Skip to main content
Log in

A Survey on Successive Interference Cancellation Schemes in Non-Orthogonal Multiple Access for Future Radio Access

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The fifth generation (5G) of wireless communication accompanied by the advancement of mobile internet and the Internet of Things (IoT) will create stormy data traffic. The 5G challenges like higher spectral efficiency, massive connectivity, and low latency are addressed by the Non-Orthogonal Multiple Access (NOMA) in recent years. NOMA is proven to be a promising technique from its capability to accommodate a larger number of users in contrast to the conventional orthogonal multiple access (OMA) schemes. NOMA comprises two distinct techniques such as Power-Domain NOMA and Code-Domain NOMA. The non-orthogonal resource allocation in Power-Domain NOMA is practically realized by the Superposition Coding (SC) at the Base Station (BS) and an advanced Successive Interference Cancellation at the User Equipment (UE). In this manuscript, the basic concepts of NOMA, on comparing its channel gain with OMA are discussed first. Specifically, a comprehensive survey of various SIC techniques applied under perfect and imperfect Channel State Information (CSI) uncertainties are summarized in terms of outage probability, ergodic capacity, and system performance. In addition, the sophisticated SIC techniques, when NOMA is integrated with modern wireless communication technologies such as multiple-input multiple-output (MIMO-NOMA) and Cooperative (C-NOMA) communications are investigated. Furthermore, the challenges to be solved with their corresponding opportunities and future research directions of NOMA are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  2. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Article  Google Scholar 

  3. Singh, R. (2013). Multiple access techniques for 4G mobile wireless networks’. International Journal of Engineering Research and Development, 5(11), 86–94.

    Google Scholar 

  4. Rabie, K. M., Adebisi, B., Yousif, E. H. G., Gacanin, H., & Tonello, A. M. (2017). A comparison between orthogonal and non-orthogonal multiple access in cooperative relaying power line communication systems. IEEE Access, 5, 10118–10129.

    Article  Google Scholar 

  5. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53, 74–81.

    Article  Google Scholar 

  6. Mulej, A., Kos, A., & Humar, I. (2012). Effective Channel Gain Estimation in cellular wireless networks, 35th International Conference on Telecommunications and Signal Processing (TSP), Prague, 2012, pp. 127-131. https://doi.org/10.1109/TSP.2012.6256266.

  7. Islam, S. M. R., Zeng, M., & Dobre, O. A. (2017). NOMA in 5G systems: Exciting possibilities for enhancing spectral efficiency. IEEE 5G Tech Focus, 1(2), 1–6.

    Google Scholar 

  8. Wei, Z., Yuan, J., Ng, D. W. K., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Communicaton, 14(4), 17–23.

    Google Scholar 

  9. Islam, S. R., Avazov, N., Dobre, O. A., & Kwak, K. S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys & Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  10. Higuchi, K., & Benjebbour, A. (2015). Non-orthogonal multiple access (NOMA) with successive interference cancellation for future radio access. IEICE Transactions on Communications, 98(3), 403–414.

    Article  Google Scholar 

  11. Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I., & Poor, H. V. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55(2), 185–191.

    Article  Google Scholar 

  12. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System level performance evaluation of downlink non-orthogonal multiple access (NOMA), in Proc. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun., London, U.K., pp. 611–615.

  13. Rezaei, A. et al. (2019). Robust Resource Allocation for PD-NOMA-Based MISO Heterogeneous Networks with CoMP Technology. arXiv:abs/1902.09879.

  14. Li, X., Liu, M., Deng, D., Li, J., Deng, C., & Yu, Q. (2019). Power beacon assisted wireless power cooperative relaying using NOMA with hardware impairments and imperfect CSI. AEU-International Journal of Electronics and Communications, 108, 275–286.

    Article  Google Scholar 

  15. Bariah, L., Muhaidat, S., & Al-Dweik, A. (2020). Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints. IEEE Transactions on Communications, 68(2), 765–777. https://doi.org/10.1109/TCOMM.2019.2921360.

    Article  Google Scholar 

  16. Dutta, A.K. (2019). Power Domain NOMA Design Based on MBER Criterion,2019 National Conference on Communications (NCC), Bangalore, India, pp. 1-5. https://doi.org/10.1109/NCC.2019.8732248.

