Skip to main content
Log in

Power and Resource Allocation in Wireless Communication Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

A Correction to this article was published on 27 May 2021

This article has been updated

Abstract

Present-day wireless methods are necessary to support a variety of higher-speed data communication facilities for its subscribers such as cloud-based video streaming facilities. One method to attain this is by using efficient resource allocation systems for transmitters and receivers using wireless communication methods. Wireless strategies and technologies are ubiquitous and enhancing progressively in the present world. In wireless communication technology, power and resource allocation remain the main issue due to the lack of resources by optimizing the number of subscribers and services. Hence, in this paper, we discuss different algorithms and techniques such as power-efficient resource allocation algorithm, real-time scheduling algorithm, NOMA, SCMA, Device-to-Device (D2D) communication, OFDMA, power and resource distribution in 5G, wireless sensor networks (WSNs), smart grids, cloud computing, and fog computing which converges stably and quickly. The Harmony search algorithm is also another way used for resources in wireless communication networks and discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Islam, M., & Jin, S. (2019). An overview research on wireless communication network. Networks, 5(1), 19–28.

    Google Scholar 

  2. Aggarwal, R. (2012) “Resource Allocation and Design Issues in Wireless Systems.” The Ohio State University

  3. Kabalci, E., & Kabalci, Y. (2019). Introduction to smart grid architecture. Smart Grids and Their Communication Systems. (pp. 3–45). Springer.

    Chapter  Google Scholar 

  4. Bakare, B. I., & Enoch, J. D. (2019). A review of simulation techniques for some wireless communication system. International Journal of Electronics Communication and Computer Engineering, 10(2), 60–70.

    Google Scholar 

  5. Chetal, S., Nayak, A. K., & Panigrahi, R. K. (2019, March). Multiband antenna for WLAN, WiMAX and future wireless applications. In 2019 URSI Asia-Pacific Radio Science Conference (1–4).

  6. Sadiku, M. N. O. (2018). Optical and wireless communications: Next generation networks. . CRC Press.

    Book  Google Scholar 

  7. Rawat, D. B., Bajracharya, C., & Yan, G. (2011). Game Theory for Resource Allocation in Wireless Networks. Emerging Technologies in Wireless Ad-hoc Networks: Applications and Future Development. (pp. 335–352). IGI Global.

    Chapter  Google Scholar 

  8. Abaii, M., Liu, Y., & Tafazolli, R. (2008). An efficient resource allocation strategy for future wireless cellular systems. IEEE Transactions on Wireless Communications, 7(8), 2940–2949.

    Article  Google Scholar 

  9. R. Cited, (2019) “(12) United States Patent,”2

  10. Bahrami, B., Jamali, M. A. J., & Saeidi, S. (2018). A novel hierarchical architecture for Wireless Network-on-Chip. Journal of Parallel and Distributed Computing, 120, 307–321.

    Article  Google Scholar 

  11. Kai-zhi, H., Bo, Z., & Ya-jun, C. (2019). Secrecy energy efficiency optimization in heterogeneous networks with simultaneous wireless information and power transfer ✩. Physical Communications, 37, 100848.

    Article  Google Scholar 

  12. Nguyen, L. D. (2018). Resource allocation for energy efficiency in 5G wireless networks. EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 5(14), 1–7.

    Google Scholar 

  13. Idowu-Bismark, O., Okokpujie, K. O., Ryan, H., & Adedokun, M. O. (2019). 5G wireless communication network architecture and its key enabling technologies. International Review of Aerospace Engineering (I RE AS E), 12(2), 70–82.

    Google Scholar 

  14. Panda, S. (2020). Joint user patterning and power control optimization of MIMO–NOMA systems. Wireless Personal Communications, 112, 1-17.

    Article  Google Scholar 

  15. Song, L., Li, Y., Ding, Z., & Poor, H. V. (2017). Resource management in non-orthogonal multiple access networks for 5G and beyond. IEEE Network, 31(4), 8–14.

    Article  Google Scholar 

  16. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2016). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  17. Hojeij, M.-R., Farah, J., Nour, C. A., & Douillard, C. (2016). New optimal and suboptimal resource allocation techniques for downlink non-orthogonal multiple access. Wireless Personal Communications, 87(3), 837–867.

