Skip to main content

Advertisement

Log in

Multihop Multibranch Spectrum Sensing with Energy Harvesting

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper deals with spectrum sensing using the energy detector (ED) with multiple hops multibranch relaying where the primary user (PU) and relays harvest energy from radio frequency signal transmitted from a given node A. The harvested energy is used by PU and relays to transmit signals to the fusion center where the ED is used to detect the PU. The study is valid for amplify and forward relaying, any number of hops and any number of branches. We also suggest a new lower bound of the detection probability using the cumulative distribution function of signal-to-noise ratio (SNR). When there are many available branches, only the best one is activated. The activated branch offers the highest end-to-end SNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhan, J., Liu, Y., Tang, X., & Chen, Q. (2018). Relaying protocols for buffer-aided energy harvesting wireless cooperative networks. IET Networks Year, 7(3), 109–118.

    Article  Google Scholar 

  2. Xiuping, W., Feng, Y., & Tian, Z. (2018). The DF-AF selection relay transmission based on energy harvesting. In 10th International conference on measuring technology and mechatronics automation (ICMTMA) (pp. 174–177).

  3. Nguyen, H. T., Nguyen, S. Q. & Hwang, W.-J. (2018). Outage probability of energy harvesting relay systems under unreliable backhaul connections. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 19–23).

  4. Qiu, C., Hu, Y., & Chen, Y. (2018). Lyapunov optimized cooperative communications with stochastic energy harvesting relay. IEEE Internet of Things Journal, 5(2), 1323–1333.

    Article  Google Scholar 

  5. Sui, D., Fengye, H., Zhou, W., Shao, M., & Chen, M. (2018). Relay selection for radio frequency energy-harvesting wireless body area network with buffer. IEEE Internet of Things Journal, 5(2), 1100–1107.

    Article  Google Scholar 

  6. Hoang, T. M., Tan, N. T., & Choi, S. G. (2018). Analysis of partial relay selection in NOMA systems with RF energy harvesting. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 13–18).

  7. Nhat Le, Q., Quoc Bao, V. N., An, B., & Quang Nhat Le. (2018). Full-duplex distributed switch-and-stay energy harvesting selection relaying networks with imperfect CSI: Design and outage analysis. Journal of Communications and Networks, 20(1), 29–46.

    Article  Google Scholar 

  8. Gong, J., Chen, X., & Xia, M. (2018). Transmission optimization for hybrid half/full-duplex relay with energy harvesting. IEEE Transactions on Wireless Communications, 17(5), 3046–3058.

    Article  Google Scholar 

  9. Tang, H., Xie, X., & Chen, J. (2018). X-duplex relay with self-interference signal energy harvesting and its hybrid mode selection method. In 27th Wireless and optical communication conference (WOCC) (pp. 1–6).

  10. Chiu, H.-C. & Huang, W.-J. (2018). Precoding design in two-way cooperative system with energy harvesting relay. In 27th Wireless and optical communication conference (WOCC) (pp. 1–5).

  11. Gurjar, D. S., Singh, U., & Upadhyay, P. K. (2018). Energy harvesting in hybrid two-way relaying with direct link under Nakagami-m fading. In IEEE wireless communications and networking conference (WCNC) (pp. 1–6).

  12. Singh, K., Ku, M. L., Lin, J. C., & Ratnarajah, T. (2018). Toward optimal power control and transfer for energy harvesting amplify-and-forward relay networks. IEEE Transactions on Wireless Communications, 17, 4971–4986.

    Article  Google Scholar 

  13. Wu, Y., ping Qian, L., Huang, L., & Shen, X. (2018). Optimal Relay Selection and Power Control for Energy-Harvesting Wireless Relay Networks’. IEEE Transactions on Green Communications and Networking, 2(2), 471–481.