  17. Vanhaverbeke, F., Moeneclaey, M., & Sari, H. (2000). DS/CDMA with two sets of orthogonal sequences and iterative detection. IEEE Communications Letters, 4(9), 289–291.

    Article  Google Scholar 

  18. Khrishnamurthy, V., Wang, X., & Yin, G. (2004). Spreading code optimization and adaptation in cdma via discrete stochastic approximation. IEEE Transactions on Information Theory, 50(9), 1927–1949.

    Article  MathSciNet  Google Scholar 

  19. Santipach, W., & Honig, M. (2005). Signature optimization for CDMA with limited feedback. IEEE Transactions on Information Theory, 51(10), 3475–3492.

    Article  MathSciNet  Google Scholar 

  20. Guo, D., & Wang, C.-C. (2008). Multiuser detection of sparsely spread CDMA. IEEE Journal on Selected Areas in Communications, 26(3), 421–431.

    Article  MathSciNet  Google Scholar 

  21. Guo, D., & Verdu, S. (2005). Randomly spread CDMA: Asymptotics via statistical physics’’ IEEE Trans. Information Theory, 51, 1982–2010.

    MATH  Google Scholar 

  22. Al-Imari, M., Imran, M. A., & Tafazolli, R. (2012). Low density spreading for next generation multicarrier cellular systems. International Conference on Future Communication Networks (ICFCN), 52–57.

  23. Al-Imari, M., & Imran, M. A. (2019). Low Density Spreading Multiple Access. In M. Vaezi, Z. Ding, & H. Poor (Eds.), Multiple Access Techniques for 5G Wireless Networks and Beyond. Newyork: Springer.

    Google Scholar 

  24. Chen, S., Peng, K., Zhang, Y., & Song, J. (2019). Performance evaluation of low-density spreading multiple access. IET Communications, 13(1), 108–115.

    Article  Google Scholar 

  25. Zhang, J., Wang, X., Yang, X., & Zhou, H. (2017). Low Density Spreading Signature Vector Extension (LDS-SVE) for Uplink Multiple Access, IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, pp. 1-5. https://doi.org/10.1109/VTCFall.2017.8287908.

  26. Le, M. T. P., Ferrante, G. C., Quek, T. Q. S., & Di Benedetto, M. (2018). Fundamental limits of low-density spreading NOMA with fading. IEEE Transactions on Wireless Communications, 17(7), 4648–4659. https://doi.org/10.1109/TWC.2018.2828853.

    Article  Google Scholar 

  27. Shental, O., Zaidel, B.M., & Shitz, S.S. (2017). Low-density code-domain NOMA: Better be regular,2017 IEEE International Symposium on Information Theory (ISIT), Aachen, pp. 2628-2632. https://doi.org/10.1109/ISIT.2017.8007005.

  28. Ma, Z., & Bao, J. (2019). Sparse Code Multiple Access (SCMA). In M. Vaezi, Z. Ding, & H. Poor (Eds.), Multiple Access Techniques for 5G Wireless Networks and Beyond. Newyork: Springer.

    Google Scholar 

  29. Cai, D., Fan, P., & Mathiopoulos, P. T. (2017). A tight lower bound for the symbol error performance of the uplink sparse code multiple access. IEEE Wireless Communications Letters, 6(2), 190–193. https://doi.org/10.1109/LWC.2017.2653781.

    Article  Google Scholar 

  30. Gu, Y., Xu, M., Mao, Z., Ai, Y., & Bu, S. (2018). Performance Analysis of Outage and Average Sum Rate of Sparse Code Division Multiple Access in Fog Radio Access Networks,2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Beijing, China, pp. 292-296. https://doi.org/10.1109/ICCChinaW.2018.8674502.

  31. Moon, S., Lee, H., & Lee, J. (2018). SARA: Sparse code multiple access-applied random access for IoT devices. IEEE Internet of Things Journal, 5(4), 3160–3174. https://doi.org/10.1109/JIOT.2018.2835828.

    Article  Google Scholar 

  32. Chen, J., Zhang, Z., He, S., Hu, J., & Sobelman, G. E. (2016). Sparse code multiple access decoding based on a Monte Carlo Markov chain method. IEEE Signal Processing Letters, 23(5), 639–643. https://doi.org/10.1109/LSP.2016.2544792.

    Article  Google Scholar 

  33. Alnoman, A., Erkucuk, S., & Anpalagan, A. (2019). Sparse code multiple access-based edge computing for IoT systems. IEEE Internet of Things Journal, 6(4), 7152–7161. https://doi.org/10.1109/JIOT.2019.2914570.