    Article  Google Scholar 

  18. Islam, S. M. R., Zeng, M., Dobre, O. A., & Kwak, K.-S. (2018). Resource allocation for downlink NOMA systems: Key techniques and open issues. IEEE Wireless Communications, 25(2), 40–47.

    Article  Google Scholar 

  19. Han, S., Guo, C., Meng, W., & Li, C. (2017). A flexible resource scheduling scheme for an adaptive SCMA system. Comput. Networks, 129, 384–391.

    Article  Google Scholar 

  20. Han, S., Tai, X., Meng, W., & Li, C. (2017, May). A resource scheduling scheme based on feed-back for SCMA grant-free uplink transmission. In 2017 IEEE International Conference on Communications (ICC) (1-6)

  21. Han, S., Huang, Y., Meng, W., Li, C., Xu, N., & Chen, D. (2018). Optimal power allocation for SCMA downlink systems based on maximum capacity. IEEE Transactions on Communications, 67(2), 1480–1489.

    Article  Google Scholar 

  22. Yu, S., Ejaz, W., Guan, L., & Anpalagan, A. (2017). Resource allocation schemes in D2D communications: overview, classification, and challenges. Wireless Personal Communications, 96(1), 303–322.

    Article  Google Scholar 

  23. Mishra, P. K., Kumar, A., Pandey, S., & Singh, V. P. (2018). Hybrid resource allocation scheme in multi-hop device-to-device communication for 5G networks. Wireless Personal Communications, 103(3), 2553–2573.

    Article  Google Scholar 

  24. Dhilipkumar, S., Arunachalaperumal, C., & Thanigaivelu, K. (2019). A comparative study of resource allocation schemes for D2D networks underlay cellular networks. Wireless Personal Communications, 106(3), 1075–1087.

    Article  Google Scholar 

  25. Kuang, Z., Liu, G., Li, G., & Deng, X. (2018). Energy efficient resource allocation algorithm in energy harvesting-based D2D heterogeneous networks. IEEE Internet of Things Journal, 6(1), 557–567.

    Article  Google Scholar 

  26. Li, X., Zhou, L., Chen, X., Qi, A., Li, C., & Xu, Y. (2018). Resource allocation schemes based on intelligent optimization algorithms for D2D communications underlaying cellular networks. Mobile Information Systems, 1–10.

  27. Mishra, P. K., Pandey, S., & Biswash, S. K. (2016). Efficient resource management by exploiting D2D communication for 5G networks. IEEE Access, 4, 9910–9922.

    Article  Google Scholar 

  28. Zhou, Z., Gao, C., Xu, C., Chen, T., Zhang, D., & Mumtaz, S. (2017). Energy-efficient stable matching for resource allocation in energy harvesting-based device-to-device communications. IEEE access, 5, 15184–15196.

    Article  Google Scholar 

  29. Hu, J., Heng, W., Li, X., & Wu, J. (2017). Energy-efficient resource reuse scheme for D2D communications underlaying cellular networks. IEEE Communications Letters, 21(9), 2097–2100.

    Google Scholar 

  30. Gao, J., Zhao, Y., Chen, M., & Chen, Z. (2019). “Resource allocation strategy based on rf energy harvesting in heterogeneous networks.” in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 1–5.

  31. Lu, X., Wang, P., Niyato, D., & Han, Z. (2015). Resource allocation in wireless networks with RF energy harvesting and transfer. IEEE Network, 29(6), 68–75.

    Article  Google Scholar 

  32. Wei, J., Yang, K., Zhang, G., & Lu, X. (2019). A QoS-aware joint power and subchannel allocation algorithm for mobile network virtualization. Wireless Personal Communications, 104(2), 507–526.

    Article  Google Scholar 

  33. Jiang, H., Wang, T., & Wang, S. (2018). Multi-scale hierarchical resource management for wireless network virtualization. IEEE Transactions Cognition Communications Networks, 4(4), 919–928.

    Article  Google Scholar 

  34. Zhu, K., & Hossain, E. (2015). Virtualization of 5G cellular networks as a hierarchical combinatorial auction. IEEE Transactions on Mobile Computing, 15(10), 2640–2654.

    Article  Google Scholar 

  35. Ye, J., Member, S., Zhang, Y., & Member, S. (2019). Pricing-based resource allocation in virtualized cloud radio access networks. IEEE Transactions on Vehicular Technology, 68(7), 7096–7107.

