
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To further compare the prediction effects of the GRU model with the SVR and 
FARIMA models, Table 1 calculates the MAE, MRE and RMSE for the three models. 
It shows that the table that the prediction results of the GRU model have better MAE, 
RMSE, and MAE values than the other two models, reflecting the superiority of the 
GRU model for predicting satellite network traffic.

5.4  Online Training Complexity Analysis

This section analyzes the complexity analysis of the particle-based filtering online train-
ing method and the traditional training method. The traditional training methods of 
comparison include stochastic gradient descent (SGD). Using Eq.  (7) as the optimiza-
tion function, the recursive formula for solving the weight of the SGD algorithm is:

Where ut represents the learning rate and is a value greater than 0 and less than 1. �0
t
 is the 

diagonal matrix of the output. The algorithm complexity of SGD is O
(
m4 + m2p2

)
 , where 

p is the input space dimension and m is the output space dimension. The complexity of the 
SGD algorithm is related to the input space dimension and the output space dimension.

According to the previous section, the complexity of the PF algorithm is 
O
(
N
(
m2 + mp

))
 , where N is the number of particles.

The particle training online training algorithm has the lowest complexity, although 
it is related to the number of particles N, but it is usually much smaller than the input 
space dimension p and the output space dimension m, and its algorithm complexity is 
lower than that of the random gradient.

In order to verify the low complexity and convergence efficiency of the particle filter 
algorithm compared with the random gradient descent algorithm, the number of itera-
tions is set to be the same, and it is necessary to observe how much data RMSE needs to 
be stable when training on the same data set. The delay result is shown in Fig. 3.

We can see from the experimental results that the initial relative error of PF-GRU is 
lower than that of SGD-GRU on the average relative error MRE index, and its conver-
gence speed is fast. After 450 sets of training data, it can converge and optimize. The 
error value and the relative error of the SGD-GRU after 750 sets of data is required to 
stabilize. The particle filter algorithm has a faster convergence rate than the random 
gradient descent algorithm, and the training required the amount of data is less, and the 
particle filtering algorithm combined with the previous analysis has lower complexity. 
Therefore, the particle filter algorithm can effectively reduce the computing and storage 
resources of the satellite.

(23)wt+1 = wt − 𝜇t∇wt
l
(
yt, ŷt

)
= wt + 2ut

(
yt − ŷt

)
𝛬o

t
h
(
ct
)

Table 1  Comparison of 
prediction results and errors of 
different models

Model MAE RMSE MRE (%)

GRU 17.47 26.08 21.05
FARIMA 33.53 42.20 56.85
SVM 22.56 32.25 29.18
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6  Conclusion

This paper analyzes the characteristics of data of satellite network traffic. We proposes a 
prediction algorithm for GRU neural network traffic based on migration learning. In this 
paper, the construction process of the GRU neural network model and the model setting 
method are described in detail. The algorithm flow of the online training update method 
based on particle filter is given. What’s more, we adopt the transfer learning method to 
avoid the problem of insufficient online traffic data and reduce the consumption of sat-
ellite computing resources. The simulation results show that compared with FARIMA 
algorithm and SVM algorithm, the proposed algorithm has superior prediction accu-
racy. We verify that the particle update based online update method has low complex-
ity and fast convergence speed. In short, the proposed traffic prediction algorithm has 
higher traffic prediction accuracy, lower computational complexity, faster convergence 
speed, and can effectively reduce satellite computing storage resources. It is a superior 
prediction algorithm for predicting satellite traffic.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

Fig. 3  Error convergence curve of different training methods on the training data set
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