    Article  Google Scholar 

  14. Fan, R., Atapattu, S., Chen, W., Zhang, Y., & Evans, J. (2018). Throughput maximization for multi-hop decode-and-forward relay network with wireless energy harvesting. IEEE Access, 6, 24582–24595.

    Article  Google Scholar 

  15. Huang, Y., Wang, J., Zhang, P., & WuWu, Q. (2018). Performance analysis of energy harvesting multi-antenna relay networks with different antenna selection schemes. IEEE Access, 6, 5654–5665.

    Article  Google Scholar 

  16. Babaei, M., Aygolu, U., & Basar, E. (2018). BER analysis of dual-hop relaying with energy harvesting in Nakagami-m fading channel. IEEE Transactions on Wireless Communications, 17, 4352–4361.

    Article  Google Scholar 

  17. Kalluri, T., Peer, M., Bohara, V. A., da Costa, D. B., & Dias, U. S. (2018). Cooperative spectrum sharing-based relaying protocols with wireless energy harvesting cognitive user. IET Communications, 12(7), 838–847.

    Article  Google Scholar 

  18. Xie, D., Lai, X., Lei, X., & Fan, L. (2018). Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access, 6, 5596–5606.

    Article  Google Scholar 

  19. Yan, Z., Chen, S., Zhang, X., & Liu, H. L. (2018). Outage performance analysis of wireless energy harvesting relay-assisted random underlay cognitive networks. IEEE Internet of Things Journal, 54, 2691–2699.

    Article  Google Scholar 

  20. Nhat, T. T., Duy, T. T., & Bao, V. N. Q. (2018). Performance evaluation of cooperative relay networks with one full-energy relay and one energy harvesting relay. In 2nd International conference on recent advances in signal processing, telecommunications and computing (SigTelCom) (pp. 7–12).

  21. Van Nhan, V., Nguyen, T. G., So-In, C., Ahmed Baig, Z., & Sanguanpong, S. (2018). Secrecy outage performance analysis for energy harvesting sensor networks with a jammer using relay selection strategy. IEEE Access, 6, 23406–23419.

    Article  Google Scholar 

  22. Behdad, Z., Mahdavi, M., & Razmi, N. (2018). A new relay policy in RF energy harvesting for IoT networks-a cooperative network approach. IEEE Internet of Things Journal, 5, 2715–2728.

    Article  Google Scholar 

  23. Yao, R., Lu, Y., Tsiftsis, T. A., Qi, N., Mekkawy, T., & Xu, F. (2018). Secrecy rate-optimum energy splitting for an untrusted and energy harvesting relay network. IEEE Access, 6, 19238–19246.

    Article  Google Scholar 

  24. Yin, C., Nguyen, H. T., Kundu, C., Kaleem, Z., Garcia-Palacios, E., & Duong, T. Q. (2018). Secure energy harvesting relay networks with unreliable backhaul connections. IEEE Access, 6, 12074–12084.

    Article  Google Scholar 

  25. Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M. S. (2017). On secure underlay mimo cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1, 192–203.

    Article  Google Scholar 

  26. Hindia, M. N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2020). On platform to enable the cognitive radio over 5G networks. Wireless Personal Communications, 113, 1241–1262.

    Article  Google Scholar 

  27. Hindia, N., Qamar, F., Ojukwu, H., Dimyati, K., Al-Samman, A. M., & Amiri, I. S. (2018). Energy efficiency in cognitive radio network using cooperative spectrum sensing. Wireless Personal Communications 907–919.

  28. Claudino, L., & Abrao, T. (2017). Spectrum sensing methods for cognitive radio networks: A review. Wireless Personal Communications, 95, 5003–5037.

    Article  Google Scholar 

  29. Liu, R., Ma, Y., Zhang, X., & Gao, Y. (2021). Deep learning-based spectrum sensing in space-air-ground integrated networks. Journal of Communications and Information Networks, 6(1), 82–90.