    Article  Google Scholar 

  36. Cai, Y., Yu, F. R., Liang, C., Sun, B., & Yan, Q. (2015). Software-defined device-to-device (D2D) communications in virtual wireless networks with imperfect network state information (NSI). IEEE Transactions on Vehicular Technology, 65(9), 7349–7360.

    Google Scholar 

  37. Tang, L., Yang, X., Wu, X., Cui, T., & Chen, Q. (2018). Queue stability-based virtual resource allocation for virtualized wireless networks with self-backhauls. IEEE Access, 6, 13604–13616.

    Article  Google Scholar 

  38. Fard, S. Y. Z., Ahmadi, M. R., & Adabi, S. (2017). A dynamic VM consolidation technique for QoS and energy consumption in cloud environment. The Journal of Supercomputing, 73(10), 4347–4368.

    Article  Google Scholar 

  39. Kamboj S. and Ghumman, N.S. (2016) “A survey on cloud computing and its types.” In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2971–2974.

  40. Usman, M. J., et al. (2019). Energy-efficient Virtual Machine Allocation Technique Using Flower Pollination Algorithm in Cloud Datacenter: A Panacea to Green Computing. Journal of Bionic Engineering, 16(2), 354–366.

    Article  MathSciNet  Google Scholar 

  41. Singh, B. P., Kumar, S. A., Gao, X. Z., Kohli, M., & Katiyar, S. (2020). “A Study on energy consumption of DVFS and simple VM consolidation policies in cloud computing data centers using CloudSim toolkit.” Wireless Personal Communications 1–13

  42. Yavari, M., Rahbar, A. G., & Fathi, M. H. (2019). Temperature and energy-aware consolidation algorithms in cloud computing. Journal of Cloud Computing, 8(1), 1–16.

    Google Scholar 

  43. Mishra, S. K., et al. (2018). Energy-efficient VM-placement in cloud data center. Sustainable Computing Informatics Systems, 20, 48–55.

    Article  Google Scholar 

  44. Portaluri, G., Giordano, S., Kliazovich, D. and Dorronsoro, B. (2014) “A power efficient genetic algorithm for resource allocation in cloud computing data centers.” In 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), 58–63.

  45. Makhadmeh, S. N., Khader, A. T., Al-Betar, M. A., Naim, S., Abasi, A. K., & Alyasseri, Z. A. A. (2019). Optimization methods for power scheduling problems in smart home: Survey. Renewable and Sustainable Energy Reviews, 115, 109362.

    Article  Google Scholar 

  46. Touzene, A., Yahyai, S. A., & Oukil, A. (2019). Smart grid resources optimisation using service oriented middleware. International Journal of Computer Applications in Technology, 59(1), 53–63.

    Article  Google Scholar 

  47. Nawaz, F., Ahmad, G., Javed, K., Khan, I., & Khan, W. (2017). An optimal Home energy management system based on time of use pricing scheme in smart grid. International Journal of Scientific and Engineering Research, 8, 882–894.

    Google Scholar 

  48. Bukhsh, R., Javaid, N., Javaid, S., Ilahi, M., & Fatima, I. (2019). Efficient resource allocation for consumers’ power requests in cloud-fog-based system. International Journal of Web and Grid Services, 15(2), 159–190.

    Article  Google Scholar 

  49. Dunlop, T. (2019). Mind the gap: A social sciences review of energy efficiency. Energy Research & Social Science, 56, 101216.

    Article  Google Scholar 

  50. Li, L., & Dai, S. (2010). The Influential Mechanism of Rebound Effect within Chinese Energy Efficiency. In 2010 Asia-Pacific Power and Energy Engineering Conference (1-4).

  51. Ghosh, J. (2019). Interrelationship between energy efficiency and spectral efficiency in cognitive femtocell networks: A survey. Pervasive and Mobile Computing, 59, 101066.

    Article  Google Scholar 

  52. Shoukat, M., Khan, B. S., Jangsher, S., Habib, A., & Bhatti, F. A. (2018). Iterative resource efficient power allocation in small cell network. Physical Communications, 30, 68–75.

    Article  Google Scholar 

  53. Hashish, S. M. M. A., Rizk, R. Y., & Zaki, F. W. (2018). Joint energy and spectral efficient power allocation for long term evolution-advanced. Computers & Electrical Engineering, 72, 828–845.

    Article  Google Scholar 

  54. Sun, X., & Wang, S. (2015). Resource allocation scheme for energy saving in heterogeneous networks. IEEE Transactions on Wireless Communications, 14(8), 4407–4416.