    Article  Google Scholar 

  34. Lai, K., Lei, J., Wen, L., Chen, G., Li, W., & Xiao, P. (2018). Secure transmission with randomized constellation rotation for downlink sparse code multiple access system. IEEE Access, 6, 5049–5063. https://doi.org/10.1109/ACCESS.2017.2772259.

    Article  Google Scholar 

  35. Yan, C., Zhang, N., & Kang, G. (2018). Downlink multiple input multiple output mixed sparse code multiple access for 5G system. IEEE Access, 6, 20837–20847. https://doi.org/10.1109/ACCESS.2018.2825221.

    Article  Google Scholar 

  36. Dai X. (2013). Successive Interference Cancellation Based Transmission Technologies for 5G.IMT-2020 TECH 1308 2013.

  37. Dai X. et al. (2014). Successive interference cancelation amenable multiple access (SAMA) for future wireless communications, 2014 IEEE International Conference on Communication Systems, Macau, pp. 222-226. https://doi.org/10.1109/ICCS.2014.7024798.

  38. Zeng, J., Kong, D., Su, X., Rong, L., & Xu, X. (2016). On the performance of pattern division multiple access in 5G systems, 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, pp. 1-5. https://doi.org/10.1109/WCSP.2016.7752716.

  39. Zhang, K., Xu, J., Yin, C., Pan, C., Tan, W., & Xu, G. (2018). A Pattern Division Multiple Access Scheme with Low Complexity Iterative Receiver for 5G Wireless Communication Systems, 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, pp. 1-6. https://doi.org/10.1109/VTCFall.2018.8691022.

  40. Dai, X., Zhang, Z., Bai, B., Chen, S., & Sun, S. (2018). Pattern division multiple access: A new multiple access technology for 5G’’. IEEE Wireless Communications, 25(2), 54–60. https://doi.org/10.1109/MWC.2018.1700084.

    Article  Google Scholar 

  41. Jiang, Y., Li, P., Ding, Z., Zheng, F., Ma, M., & You, X. (2019). Joint transmitter and receiver design for pattern division multiple access. IEEE Transactions on Mobile Computing, 18(4), 885–895. https://doi.org/10.1109/TMC.2018.2845364.

    Article  Google Scholar 

  42. Ping, Li., Liu, Lihai, Keying, Wu., & Leung, W. K. (2006). Interleave division multiple-access. IEEE Transactions on Wireless Communications, 5(4), 938–947. https://doi.org/10.1109/TWC.2006.1618943.

    Article  Google Scholar 

  43. Chen, Y., Schaepperle, J., & Wild, T. (2015). Comparing IDMA and NOMA with superimposed pilots based channel estimation in uplink, Proc. IEEE 26th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Hong Kong, pp. 89–94.

  44. Jin, H., Peng, K., & Song, J. (2013). Bit division multiplexing for broadcasting. IEEE Transactions on Broadcasting, 59(3), 539–547. https://doi.org/10.1109/LWC.2017.26537810.

    Article  Google Scholar 

  45. Huang, J., Peng, K., Pan, C.-Y., Song, J., Jin, H., & Niu, Z. (2014). Bit division multiplexing for MIMO broadcasting system. 2014 International Wireless Communications and Mobile Computing Conference(IWCMC): 186-189.

  46. Yuan, Z., Yu, G., & Li, W. (2015). Multi-user shared access for 5G. Telecommunication Network Technological, 5(5), 28–30.

    Google Scholar 

  47. Yuan, Z., Yu, G., Li, W., Yuan, Y., Wang, X., & Xu, J. (2016). Multi-User Shared Access for Internet of Things, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, pp.1-5. https://doi.org/10.1109/VTCSpring.2016.7504361.

  48. Tian, Y. A. (2019). Non-orthogonal multiple access and interference mitigation combined strategy in multi-user networks. Wireless Personal Communications, 104, 111–128. https://doi.org/10.1007/s11277-018-6011-z.

    Article  Google Scholar 

  49. Tao, S., Yu, H., Li, Q., et al. (2020). Performance analysis of user association strategy based on power-domain non-orthogonal multiple access in visible light communication multi-cell networks. Journal Wireless Communication Network. https://doi.org/10.1186/s13638-020-01688-3.

