Skip to main content

Advertisement

Log in

HAS-MAC: A Hybrid Asynchronous and Synchronous Communication System for Energy-Harvesting Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In Energy-Harvesting Wireless Sensor Networks (EH-WSNs), sensors have to continuously adapt their duty cycle to regulate energy consumption according to available energy. Therefore, it is unpractical to preserve an invariable working-schedule for a sensor and relay on a fixed routing path for a long time. For achieving packets forwarding effectively with low transmission latency, asynchronous and synchronous Medium Access Control (MAC) protocols are adopted widely regulating energy consumption in EH-WSNs. Since they bear a clear set of advantages and disadvantages, we propose a communication scheme that hybridizes asynchronous and synchronous MAC protocols for reducing average End-to-End delay in EH-WSNs, where a sensor will switch between the asynchronous and synchronous systems according to its energy supplement and practical scenario for adapting to its duty cycle. Our algorithm is suitable for not only low traffic load, but also high/periodic traffic situation. Especially, when working-schedules of sensors are adjusted dynamically depending on the energy environment, our algorithm provides better performance in EH-WSNs. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient in reducing data transmission latency in EH-WSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang, S., Kim, S. M., Kong, L., et al. (2018). Concurrent transmission aware routing in wireless networks[J]. Communications, IEEE Transactions on, 66(12), 6275–6286.

    Article  Google Scholar 

  2. Lin, H., & Du, L. (2020). Optimization and simulation of controller area network communication model based on industrial internet of things platform[J]. Complexity.

  3. Yi-Han, X.U,, Meng-Lian, L.I.U., Jing-Wei, X.I.E., & Jun, Z. (2019). An IEEE 802.21 MIS-based Mobility Management for D2D Communications over Heterogeneous Networks (HetNets). Concurrency and Computation: Practice and Experience. 2019:e5552.

  4. Xu, Y. H., Yang, C. C., Hua, M., et al. (2020). Deep deterministic policy gradient (DDPG)-based resource allocation scheme for NOMA vehicular communications[J]. IEEE Access, 99, 1–10.

    Google Scholar 

  5. Zheng, X., Cao, Z., Wang, J., He, Y., & Liu, Y. (2017). Interference resilient duty cycling for wireless sensor networks under co-existing environments. IEEE Transactions on Communications, 65(7), 2971–2984.

    Article  Google Scholar 

  6. Wang, S., Basalamah, A., Kim, S. M., Guo, S., Tobe, Y., & He, T. (2015). Link-correlation-aware opportunistic routing in wireless networks. IEEE Transactions on Wireless Communications, 14(1), 47–56.

    Article  Google Scholar 

  7. Choi, B. J., & Shen, X. S. (2011). Adaptive asynchronous sleep scheduling protocols for delay tolerant networks[J]. IEEE Transactions on Mobile Computing, 10(9), 1283–1296.

    Article  Google Scholar 

  8. Huang, P., Xiao, L., Soltani, S., Mutka, M. W., & Xi, N. (2012). The evolution of mac protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(1), 101–120.

    Article  Google Scholar 

  9. Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: Challenges and tradeoffs[J]. Ad Hoc Networks, 71, 117–134.

    Article  Google Scholar 

  10. Kshitij, B., Nowick, S., et al. (2018). A continuous-time replication strategy for efficient multicast in asynchronous NoCs[J]. IEEE Transactions on Very Large Scale Integration Systems, 27(2), 350–363.

    Google Scholar 

  11. Ramezani, P., & Pakravan, M. R. (2015). Overview of MAC protocols for energy harvesting wireless sensor networks[C], Personal, Indoor, and Mobile Radio Communications (PIMRC). In IEEE 26th Annual international symposium on IEEE pp. 2032–2037.

  12. Wang, X., Zhang, D., & Zhu, J. (2019). Terahertz band propagation characteristics of coupling multiconductor transmission lines in multilayer media[J]. IEEE Access, 99, 1–10.

    Article  Google Scholar 

  13. Yi-Han, X., Xie, J.-W., Zhang, Y.-G., Hua, M., & Zhou, W. (2019). Reinforcement learning (RL)-based energy efficient resource allocation for energy harvesting-powered wireless body area network. Sensors, 20(1), 44.

    Article  Google Scholar 

  14. Wu, Y., Liu, W., & Li, K. (2017). Power allocation and relay selection for energy efficient cooperation in wireless sensor networks with energy harvesting. J Wireless Com Network, 2017, 26.