    Article  Google Scholar 

  55. Geetha, M. N., & Mahadevaswamy, U. B. (2020). Performance Evaluation and Analysis of Peak to Average Power Reduction in OFDM Signal. Wireless Personal Communications, 112(4), 2071–2089.

    Article  Google Scholar 

  56. Chen, S., Ren, Z., Hu, B., & Ma, W. (2015). Resource allocation in downlink OFDM wireless systems with user rate allowed regions. Wireless Personal Communications, 80(1), 429–445.

    Article  Google Scholar 

  57. Ashourian, M., Salimian, R., & Nasab, H. M. (2013). A low complexity resource allocation method for OFDMA system based on channel gain. Wireless Personal Communications, 71(1), 519–529.

    Article  Google Scholar 

  58. Ahmad, A., & Anwar, M. (2016). Resource allocation for OFDMA based cognitive radio networks with arbitrarily distributed finite power inputs. Wireless Personal Communications, 88(4), 839–854.

    Article  Google Scholar 

  59. Akbari, A., Hoshyar, R. and Tafazolli, R. (2010) “Energy-efficient resource allocation in wireless OFDMA systems.” In 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1731–1735.

  60. Júnior, E. P. M. C., Vieira, L. F. M., & Vieira, M. A. M. (2019). 3DVS: Node scheduling in underwater sensor networks using 3D voronoi diagrams. Computer Networks, 159, 73–83.

    Article  Google Scholar 

  61. Gao, X. Z., Govindasamy, V., Xu, H., Wang, X., & Zenger, K. (2015). Harmony search method: theory and applications. Computational intelligence and neuroscience.

  62. Nazari-Heris, M., Mohammadi-Ivatloo, B., Asadi, S., Kim, J. H., & Geem, Z. W. (2019). Harmony search algorithm for energy system applications: an updated review and analysis. Journal of Experimental & Theoretical Artificial Intelligence, 31(5), 723–749.

    Article  Google Scholar 

  63. Askarzadeh, A., & Rashedi, E. (2018). Harmony search algorithm: Basic concepts and engineering applications. Intelligent Systems: Concepts, Methodologies, Tools, and Applications. (pp. 1–30). IGI Global.

    Google Scholar 

  64. Mohd Alia, O. (2018). A dynamic harmony search-based fuzzy clustering protocol for energy-efficient wireless sensor networks. Annals of Telecommunications, 73(5), 353–365.

    Article  Google Scholar 

  65. Kim, J. H. (2016). Harmony search algorithm: A unique music-inspired algorithm. Procedia Eng., 154, 1401–1405.

    Article  Google Scholar 

  66. Yusup, N., Zain, A. M., & Latib, A. A. (2019). A review of Harmony search algorithm-based feature selection method for classification. Journal of Physics: Conference Series, 1192(1), 12038.

    Google Scholar 

  67. Yi, J., Lu, C., & Li, G. (2019). A literature review on latest developments of Harmony search and its applications to intelligent manufacturing. Mathematical Biosciences and Engineering, 16(4), 2086.

    Article  MathSciNet  Google Scholar 

  68. Ala’a, A., Alsewari, A. A., Alamri, H. S., & Zamli, K. Z. (2019). Comprehensive review of the development of the harmony search algorithm and its applications. IEEE Access, 7, 14233–14245.

    Article  Google Scholar 

  69. Manjarres, D., et al. (2013). A survey on applications of the harmony search algorithm. Engineering Applications of Artificial Intelligence, 26(8), 1818–1831.

    Article  Google Scholar 

  70. Geem, Z. W. (2010). State-of-the-art in the structure of harmony search algorithm. Recent advances in harmony search algorithm. (pp. 1–10). Springer.

    Chapter  MATH  Google Scholar 

  71. Del Ser, J., Bilbao, M. N., Gil-López, S., Matinmikko, M., & Salcedo-Sanz, S. (2011). Iterative power and subcarrier allocation in rate-constrained orthogonal multicarrier downlink systems based on hybrid harmony search heuristics. Engineering Applications of Artificial Intelligence, 24(5), 748–756.

    Article  Google Scholar 

  72. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2013). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.

    Article  Google Scholar 

  73. Elsied, M., Oukaour, A., Youssef, T., Gualous, H., & Mohammed, O. (2016). An advanced real time energy management system for microgrids. Energy, 114, 742–752.

