Skip to main content

Advertisement

Log in

An Efficient Code Domain NOMA Scheme with Enhanced Spectral and Energy Efficiency for Networks Beyond 5G

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Non-Orthogonal Multiple Access (NOMA) is an efficient multiple access scheme which augments the capacity and overall throughput in LTE and 5G networks. Tackling the high system throughput and device connectivity of multiple users with different channel state information is a key challenge at this juncture. The joint detection and decoding using parity check polar coding (PCPC) and the utilization of Sparse Code Multiple Access (SCMA) in Code domain NOMA improves throughput supporting an overloaded number of users. Also, Multiple-Input Multiple-Output (MIMO)-SCMA scheme has potential in providing spectrum and energy efficiency. MIMO-SCMA superimposes multiple users in the code domain and utilizes the channel gain difference between multiplexed users. Hence, this paper aims to propose a proficient code domain NOMA scheme, the PCPC SCMA multiplexed over Orthogonal Frequency Code Division Multiple Access (OFCDMA), implementing a joint detection and decoding with user scheduling. Signals of numerous users are superimposed and transmitted over a channel. At the receiver, Multi-User Detection (MUD) exploiting the Message Passing Algorithm (MPA) is used to identify the desired user. To ensure proper resource utilization of multiple data blocks, the users are scheduled by implementing the Invasive Weed Optimization (IWO) technique along with the MPA. The proposed scheme, which engages an IWO-MPA based MUD scheme, improves the convergence rate, in terms of the number of iterations thereby leading to lower complexity, as well as reduces the Bit Error Rate (BER). Computer simulations reveal that the proposed scheme achieves high spectrum and energy efficiency, higher throughput and overloaded user fairness compared with recent researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, H., Yu, F., Chan, H. C., & Leung, V. C. (2007). A novel multiple access schemes over multi-packet reception channels for wireless multimedia networks. IEEE Transactions on Wireless communications, 4, 1501–1511. https://doi.org/10.1109/TWC.2007.348346.

    Article  Google Scholar 

  2. Chávez-Santiago, R., Szydełko, M., Kliks, A., Foukalas, F., Haddad, Y., Nolan, K. E., Kelly, M. Y., Masonta, M. T., & Balasingham, I. (2015). 5G: The Convergence of Wireless Communications. Wireless Personal Communications, 83, 1617–1642. https://doi.org/10.1007/s11277-015-2467-2.

    Article  Google Scholar 

  3. Andrews, J. G., Buzzi, S., Choi, Wan, Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What Will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  4. Cai, Y., Qin, Z., Cui, F., Li, G.Y., McCann, J. A. (First quarter 2018) Modulation and multiple Access for 5G networks, In IEEE Communications Surveys & Tutorials, 20(1), 629–646. https://doi.org/10.1109/COMST.2017.2766698.

  5. Tao, Y., Liu, L., Liu, S., Zhang, Z. (2015). A survey: Several technologies of non-orthogonal transmission for 5G, In China Communications, 12(10), 1–15. https://doi.org/10.1109/CC.2015.7315054

  6. Zeng, J. et al. (2018). Investigation on evolving single-carrier NOMA into multi-carrier NOMA in 5G. In IEEE Access, 6, 48268–48288. https://doi.org/10.1109/ACCESS.2018.2868093.

  7. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81. https://doi.org/10.1109/MCOM.2015.7263349.

    Article  Google Scholar 

  8. Basharat, M., Ejaz, W., Naeem, M., Khattak, A. M., & Anpalagan, A. (2018). A survey and taxonomy on non-orthogonal multiple-access schemes for 5G networks. Transactions on Emerging Telecommunications Technologies, 29(1), e3202. https://doi.org/10.1002/ett.3202.

    Article  Google Scholar 

  9. Zhang, Z., Sun, H., & Hu, R. Q. (2017). Downlink and uplink non-orthogonal multiple access in a dense wireless network. IEEE Journal on Selectesd Areas in Communications, 35(12), 2771–2784. https://doi.org/10.1109/JSAC.2017.2724646.