    Article  Google Scholar 

  15. Demin, G., Haifeng, L., Yunfei, L., & Guoxin, W. (2016). Maximum data collection rate in rechargeable wireless sensor networks with multiple sinks. China Communications, 13(2), 95–108.

    Google Scholar 

  16. Yin, W., Bowen, L., Yongjun, Z., & Wenbo, L. (2018). Energy-neutral communication protocol for living-tree bioenergy powered wireless sensor network, mobile information systems, Article ID 5294026, p. 15.

  17. Lin, H., Bai, D., & Liu, Y. (2019). Maximum data collection rate routing for data gather trees with data aggregation in rechargeable wireless sensor networks. Cluster Computing, 22(1), 597–607.

    Article  Google Scholar 

  18. Dong, Y., Zhang, F., Joe, I., Lin, H., Jiao, W., & Zhang, Y. (2020). Learning for multiple-relay selection in a vehicular delay tolerant network. IEEE Access, 8, 175602–175611.

    Article  Google Scholar 

  19. Zhao, P., Wu, L., Hong, Z., et al. (2019). Research on multicloud access control policy integration framework. China Communications, 16(9), 222–234.

    Article  Google Scholar 

  20. Yan, X., Cao, J., Sun, L., Zhou, J., Wang, S., & Song, A. (2020). Accurate analytical-based multi-hop localization with low energy consumption for irregular networks. IEEE Transactions on Vehicular Technology, 69(2), 2021–2033.

    Article  Google Scholar 

  21. Polastre Hill, J., & Culler, J. (2004). D. Versatile low power media access for wireless sensor networks[C]. In International conference on embedded networked sensor systems. ACM, pp. 95–107.

  22. Buettner, M., Yee, G. V., Anderson, E., et al. (2006). X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks[J]. Acm Sensys, 14(4), 307–320.

    Google Scholar 

  23. Bernardo, L., Oliveira, R., Pereira, M., et al. (2007). A wireless sensor MAC protocol for bursty data traffic[C]. In IEEE International symposium on personal. Indoor and Mobile Radio Communications pp. 1–5.

  24. Wang, H., Zhang, & X., Khokhar, A. (2007). DPS-MAC: an asynchronous MAC protocol for wireless sensor networks[C]. In International conference on high performance computing. pp. 393-404. Springer-Verlag, Berlin

  25. Huang, P., Wang, C., Xiao, L., et al. (2010). RC-MAC: A receiver-centric medium access control protocol for wireless sensor networks[C]. In International workshop on quality of service. IEEE pp. 1–9.

  26. Yun, D., Yoo, S., & Kim, D., et al. (2008). OD-MAC: An on-demand MAC protocol for body sensor networks based on IEEE 802.15.4[C]. In IEEE international conference on embedded and real-time computing systems and applications. IEEE, pp. 413-420.

  27. Nguyen, K., Nguyen, V. H., Le, D. D., et al. (2014). ERI-MAC: An energy-harvested receiver-initiated mac protocol for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 2014(10), 1–8.

    Google Scholar 

  28. Liu, H. I., He, W. J., & Seah, W. K. (2015). LEB-MAC: Load and energy balancing MAC protocol for energy harvesting powered wireless sensor networks[C]. In IEEE international conference on parallel and distributed systems. IEEE pp. 584-591.

  29. Pang, B. M., Shi, H. S., & Li, Y. X. (2002). An energy-efficient MAC protocol for wireless sensor network[J]. Electronic Measurement Technology, 3(10), 1567–1576.

    Google Scholar 

  30. Du, S., Saha, A. K., & Johnson, D. B. (2007). RMAC: A routing-enhanced duty-cycle MAC protocol for wireless sensor networks[C]. INFOCOM 2007. IEEE International conference on computer communications. IEEE, pp. 1478–1486.

  31. Vasanthi, N. A., & Annadurai, S. (2006). Energy efficient sleep schedule for achieving minimum latency in query based sensor networks[C]. IEEE International conference on sensor networks, ubiquitous, and trustworthy computing. IEEE Computer Society, pp. 214–219.

  32. Wei, Y., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling[C]. International conference on embedded networked sensor systems. ACM, pp. 321–334.

  33. Zareei, M., Taghizadeh, A., Budiarto, R., et al. (2011). EMS-MAC: Energy efficient contention-based medium access control protocol for mobile sensor networks[J]. Computer Journal, 54(12), 1963–1972.

    Article  Google Scholar 

  34. Liu, C. J., Huang, P., & Xiao, L. (2016). TAS-MAC: A traffic-adaptive synchronous MAC protocol for wireless sensor networks[J]. ACM Transactions on Sensor Networks (TOSN), 12(1), 1.