    Article  Google Scholar 

  74. Camacho-Gómez, C., Jiménez-Fernández, S., Mallol-Poyato, R., Del Ser, J., & Salcedo-Sanz, S. (2019). Optimal design of Microgrid’s network topology and location of the distributed renewable energy resources using the Harmony Search algorithm. Soft Computing, 23(15), 6495–6510.

    Article  Google Scholar 

  75. Menon, S. (2009). A sequential approach for optimal broadcast scheduling in packet radio networks. IEEE Transactions on Communications, 57(3), 764–770.

    Article  Google Scholar 

  76. Lin, C.-C., & Wang, P.-C. (2010). A new iterated local search algorithm for solving broadcast scheduling problems in packet radio networks. EURASIP Journal on Wireless Communications and Networking, 2010, 1–8.

    Article  Google Scholar 

  77. Ahmad, I., Mohammad, M. G., Salman, A. A., & Hamdan, S. A. (2012). Broadcast scheduling in packet radio networks using Harmony Search algorithm. Expert Systems with Applications, 39(1), 1526–1535.

    Article  Google Scholar 

  78. Sureshkumar, C., & Sabena, S. (2020). Fuzzy-based secure authentication and clustering algorithm for improving the energy efficiency in wireless sensor networks. Wireless Personal Communications, 112(3), 1517–1536.

    Article  Google Scholar 

  79. Mittal, N., Singh, U., & Sohi, B. S. (2019). An energy-aware cluster-based stable protocol for wireless sensor networks. Neural Computing and Applications, 31(11), 7269–7286.

    Article  Google Scholar 

  80. Al-Ghamdi, B., Ayaida, M., & Fouchal, H. (2020). Performance evaluation of scheduling approaches for wireless sensor networks. Wireless Personal Communications, 110(3), 1089–1108.

    Article  Google Scholar 

  81. Lalwani, P., Das, S., Banka, H., & Kumar, C. (2018). CRHS: clustering and routing in wireless sensor networks using harmony search algorithm. Neural Computing and Applications, 30(2), 639–659.

    Article  Google Scholar 

  82. Mann, P. S., & Singh, S. (2017). Energy-efficient hierarchical routing for wireless sensor networks: a swarm intelligence approach. Wireless Personal Communications, 92(2), 785–805.

    Article  Google Scholar 

  83. Singh, S., & Sharma, R. M. (2018). HSCA: a novel harmony search based efficient clustering in heterogeneous WSNs. Telecommunication Systems, 67(4), 651–667.

    Article  Google Scholar 

  84. Shankar, T., Shanmugavel, S., & Rajesh, A. (2016). Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm and Evolutionary Computation, 30, 1–10.

    Article  Google Scholar 

  85. Sharma, K. P., & Sharma, T. P. (2017). rDFD: reactive distributed fault detection in wireless sensor networks. Wireless Networks, 23(4), 1145–1160.

    Article  Google Scholar 

  86. Sahoo, M. N., & Khilar, P. M. (2014). Diagnosis of wireless sensor networks in presence of permanent and intermittent faults. Wireless Personal Communications, 78(2), 1571–1591.

    Article  Google Scholar 

  87. Yuvaraja, M., & Sabrigiriraj, M. (2017). Fault detection and recovery scheme for routing and lifetime enhancement in WSN. Wireless Networks, 23(1), 267–277.

    Article  Google Scholar 

  88. Titouna, C., Aliouat, M., & Gueroui, M. (2016). FDS: fault detection scheme for wireless sensor networks. Wireless Personal Communications, 86(2), 549–562.

    Article  Google Scholar 

  89. Mosavvar, H., & Ghaffari, A. (2018). Detecting faulty nodes in wireless sensor networks using harmony search algorithm. Wireless Personal Communications, 103(4), 2927–2945.

    Article  Google Scholar 

  90. Karakatsanis, D. and Theodossiou, N. “Application of Modified Metaheuristic Methods to Identify Critical Areas in Water Supply Networs.”

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Nazir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article has been revised: The 4th and 5th authors' affiliations have been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazir, M., Sabah, A., Sarwar, S. et al. Power and Resource Allocation in Wireless Communication Network. Wireless Pers Commun 119, 3529–3552 (2021). https://doi.org/10.1007/s11277-021-08419-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08419-x

Keywords

Navigation