Skip to main content
Log in

Performance Evaluation of Machine Learning Based Face Recognition Techniques

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The robustness of machine-learning model-based face recognition techniques to image processing attacks using the quantization of extracted features is presented. Recently developed face recognition techniques based on machine learning models have been outperformed over traditional face recognition techniques. An efficient face recognition technology should be able to resist various image processing attacks. This paper presents the simulation results by evaluating ten variants of machine-learning-based face recognition techniques on ten well-known image processing attacks. The quality of face recognition techniques has been assessed on recognition accuracy. The performance has been evaluated on two well-known face databases viz. Bosphorus and University of Milano Bicocca (UMB) face database. The experimental results reveal that the Subspace discriminant ensemble-based face recognition model has consistently performed in most image processing attacks. All image processing attacks have been visually verified and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hsu, H. J., & Chen, K. T. (2015) Face recognition on drones: Issues and limitations. In Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use; 39-44.

  2. S. Gupta, M. K. Markey and A. C. Bovik. (2007) Advancing the state of the art in 3D human face recognition. SPIE Newsroom.

  3. Sharif, M., Bhagavatula, S., Bauer, L., et al. (2016). Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition. SIGSAC Conference on Computer and Communications Security, 10(1145/2976749), 2978392.

    Google Scholar 

  4. Akhtar, Z., & Foresti, G. L. (2016). Face spoof attack recognition using discriminative image patches. Journal of Electrical and Computer Engineering. https://doi.org/10.1155/2016/4721849.

    Article  Google Scholar 

  5. Raghavendra, R., Raja, K. B., & Busch, C. (2015). Presentation attack detection for face recognition using light field camera. IEEE Transactions on Image Processing., 24(3), 1060–1075.

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Liu, C., Li, B., Lu, K., & Song, D. (2017) Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526

  7. Sharma, S., & Kumar, V. (2018). Performance evaluation of 2D face recognition techniques under image processing attacks. Modern Physics Letters B. https://doi.org/10.1142/S0217984918502123.

    Article  Google Scholar 

  8. Zangeneh, Erfan, & Moradi, Aref. (2018). Facial expression recognition by using differential geometric features. The Imaging Science Journal. https://doi.org/10.1080/13682199.2018.1509176.

    Article  Google Scholar 

  9. Ahmad, Fawad, Khan, Asif, Islam, Ihtesham Ul, et al. (2017). Illumination normalization using independent component analysis and filtering. The Imaging Science Journal., 65(5), 308–313. https://doi.org/10.1080/13682199.2017.1338815.

    Article  Google Scholar 

  10. Hsia, S.-C., Chen, C.-J., & Yang, W.-C. (2016). Improvement of face recognition using light compensation technique on real-time imaging. The Imaging Science Journal., 64(6), 334–340. https://doi.org/10.1080/13682199.2016.1219117.

    Article  Google Scholar 

  11. Parubochyi, Vitalius, & Shuwar, Roman. (2018). Fast self-quotient image method for lighting normalization based on modified Gaussian filter kernel. The Imaging Science Journal. https://doi.org/10.1080/13682199.2018.1517857.

    Article  Google Scholar 

  12. Sharma, R., & Patterh, M. S. (2015). A broad review about face recognition – feature extraction and recognition techniques. The Imaging Science Journal., 63(7), 361–377. https://doi.org/10.1179/1743131X14Y.0000000071.

    Article  Google Scholar 

  13. Kutter, M., & Petitcolas, F. A. (1999). Fair benchmark for image watermarking systems in security and watermarking of multimedia contents. International Society for Optics and Photonics, 3657, 226–240.

    Google Scholar 

  14. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning., 20(3), 273–297.

    MATH  Google Scholar 

  15. Ruiz, E. V. (1986). An algorithm for finding nearest neighbours in (approximately) constant average time. Pattern Recognition Letters, 4(3), 145–157.

    Article  Google Scholar 

  16. Quinlan, J. R. (1987). Simplifying decision trees. International journal of man-machine studies, 27(3), 221–234.

    Article  Google Scholar 

  17. Mika, S., Ratsch, G., Weston, J., et al. (1999) Fisher discriminant analysis with kernels. In Neural networks for signal processing IX. Proceedings of the 1999 IEEE signal processing society workshop. 41-48. IEEE.