    Google Scholar 

  30. Girmay, M., Shahid, A., Maglogiannis, V., Naudts, D., & Moerman, I. (2021). Machine learning enabled Wi-Fi saturation sensing for fair coexistence in unlicensed spectrum. IEEE Access, 9, 42959–42974.

    Article  Google Scholar 

  31. Li, J., Chen, Q., Long, Z., Wang, W., Zhu, H., & Wang, L. (2021). Spectrum sensing with non-Gaussian noise over multi-path fading channels towards smart cities with IoT. IEEE Access, 9, 11194–11202.

    Article  Google Scholar 

  32. Wang, D., Qi, P., Fu, Q., Zhang, N., & Li, Z. (2021). Multiple high-order cumulants based spectrum sensing in full-duplex enabled cognitive IoT networks. IEEE Internet of Things Journal.

  33. Alhamad, R., & Boujemaa, H. (2018). Cooperative spectrum sensing with relay selection. Telecom Systems, 68(4), 631–642.

    Article  Google Scholar 

  34. Xi, Y., Burr, A., Wei, J. B., & Grace, D. (2011). A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Transactions on Wireless Communications, 10(5), 1373–1377.

    Article  Google Scholar 

  35. Hasna, M. O., & Alouini, M.-S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

If \(Y_{1}\) and \(Y_{2}\) are two exponential r.v. with mean 1/\(\eta _{1}\) and 1/\(\eta _{2}.\)

The CDF of \(Y=Y_{1}Y_{2}\) is written as

$$\begin{aligned} F_{Y}(y)=P(Y_{1}Y_{2}\le y)=\int _{0}^{+\infty }P(Y_{1}\le \frac{y}{z} )\eta _{2}e^{-\eta _{2}z}dz. \end{aligned}$$
(31)

We can write

$$\begin{aligned} F_{Y}(y)= & {} \int _{0}^{+\infty }\left[ 1-e^{-\eta _{1}\frac{y}{z}}\right] \eta _{2}e^{-\eta _{2}z}dz \\= & {} 1-\int _{0}^{+\infty }e^{-\eta _{1}\frac{y}{z}}\eta _{2}e^{-\eta _{2}z}dz \end{aligned}$$
(32)

We have

$$\begin{aligned} \int _{0}^{+\infty }e^{-\frac{e}{z}}e^{-\frac{z}{f}}dz=2\sqrt{\frac{e}{f}} K_{1}(2\sqrt{\frac{e}{f}}). \end{aligned}$$
(33)

Using (32), (33), \(e=\eta _{1}y\) and \(f=\frac{1}{ \eta _{2}}\), we have

$$\begin{aligned} F_{Y}(y)=1-2\sqrt{\eta _{1}\eta _{2}y}K_{1}(2\sqrt{\eta _{1}\eta _{2}y}). \end{aligned}$$
(34)

The PDF of Y is expressed as

$$\begin{aligned} f_{Y}(y)=-\frac{\sqrt{\eta _{1}\eta _{2}}}{\sqrt{y}}K_{1}(2\sqrt{ \eta _{1}\eta _{2}y})-2\sqrt{\eta _{1}\eta _{2}y}K_{1}^{^{\prime }}\left(2\sqrt{\eta _{1}\eta _{2}y}\right)\frac{\sqrt{\eta _{1}\eta _{2}}}{ \sqrt{y}}. \end{aligned}$$
(35)

We have

$$\begin{aligned} K_{1}^{^{\prime }}(u)=-K_{0}(u)-\frac{K_{1}(u)}{u}, \end{aligned}$$
(36)

Therefore,

$$\begin{aligned} f_{Y}(y)=2\eta _{1}\eta _{2}K_{0}(2\sqrt{\eta _{1}\eta _{2}y}), \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R., Boujemaa, H. Multihop Multibranch Spectrum Sensing with Energy Harvesting. Wireless Pers Commun 120, 809–820 (2021). https://doi.org/10.1007/s11277-021-08491-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08491-3

Keywords

Navigation