    Article  Google Scholar 

  50. Singh, R. (2013). Multiple access techniques for 4G mobile wireless networks. International Journal of Engineering Research and Development (IJERD), 5(11), 86–94.

    Google Scholar 

  51. Dai, Linglong, Wang, Zhaocheng, & Song, Jian. (2011). TDS-OFDMA: A novel multiple access system based on TDS-OFDM. Consumer Electronics, IEEE Transactions on., 57, 1528–1534. https://doi.org/10.1109/TCE.2011.6131121.

    Article  Google Scholar 

  52. Tse, D., & Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  53. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory. Hoboken: Wiley.

    MATH  Google Scholar 

  54. Gandotra, P., Jha, R. K., & Jain, S. (2018). Green NOMA With multiple interference cancellation (MIC) using sector-based resource allocation. IEEE Transactions on Network and Service Management, 15(3), 1006–1017.

    Article  Google Scholar 

  55. Ye, N., Wang, A., Li, X., Liu, W., Hou, X., & Yu, H. (2018). On constellation rotation of NOMA with SIC receiver. IEEE Communications Letters, 22(3), 514–517. https://doi.org/10.1109/LCOMM.2017.2781708.

    Article  Google Scholar 

  56. Li, P., de Lamare, R. C., & Fa, R. (2011). Multiple feedback successive interference cancellation detection for multiuser MIMO systems. IEEE Transactions on Wireless Communications, 10(8), 2434–2439.

    Article  Google Scholar 

  57. Ling, B., Dong, C., Dai, J., & Lin, J. (2017). Multiple decision aided successive interference cancellation receiver for NOMA systems. IEEE Wireless Communications Letters, 6(4), 498–501.

    Article  Google Scholar 

  58. Haci, H., Zhu, H., & Wang, J. (2017). Performance of non-orthogonal multiple access with a novel asynchronous interference Cancellation Technique. IEEE Transactions on Communications, 65(3), 1319–1335.

    Article  Google Scholar 

  59. Yuan, L., Pan, J., Yang, N., Ding, Z., & Yuan, J. (2018). Successive interference cancellation for LDPC coded non-orthogonal multiple access systems. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2831213.

    Article  Google Scholar 

  60. Usman, M. R., Khan, A., Usman, M. A., & Shin, S. Y. (2018). Joint non-orthogonal multiple access (NOMA) & Walsh-Hadamard transform: Enhancing the receiver performance. China Communications, 15(9), 160–177. https://doi.org/10.1109/CC.2018.8456460.

    Article  Google Scholar 

  61. Wang, G., Zhao, Z., & Xu, T. (2018). A Joint Interference Cancellation Method For Non-Orthogonal Multiple Access Uplink Signals, 2018 14th IEEE International Conference on Signal Processing (ICSP), Beijing, China, pp. 694-697. https://doi.org/10.1109/ICSP.2018.8652500.

  62. Abu Mahady, I., Bedeer, E., Ikki, S., & Yanikomeroglu, H. (2019). Sum-rate maximization of NOMA systems under imperfect successive interference cancellation. IEEE Communications Letters, 23(3), 474–477.

    Article  Google Scholar 

  63. Hong, S. G., & Bahk, S. (2020). Performance analysis and fairness maximization in NOMA systems with improper gaussian signaling under imperfect successive interference cancellation. IEEE Access, 8, 50439–50451.

    Article  Google Scholar 

  64. Yan, H., & Roy, S. (2005). Parallel interference cancellation for uplink multirate overlay cdma channels. IEEE Transactions on Communications, 53(1), 152–161.

    Article  Google Scholar 

  65. Zhang, M., Ahmed, S., & Kim, S. (2017). Iterative MMSE-based soft MIMO detection with parallel interference cancellation. IET Communications, 11(11), 1775–1781.

    Article  Google Scholar 

  66. Benvenuto, N., & Bisaglia, P. (2003). Parallel and successive interference cancellation for mc-cdma and their near-far resistance, in Vehicular Technology Conference. VTC 2003-Fall. 2003 IEEE 58th, vol. 2, pp. 1045–1049, IEEE.

  67. Manglayev, T., Kizilirmak, R.C., & Kho, Y.H. (2018). Comparison Of Parallel And Successive Interference Cancellation For Non-Orthogonal Multiple Access, 2018 International Conference on Computing and Network Communications (CoCoNet), Astana, Kazakhstan, pp. 74–77. https://doi.org/10.1109/CoCoNet.2018.8476815.