  18. Dietterich, T. G. (2000). An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine learning, 40(2), 139–157.

    Article  Google Scholar 

  19. Dietterich, T. G. (2000). Ensemble methods in machine learning. International workshop on multiple classifier systems (pp. 1–15). Berlin, Heidelberg: Springer.

    Google Scholar 

  20. Savran, A., Alyüz, N., Dibeklioğlu, H., et al. (2008). Bosphorus database for 3D face analysis. European Workshop on Biometrics and Identity Management (pp. 47–56). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  21. Colombo, A., Cusano, C., & Schettini, R. (2011) UMB-DB: A database of partially occluded 3D faces. IEEE International Conference onComputer Vision Workshops (ICCV Workshops). 2113-2119. IEEE.

  22. Nicholson, S. W., & Bennett, T. B. (2009). Transparent practices: primary and secondary data in business ethics dissertations. Journal of business ethics, 84(3), 417–425.

    Article  Google Scholar 

  23. Patil, H., Kothari, A., & Bhurchandi, K. (2015). 3-D face recognition: features, databases, algorithms and challenges. Artificial Intelligence Review, 44(3), 393–441.

    Article  Google Scholar 

  24. Dalal, N., & Triggs, B. (2005) Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR. 1: 886-893. IEEE.

  25. Bay, H., Tuytelaars, T., & Gool, L. (2006). Surf: Speeded up robust features. European conference on computer vision (pp. 404–417). Berlin, Heidelberg: Springer.

    Google Scholar 

  26. Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 2037–2041.

    Article  Google Scholar 

  27. Mita, T., Kaneko, T., & Hori, O. (2005) Joint haar-like features for face detection. Tenth IEEE International Conference on Computer Vision ICCV. 2: 1619-1626. IEEE.

  28. Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on systems, man, and cybernetics, 3(6), 610–621.

    Article  Google Scholar 

  29. Danielsson, P. E. (1980). Euclidean distance mapping. Computer Graphics and image processing, 14(3), 227–248.

    Article  Google Scholar 

  30. Kruskal, J. B. (1964). Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2), 115–129.

    Article  MathSciNet  Google Scholar 

  31. De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The mahalanobis distance. Chemometrics and intelligent laboratory systems, 50(1), 1–18.

    Article  Google Scholar 

  32. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293.

    Article  MathSciNet  Google Scholar 

  33. Patidar, P., Gupta, M., Srivastava, S., & Nagawat, A. K. (2010). Image de-noising by various filters for different noise. International journal of computer applications., 9(4), 45–50.

    Article  Google Scholar 

  34. http://www.nptel.ac.in/courses/117104069/chapter_8/8_32.html

  35. Lin, C. Y., Wu, M., Bloom, J. A., et al. (2001). Rotation, scale, and translation resilient watermarking for images. IEEE Transactions on image processing., 10(5), 767–782.

    Article  Google Scholar 

  36. Gershon, R. (1985). Aspects of perception and computation in color vision. Computer vision, graphics, and image processing., 32(2), 244–277.

    Article  Google Scholar 

  37. Martucci, S. A. (1995). Image resizing in the discrete cosine transform domain. Proceedings on International Conference on Image Processing. 2: 244-247. IEEE.

  38. Mather, P., & Tso, B. (2016) Classification methods for remotely sensed data. CRC press.

  39. Benzarti, F., & Amiri, H. (2013) Speckle noise reduction in medical ultrasound images. arXiv preprint arXiv:1712.05526arXiv:1712.05526

  40. Chandra, E., & Kanagalakshmi, K. (2011) Cancelable biometric template generation and protection schemes: A review. 3rd International Conference on Electronics Computer Technology (ICECT). 5: 15-20. IEEE.

  41. Xu, Y., Zhu, Q., Fan, Z., et al. (2013). Coarse to fine K nearest neighbor classifier. Pattern Recognition Letters, 34(9), 980–986.

    Article  Google Scholar 

  42. Hassanat, A. B., Abbadi, M. A., Altarawneh, G. A., et al. (2014) Solving the problem of the K parameter in the KNN classifier using an ensemble learning approach. arXiv preprint arXiv:1409.0919

  43. Nguyen, H. V., & Cosine Bai, L. (2010). similarity metric learning for face verification. Asian conference on computer vision (pp. 709–720). Berlin, Heidelberg: Springer.

