Skip to main content
Log in

Error Probability and Throughput Analysis of IRS-Assisted Wireless System Over Generalized \(\kappa\)\(\mu\) Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Intelligent reflecting surfaces (IRS)-assisted wireless transmission has recently emerged as a potential candidate to enable a smart and reconfigurable radio environment for future wireless communication systems. This paper investigates the performance of an IRS-assisted wireless communication system, where an IRS deployed on top of the source (S) acts as an intelligent access point that can adjust the phase of an incident unmodulated carrier signal generated at S in a deliberate manner to enhance the reception quality at the destination (D). In this setup, a moment generating function (MGF) based performance evaluation is developed with regard to average and effective throughput over the generalized \(\kappa\)\(\mu\) fading channels. In addition, a unified mathematical framework for the average bit error rate/symbol error rate analysis is provided, which will be helpful to study the system behavior under different modulation formats. Furthermore, a simplified asymptotic expression for the system metrics is derived under a high signal-to-noise ratio region, through which the diversity order of the system is achieved. The accuracy of the derived theoretical expressions is validated through Monte-Carlo simulation results. Interesting insights related to the channel fading parameter and the number of reflecting elements on the system performance are drawn and discussed conclusively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  2. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  3. Wu, Q., & Zhang, R. (2019). Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58(1), 106–112.

    Article  Google Scholar 

  4. Di Renzo, M., Debbah, M., Phan-Huy, D.-T., Zappone, A., Alouini, M.-S., Yuen, C., Sciancalepore, V., Alexandropoulos, G. C., Hoydis, J., Gacanin, H., et al. (2019). Smart radio environments empowered by reconfigurable ai meta-surfaces: An idea whose time has come. EURASIP Journal on Wireless Communications and Networking, 2019(1), 1–20.

    Article  Google Scholar 

  5. Tang, W., Chen, M. Z., Dai, J. Y., Zeng, Y., Zhao, X., Jin, S., Cheng, Q., & Cui, T. J. (2020). Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design. IEEE Wireless Communications, 27(2), 180–187.

    Article  Google Scholar 

  6. Tang, W., Li, X., Dai, J. Y., Jin, S., Zeng, Y., Cheng, Q., & Cui, T. J. (2019). Wireless communications with programmable metasurface: Transceiver design and experimental results. China Communications, 16(5), 46–61.

    Article  Google Scholar 

  7. Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M.-S., & Zhang, R. (2019). Wireless communications through reconfigurable intelligent surfaces. IEEE Access, 7, 116753–116773.

    Article  Google Scholar 

  8. Hu, S., Rusek, F., & Edfors, O. (2018). Beyond massive MIMO: The potential of data transmission with large intelligent surfaces. IEEE Transactions on Signal Processing, 66(10), 2746–2758.

    Article  MathSciNet  Google Scholar 

  9. Hou, T., Liu, Y., Song, Z., Sun, X., Chen, Y., & Hanzo, L. (2020). Reconfigurable intelligent surface aided NOMA networks. IEEE Journal on Selected Areas in Communications, 38(11), 2575–2588.

    Article  Google Scholar 

  10. Pan, C., Ren, H., Wang, K., Elkashlan, M., Nallanathan, A., Wang, J., & Hanzo, L. (2020). Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 38(8), 1719–1734.

    Article  Google Scholar 

  11. Yang, L., Yang, J., Xie, W., Hasna, M. O., Tsiftsis, T., & Di Renzo, M. (2020). Secrecy performance analysis of RIS-aided wireless communication systems. IEEE Transactions on Vehicular Technology, 69(10), 12296–12300.

    Article  Google Scholar 

  12. Yang, L., Guo, W., & Ansari, I. S. (2020). Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Communications Letters, 24(7), 1558–1562.

    Article  Google Scholar 

  13. Li, S., Duo, B., Yuan, X., Liang, Y.-C., & Di Renzo, M. (2020). Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming. IEEE Wireless Communications Letters, 9(5), 716–720.

    Article  Google Scholar 

  14. Björnson, E., Özdogan, Ö., & Larsson, E. G. (2019). Intelligent reflecting surface versus decode-and-forward: How large surfaces are needed to beat relaying? IEEE Wireless Communications Letters, 9(2), 244–248.

    Article  Google Scholar 

  15. Canbilen, A. E., Basar, E., & Ikki, S. S. (2020). Reconfigurable intelligent surface-assisted space shift keying. IEEE Wireless Communications Letters, 9(9), 1495–1499.

    Article  Google Scholar 

  16. Zhao, W., Wang, G., Atapattu, S., Tsiftsis, T. A., & Tellambura, C. (2020). Is backscatter link stronger than direct link in reconfigurable intelligent surface-assisted system? IEEE Communications Letters, 24(6), 1342–1346.

    Article  Google Scholar 

  17. Basar, E. (2020). Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6g. IEEE Transactions on Communications, 68(5), 3187–3196.

    Article  Google Scholar 

  18. Yang, L., Meng, F., Wu, Q., da Costa, D. B., & Alouini, M.-S. (2020). Accurate closed-form approximations to channel distributions of RIS-aided wireless systems. IEEE Wireless Communications Letters, 9(11), 1985–1989.

    Article  Google Scholar 

  19. Salhab, A. M., & Yang, L. (2021). Mixed RF/FSO relay networks: Ris-equipped RF source vs RIS-aided RF source. IEEE Wireless Communications Letters, 6, 66.

    Google Scholar 

  20. Odeyemi, K. O., Owolawi, P. A., & Olakanmi, O. O. (2020). Reconfigurable intelligent surface assisted mobile network with randomly moving user over fisher-snedecor fading channel. Physical Communication, 43, 101186.

    Article  Google Scholar 

  21. Di Renzo, M., Graziosi, F., & Santucci, F. (2009). Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Transactions on Vehicular Technology, 59(1), 127–149.

    Article  Google Scholar 

  22. Yilmaz, F., & Alouini, M.-S. (2012). A unified MGF-based capacity analysis of diversity combiners over generalized fading channels. IEEE Transactions on Communications, 60(3), 862–875.

    Article  Google Scholar 

  23. Yacoub, M. D. (2007). The \(\kappa\)-\(\mu\) distribution and the \(\eta\)-\(\mu\) distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.

    Article  Google Scholar 

  24. Milišićs, M., Hamza, M., & Hadžialić, M. (2009). Bep/sep and outage performance analysis of l- branch maximal-ratio combiner for \(\kappa -\mu\) fading. International Journal of Digital Multimedia Broadcasting, 6, 66.

    Google Scholar 

  25. Deepan, N., & Rebekka, B. (2019). On the performance of wireless powered communication networks over generalized \(\kappa\)- \(\mu\) fading channels. Physical Communication, 36, 100759.

    Article  Google Scholar 

  26. Prudnikov, A., Brychkov, Y. A., & Marichev, O. (2003). Integrals and series Volume 3: More special functions. Taylor and Francis.

  27. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. Academic Press.

  28. You, M., Sun, H., Jiang, J., & Zhang, J. (2016). Unified framework for the effective rate analysis of wireless communication systems over miso fading channels. IEEE Transactions on Communications, 65(4), 1775–1785.

    Article  Google Scholar 

  29. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (Vol. 95). Wiley.

  30. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepan Nagarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, D., Balakrishnan, R. Error Probability and Throughput Analysis of IRS-Assisted Wireless System Over Generalized \(\kappa\)\(\mu\) Fading Channels. Wireless Pers Commun 120, 1929–1944 (2021). https://doi.org/10.1007/s11277-021-08740-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08740-5

Keywords

Navigation