    Article  Google Scholar 

  10. Yuan, Z., Yu, G., Li, W., Yuan, Y., Wang, X. & Xu, J. (2016). Multi-user shared access for internet of things. In 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). (pp. 1–5). IEEE.: https://doi.org/10.1109/VTCSpring.2016.7504361.

  11. Zhu, J., Wang, J., Huang, Y., He, S., You, X., & Yang, L. (2017). On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE Journal on Selected Areas in Communications, 35(12), 2744–2757. https://doi.org/10.1109/JSAC.2017.2725618.

    Article  Google Scholar 

  12. Yu, H. F., Lee, H. C., Lee, S. K. (2018). Early termination belief propagation decoder with parity check matrix for polar codes. In 2018 27th Wireless and Optical Communication Conference (WOCC), (pp. 1–4). IEEE.

  13. Mansour, A. H., Saleh, M. Z., & Elramly, S. H. (2017). Transmitter diversity scheme for OFCDMA systems based on space-time spreading with iterative detection receiver. IET Communications, 11(11), 1689–1698. https://doi.org/10.1049/iet-com.2016.1296.

    Article  Google Scholar 

  14. Vameghestahbanati, M., Marsland, I., Gohary, R. H., Yanikomeroglu, H. (2017). Polar codes for SCMA systems. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), (pp. 1–5). IEEE.: https://doi.org/10.1109/VTCFall.2017.8287917.

  15. Kizilirmak, R.C., Bizaki, H.K. (2016). Non-Orthogonal multiple access (NOMA) for 5G networks. Towards 5G Wireless Networks-A Physical Layer Perspective,83–98.https://doi.org/https://doi.org/10.5772/66048.

  16. Dai, J., Niu, K., Si, Z., Dong, C., & Lin, J. (2017). Polar-coded non-orthogonal multiple access. IEEE Transactions on Signal Processing, 66(5), 1374–1389. https://doi.org/10.1109/TSP.2017.2786273.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding, Z., Zhao, Z., Peng, M., & Poor, H. V. (2017). On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Transactions on Communications, 65(7), 3151–3163. https://doi.org/10.1109/TCOMM.2017.2696527.

    Article  Google Scholar 

  18. Yu, H.F., Lee, H.C., Lee, S.K. (2018). Early termination belief propagation decoder with parity check matrix for polar codes. In 2018 27th Wireless and Optical Communication Conference (WOCC) (pp. 1–4). IEEE.

  19. Du, Y., Dong, B., Chen, Z., Fang, J., & Wang, X. (2016). A fast convergence multiuser detection scheme for uplink SCMA systems. IEEE Wireless Communications Letters, 5(4), 388–391. https://doi.org/10.1109/LWC.2016.2565581.

    Article  Google Scholar 

  20. Wu, X., & Wang, Y. (2020). Improving polar-coded SCMA system by information coupling and parity check. Sensors, 20, 6740. https://doi.org/10.3390/s20236740.

    Article  Google Scholar 

  21. Wu, X., Wang, Y., Li, C. (2020) .Low-complexity CRC aided joint iterative detection and SCL decoding receiver of polar coded SCMA system, In IEEE Access, 8, 220108–220120,: https://doi.org/10.1109/ACCESS.2020.3043017.

  22. Min B., Sun, J. (2019). Message Passing Algorithm with Dynamic Thresholds in SCMA, 2019 International Conference on Communications, Information System and Computer Engineering (CISCE), Haikou, China, pp. 324–327: https://doi.org/10.1109/CISCE.2019.00079.

  23. Zheng, T. et al. (2020) .IWORMLF: improved invasive Weed Optimization with random mutation and Lévy Flight for beam pattern optimizations of linear and circular antenna arrays, in IEEE Access, 8, 19460–19478.http:// doi: https://doi.org/10.1109/ACCESS.2020.2968476.

  24. Abdelkader, E. M., Moselhi, O., Marzouk, M., & Zayed, T. (2020). A multi-objective invasive weed optimization method for segmentation of distress images. Intelligent Automation Soft Computing, 26(4), 643–661.