    Google Scholar 

  44. Goldberger, J., Hinton, G. E., Roweis, S. T., et al. (2005). Neighbourhood components analysis. Advances in neural information processing systems, 17, 513–520.

    Google Scholar 

  45. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM computing surveys (CSUR), 31(3), 264–323.

    Article  Google Scholar 

  46. Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121–167.

    Article  Google Scholar 

  47. Schittkowski, K. (2005). Optimal parameter selection in support vector machines. Journal of Industrial and Management Optimization, 1(4), 465.

    Article  MathSciNet  Google Scholar 

  48. Souza, C. R. (2010) Kernel functions for machine learning applications. Creative Commons Attribution-Noncommercial-Share Alike.3: 29.

  49. Friedrichs, F., & Igel, C. (2005). Evolutionary tuning of multiple SVM parameters. Neurocomputing, 64, 107–117.

    Article  Google Scholar 

  50. Huang, J., Yuen, P. C., Chen, W. S., et al. (2007). Choosing parameters of kernel subspace LDA for recognition of face images under pose and illumination variations. IEEE Transactions on Systems, Man, and Cybernetics, Part B Cybernetics, 37(4), 847–862.

    Article  Google Scholar 

  51. Binol, H., Cukur, H., & Bal, A. (2016). A supervised discriminant subspaces-based ensemble learning for binary classification. International Journal of Advanced Computer Research, 6(27), 209.

    Article  Google Scholar 

  52. Sharma, S., & Kumar, V. (2020). Voxel-based 3D occlusion-invariant face recognition using game theory and simulated annealing. Multimedia Tools and Applications, 79(35), 26517–26547.

    Article  Google Scholar 

  53. Sharma, S., & Kumar, V. (2020). Voxel-based 3D face reconstruction and its application to face recognition using sequential deep learning. Multimedia Tools and Applications, 79, 25–26.

    Google Scholar 

  54. Sharma, S., & Kumar, V. (2021). 3D landmark-based face restoration for recognition using variational autoencoder and triplet loss. IET Biometrics, 10(1), 87–98.

    Article  Google Scholar 

  55. Goswami, G., Ratha, N., Agarwal, A., Singh, R. and Vatsa, M., (2018). Unravelling robustness of deep learning based face recognition against adversarial attacks. arXiv preprint arXiv:1803.00401

  56. Zhu, Z.A., Lu, Y.Z. and Chiang, C.K., (2019), September. Generating adversarial examples by makeup attacks on face recognition. In 2019 IEEE International Conference on Image Processing (ICIP) (pp. 2516-2520). IEEE.

  57. Goswami, G., Agarwal, A., Ratha, N., Singh, R., & Vatsa, M. (2019). Detecting and mitigating adversarial perturbations for robust face recognition. International Journal of Computer Vision, 127(6–7), 719–742.

    Article  Google Scholar 

  58. Kotwal, K., Mostaani, Z., & Marcel, S. (2019). Detection of age-induced makeup attacks on face recognition systems using multi-layer deep features. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2(1), 15–25.

    Article  Google Scholar 

  59. Nguyen, D. T., Pham, T. D., Baek, N. R., & Park, K. R. (2018). Combining deep and handcrafted image features for presentation attack detection in face recognition systems using visible-light camera sensors. Sensors, 18(3), 699.

    Article  Google Scholar 

  60. Weitz, K., Hassan, T., Schmid, U. and Garbas, J.U., (2019) Deep-learned faces of pain and emotions Elucidating the differences of facial expressions with the help of explainable AI methods. tm-Technisches Messen, 86(7-8): 404-412.

  61. Williford, J.R., May, B.B. and Byrne, J., (2020) August. Explainable Face Recognition. In European Conference on Computer Vision (pp. 248-263). Springer, Cham.

  62. Wang, M. and Deng, W., 2020. Mitigating Bias in Face Recognition Using Skewness-Aware Reinforcement Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9322-9331).

  63. Duong, C.N., Luu, K., Quach, K.G., Nguyen, N., Patterson, E., Bui, T.D. and Le, N., (2019). Automatic face aging in videos via deep reinforcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 10013-10022).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Kumar, V. Performance Evaluation of Machine Learning Based Face Recognition Techniques. Wireless Pers Commun 118, 3403–3433 (2021). https://doi.org/10.1007/s11277-021-08186-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08186-9

Keywords

Navigation