  68. Wu, S., Zuo, R., Zhang, W., & Song, Y. (2019). Successive-Parallel Interference Cancellation Multi-user Detection Algorithm for MUSA Uplink, International Conference on Wireless and Satellite Systems, vol. 281, Springer, pp. 541–551.

  69. Manglayev, T., Kizilirmak, R. C., Kho, Y. H., et al. (2018). GPU accelerated successive interference cancellation for NOMA uplink with user clustering. Wireless Personal Communications, 103, 2391–2400. https://doi.org/10.1007/s11277-018-5915-y.

    Article  Google Scholar 

  70. Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Access, 4, 2123–2129. https://doi.org/10.1109/ACCESS.2016.2563462.

    Article  Google Scholar 

  71. Higuchi, K., & Kishiyama, Y. (2013). Non-orthogonal access with random beamforming and intra-beam SIC for cellular MIMO downlink, in Proc. IEEE Veh. Technol. Conf. (IEEE VTC Fall), Las Vegas, NV, USA, pp. 1–5.

  72. Nonaka, N., Kishiyama, Y., & Higuchi, K. (2014). Non-orthogonal multiple access using intra-beam superposition coding and SIC in base station cooperative MIMO cellular downlink, in Proc. IEEE Veh. Technol. Conf. (IEEE VTC Fall), Vancouver, BC, Canada, pp. 1–5.

  73. Chen, X., Beiijebbour, A., Li, A., Jiang, H., & Kayama, H. (2015). Consideration on successive interference canceller (SIC) receiver at cell-edge users for non-orthogonal multiple access (NOMA) with SU-MIMO, in Proc. IEEE 26th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), pp. 522–526.

  74. Gao, Y., Xia, B., Liu, Y., Yao, Y., Xiao, K., & Lu, G. (2018). Analysis of the dynamic ordered decoding for uplink NOMA systems with imperfect CSI. IEEE Transactions on Vehicular Technology, 67(7), 6647–6651. https://doi.org/10.1109/TVT.2018.2797091.

    Article  Google Scholar 

  75. Cui, J., Ding, Z., & Fan, P. (2018). Outage probability constrained MIMO-NOMA designs under imperfect CSI. IEEE Transactions on Wireless Communications, 17(12), 8239–8255.

    Article  Google Scholar 

  76. Chen, X., Benjebbour, A., Lan, Y., Li, A., & Jiang, H. (2014). Impact of rank optimization on downlink non-orthogonal multiple access (NOMA) with SU-MIMO, 2014 IEEE International Conference on Communication Systems, Macau, pp. 233-237. https://doi.org/10.1109/ICCS.2014.7024800.

  77. Chen, X., Beiijebbour, A., Li, A., Jiang, H., & Kayama, H. (2015). Consideration on successive interference canceller (SIC) receiver at cell-edge users for non-orthogonal multiple access (NOMA) with SU-MIMO, 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, pp. 522-526. https://doi.org/10.1109/PIMRC.2015.7343355.

  78. Saito, K., Benjebbour, A., Kishiyama, Y., Okumura, Y., & Nakamura, T. (2015). Performance and design of SIC receiver for downlink NOMA with open-loop SU-MIMO, 2015 IEEE International Conference on Communication Workshop (ICCW), London, pp. 1161-1165. https://doi.org/10.1109/ICCW.2015.7247334.

  79. Zhang, D., Liu, Y., Ding, Z., Zhou, Z., Nallanathan, A., & Sato, T. (2017). Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G. IEEE Transactions on Communications, 65(11), 4777–4790. https://doi.org/10.1109/TCOMM.2017.2739728.

    Article  Google Scholar 

  80. Al-Abbasi, Z.Q., So, D.K.C., & Tang, J. (2017). Resource allocation for MU-MIMO non-orthogonal multiple access (NOMA) system with interference alignment, 2017 IEEE International Conference on Communications (ICC), Paris, pp. 1-6. https://doi.org/10.1109/ICC.2017.7996956.

  81. Wang, H., Miao, X., & Liu, Q. (2021). A low-complexity MAP-SAP detector for massive MIMO systems. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08242-4.