    Article  Google Scholar 

  25. Arikan, E. (2011). Systematic polar coding. IEEE Communications Letters, 15(8), 860–862. https://doi.org/10.1109/LCOMM.2011.061611.110862.

    Article  Google Scholar 

  26. Zhang, H., Li, R., Wang, J., Dai, S., Zhang, G., Chen, Y., Wang, J. (2018). Parity-check polar coding for 5G and beyond. In 2018 IEEE International Conference on Communications (ICC), 1–7. IEEE.: https://doi.org/10.1109/ICC.2018.8422462.

  27. Du, X., Xu, X. (2016). The encode and decode theory of polar code and its performance simulating. In 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), (pp. 24–27). IEEE. : https://doi.org/10.1109/ICCSN.2016.7586660.

  28. Vangala, H., Viterbo, E., Hong, Y. (2015). A comparative study of polar code constructions for the AWGN channel. arXiv preprintarXiv:1501.02473 .

  29. Bayesteh, A., Nikopour, H., Taherzadeh, M., Baligh, H., Ma, J. (2015). Low complexity techniques for SCMA detection. In 2015 IEEE Globecom Workshops (GC Wkshps). (pp. 1–6). IEEE. https://doi.org/10.1109/GLOCOMW.2015.7414184.

  30. Taherzadeh, M., Nikopour, H., Bayesteh, A. Baligh., H. (2014). SCMA codebook design. In 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall). (pp. 1–5). IEEE.: https://doi.org/10.1109/VTCFall.2014.6966170.

  31. Blumenstein, J., Fedra, Z. (2009). The characteristics of the 2D spreading based communication systems. In 2009 19th International Conference Radio elektronika. (pp. 279–281). IEEE. https://doi.org/10.1109/RADIOELEK.2009.5158770.

  32. Jing, S., Yang, C., Yang, J., You, X., Zhang, C. (2017). Joint detection and decoding of polar-coded SCMA systems. In 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), (pp. 1–6). IEEE.: https://doi.org/10.1109/WCSP.2017.8171004.

  33. Roy, G. G., Das, S., Chakraborty, P., & Suganthan, P. N. (2010). Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm. IEEE Transactions on Antennas and propagation, 59(1), 110–118. https://doi.org/10.1109/TAP.2010.2090477.

    Article  Google Scholar 

  34. Du, Y., Dong, B., Chen, Z., Wang, X., & Gao, P. (2017). Improved serial scheduling-based detection for sparse code multiple access systems. IEEE Wireless Communications Letters, 6(5), 570–573. https://doi.org/10.1109/LWC.2017.2717407.

    Article  Google Scholar 

  35. Sang, H. Y., Duan, P. Y., & Li, J. Q. (2018). An effective invasive weed optimization algorithm for scheduling semiconductor final testing problem. Swarm and Evolutionary Computation, 38, 42–53. https://doi.org/10.1016/j.swevo.2017.05.007.

    Article  Google Scholar 

  36. Kurras, M., Thiele, L., Caire, G. (2015). Multi-stage beamforming for interference coordination in massive MIMO networks. In 2015 49th Asilomar Conference on Signals, Systems and Computers, (pp. 700–703). IEEE. https://doi.org/10.1109/ACSSC.2015.7421223.

  37. Liu, Q., Tan, F., Lv, T., Gao, H. (2017). Energy efficiency and spectral-efficiency tradeoff in downlink NOMA systems. In 2017 IEEE International Conference on Communications Workshops (ICC Workshops), (pp. 247–252). IEEE. https://doi.org/10.1109/ICCW.2017.7962665.

Download references

Funding

There is no funding provided to prepare the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramya Thirunavukkarasu.

Ethics declarations

Conflict of Interest

There is no conflict of Interest between the authors regarding the manuscript preparation and submission.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informal Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirunavukkarasu, R., Balasubramanian, R. An Efficient Code Domain NOMA Scheme with Enhanced Spectral and Energy Efficiency for Networks Beyond 5G. Wireless Pers Commun 120, 353–377 (2021). https://doi.org/10.1007/s11277-021-08464-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08464-6

Keywords

Navigation