    Article  Google Scholar 

  35. Haifeng, L., & Fuquan, Z. (2020). A scheme for stimulating message relaying cooperation. International Journal of Distributed Sensor Network, 16(2), 108–118.

    Google Scholar 

  36. Huang, Z., Huang, X., Fan, J., et al. (2020). Retrieval of aerodynamic parameters in rubber tree forests based on the computer simulation technique and terrestrial laser scanning data[J]. Remote Sensing, 12(8), 1318.

    Article  Google Scholar 

  37. Sankpal, S. V., & Bapat, V. (2011). Performance evaluation of proposed SEHEE-MAC for wireless sensor network in habitat monitoring[J]. International Journal of Scientific Engineering and Research, 2(10), 1–6.

    Google Scholar 

  38. Nguyen, K., Nguyen, V. H., Le, D. D., et al. (2014). ERI-MAC: An energy-harvested receiver-initiated MAC protocol for wireless sensor networks[J]. International Journal of Distributed Sensor Networks, 10, 1–8.

    Article  Google Scholar 

  39. Naderi, M. Y., Nintanavongsa, P., & Chowdhury, K. R. (2014). RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting[J]. IEEE Transactions on Wireless Communications, 13(7), 3926–3937.

    Article  Google Scholar 

  40. Gu, Y., Zhu, T., & He, T. (2009). ESC: Energy synchronized communication in sustainable sensor networks[C] . Network Protocols, 2009. ICNP 2009. 17th IEEE International Conference on. IEEE, pp. 52–62.

  41. Chen, H., & Cui, L. (2016). DS-MMAC: A delay-sensitive multi-channel mac protocol for ambient assistant living systems[J]. China Communications, 13(5), 38–46.

    Article  Google Scholar 

  42. Akande, D. O., & Salleh, M. F. M. (2020). A multi-objective target-oriented cooperative MAC protocol for wireless ad-hoc networks with energy harvesting[J]. IEEE Access, 8, 25310–2532.

    Article  Google Scholar 

  43. Kochhar, A., Kaur, P., Singh, P., et al. (2020). MLMAC-HEAP: A multi-layer MAC protocol for wireless sensor networks powered by ambient energy harvesting[J]. Wireless Personal Communications, 110(3), 893–911.

    Article  Google Scholar 

  44. Qiu, K., Jao, N., & Zhao, M., et al. (2020). ResiRCA: A resilient energy harvesting ReRAM crossbar-based accelerator for intelligent embedded processors[C]. In 2020 IEEE international symposium on high performance computer architecture (HPCA). IEEE.

  45. Verma, V. K., & Kumar, V. (2020). Review of MAC Protocols for energy harvesting wireless sensor network (EH-WSN)[M]. Internet of Things and Big Data Applications. Cham: Springer.

    Book  Google Scholar 

  46. Kaur, P., Sohi, B. S., & Singh, P. (2018). Recent advances in mac protocols for the energy harvesting based WSN: A comprehensive review[J]. Wireless Personal Communications, 104(2), 423–440.

    Google Scholar 

  47. Qiu, Y., Li, S., Xu, X., et al. (2016). Talk more listen less: Energy-efficient neighbor discovery in wireless sensor networks[C], INFOCOM, the. IEEE International Conference on Computer Communications, IEEE, 2016, 1–9.

    Google Scholar 

  48. Lenzen, C., Sommer, P., & Wattenhofer, R. (2009). Optimal clock synchronization in networks. In 7th ACM conference on embedded networked sensor systems, SenSys, pp. 225-238.

  49. Dutta, P., & Culler, D. (2008). Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications[C]. In Proceedings of the 6th ACM conference on Embedded network sensor systems. ACM pp. 71–84.

  50. Zhang, D., He, T., & Liu, Y., et al. (2012). Acc: Generic on-demand accelerations for neighbor discovery in mobile applications[C]. In Proceedings of the 10th ACM conference on embedded network sensor systems. ACM, pp. 169–182.

Download references

Acknowledgements

This work was supported by The Project funded by China Postdoctoral Science Foundation (Grant No. 2018T110505, 2017M611828) and The Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demin Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Zhang, S. & Zhang, F. HAS-MAC: A Hybrid Asynchronous and Synchronous Communication System for Energy-Harvesting Wireless Sensor Networks. Wireless Pers Commun 119, 1743–1761 (2021). https://doi.org/10.1007/s11277-021-08304-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08304-7

Keywords

Navigation