    Article  Google Scholar 

  82. Li, Q., Hu, R. Q., Qian, Y., & Wu, G. (2012). Cooperative communications for wireless networks: Techniques and applications in LTE-advanced systems. IEEE Wireless Communications, 19(2), 22–29. https://doi.org/10.1109/MWC.2012.6189409.

    Article  Google Scholar 

  83. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative nonorthogonal multiple access in 5G systems’’. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  84. Xu, M., Ji, F., Wen, M., & Duan, W. (2016). Novel receiver design for the cooperative relaying system with non-orthogonal multiple access. IEEE Communications Letters, 20(8), 1679–1682. https://doi.org/10.1109/LCOMM.2016.2575011.

    Article  Google Scholar 

  85. Wang, L., Tian, F., Svensson, T., Feng, D., Song, M., & Li, S. (2015). Exploiting full duplex for device-to-device communications in heterogeneous networks. IEEE Communications Magazine, 53(5), 146–152. https://doi.org/10.1109/MCOM.2015.7105653.

    Article  Google Scholar 

  86. Kader, M. F., Shahab, M. B., & Shin, S. Y. (2017). Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Communications Letters, 21(5), 1159–1162. https://doi.org/10.1109/LCOMM.2017.2653777.

    Article  Google Scholar 

  87. Xia, B., Wang, J., Xiao, K., Gao, Y., Yao, Y., & Ma, S. (2018). Outage performance analysis for the advanced SIC receiver in wireless NOMA systems. IEEE Transactions on Vehicular Technology, 67(7), 6711–6715.

    Article  Google Scholar 

  88. Rebelatto, J. L., & Souza, R. D. (2019). Two-user network-coded cooperation with NOMA and advanced successive interference cancellation. IEEE Communications Letters, 1–1.

  89. Li, X., Liu, M., Deng, C., Mathiopoulos, P. T., Ding, Z., & Liu, Y. (2019). Full-duplex cooperative noma relaying systems with I/Q imbalance and imperfect SIC. IEEE Wireless Communications Letters. https://doi.org/10.1109/LWC.2019.2939309.

    Article  Google Scholar 

  90. Im, G., & Lee, J. H. (2019). Outage probability for cooperative NOMA systems with imperfect SIC in cognitive radio networks. IEEE Communications Letters, 23(4), 692–695. https://doi.org/10.1109/LCOMM.2019.2903040.

    Article  Google Scholar 

  91. Kim, Y., Yamazaki, K., & Jung, B. C. (2019). Virtual full-duplex cooperative NOMA: Relay selection and interference cancellation. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2019.2940220.

    Article  Google Scholar 

  92. Son, P. N., & Duy, T. T. (2020). A new approach for two-way relaying networks: Improving performance by successive interference cancellation, digital network coding and opportunistic relay selection. Wireless Network, 26, 1315–1329. https://doi.org/10.1007/s11276-019-02186-1.

    Article  Google Scholar 

  93. Beylerian, A., & Ohtsuki, T. (2016). Coordinated Non-Orthogonal Multiple Access (CO-NOMA), in 2016 IEEE Global Commun. Conf. (GLOBECOM), 1–5.

  94. Ali, M. S., Hossain, E., & Kim, D. I. (2018). Coordinated multipoint transmission in downlink multi-cell NOMA systems: Models and spectral efficiency performance. IEEE Wireless Communication, 25(2), 24–31.

    Article  Google Scholar 

  95. Ali, M. S., Hossain, E., Al-Dweik, A., & Kim, D. I. (2018). Downlink power allocation for CoMP-NOMA in multi-cell networks. IEEE Transaction on Communicatio, 66(9), 3982–3998.

    Article  Google Scholar 

  96. Choi, J. (2014). Non-orthogonal multiple access in downlink coordinated two-point systems. IEEE Communications Letters, 18(2), 313–316.

    Article  Google Scholar 

  97. Kilzi, A., Farah, J., Abdel Nour, C., & Douillard, C. (2020). Mutual successive interference cancellation strategies in NOMA for enhancing the spectral efficiency of CoMP systems. IEEE Transactions on Communications, 68(2), 1213–1226. https://doi.org/10.1109/TCOMM.2019.2945781.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Iswarya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iswarya, N., Jayashree, L.S. A Survey on Successive Interference Cancellation Schemes in Non-Orthogonal Multiple Access for Future Radio Access. Wireless Pers Commun 120, 1057–1078 (2021). https://doi.org/10.1007/s11277-021-08504-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08504-1

Keywords

Navigation