Skip to main content

Advertisement

Log in

Software Optimization in Ultrasound Imaging Technique Using Improved Deep Belief Learning Network on the Internet of Medical Things Platform

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Internet of Medical Things (IoMT) is the array of medical instruments and related technologies that link Information Technology (IT) systems in health care through online smart interface networks. Presently, Medical images are considered an essential source of a patient's clinical record and may be utilized to analyze infectious disease along with their diagnostic procedure, operations, and prediction. In cancer diagnostics, at an early stage, it is hard to classify using present diagnostics scanning methods such as Computed tomography (CT) and magnetic resonance imaging (MRI). In this research paper, an Improved Deep Belief Learning Network (IDBLN) is introduced in the software application of ultrasound imaging techniques for the effective feature analysis and classification of various cancer images at the early stages. IDBLN contains an improved automatic feature selection framework for a useful classification and detection of cancer images during scanning. An Enhanced Optimized Crow Search algorithm (EOCS) is suggested for classification to boost cancer detection efficiency during image scanning. Finally, outcomes are analyzed based on accuracy, sensitivity, and minimum error rate, proving the proposed framework's performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Latifi, M., Barahmand, N., Fahimnia, F. (2017). Post-mastectomy barriers for information seeking in women with breast cancer. Health Information Management, 13(5), 326–332.

  2. Maria, A. R., Sever, P. MIoT applications for wearable technologies used for health monitoring. In 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) 2018 Jun 28 (pp. 1–4). IEEE.

  3. Odewole, O. A., Tade, F. I., Nieh, P. T., Savir-Baruch, B., Jani, A. B., Master, V. A., Rossi, P. J., Halkar, R. K., Osunkoya, A. O., Akin-Akintayo, O., & Zhang, C. (2016). Recurrent prostate cancer detection with anti-3-[18 F] FACBC PET/CT: Comparison with CT. European journal of nuclear medicine and molecular imaging., 43(10), 1773–1783.

    Article  Google Scholar 

  4. Bobadilla, J., Ortega, F., Gutiérrez, A., & Alonso, S. (2020). Classification-based deep neural network architecture for collaborative filtering recommender systems. International Journal of Interactive Multimedia & Artificial Intelligence6(1), 68. https://doi.org/10.9781/ijimai.2020.02.006.

  5. Liang, M., Tang, W., Xu, D. M., Jirapatnakul, A. C., Reeves, A. P., Henschke, C. I., & Yankelevitz, D. (2016). Low-dose CT screening for lung cancer: Computer-aided detection of missed lung cancers. Radiology, 281(1), 279–288.

    Article  Google Scholar 

  6. Ham, J. S., Kim, S., Kim, H. K., Byeon, S., Sun, J. M., Lee, S. H., Ahn, J. S., Park, K., Choi, Y. L., Han, J., & Park, W. (2016). Two cases of small cell lung cancer transformation from EGFR mutant adenocarcinoma during AZD9291 treatment. Journal of Thoracic Oncology., 11(1), e1-4.

    Article  Google Scholar 

  7. Mazzone, P., Powell, C. A., Arenberg, D., Bach, P., Detterbeck, F., Gould, M. K., Jaklitsch, M. T., Jett, J., Naidich, D., Vachani, A., & Wiener, R. S. (2015). Components necessary for high-quality lung cancer screening: American College of Chest Physicians and American Thoracic Society policy statement. Chest, 147(2), 295–303.

    Article  Google Scholar 

  8. Masood, A., Sheng, B., Li, P., Hou, X., Wei, X., Qin, J., & Feng, D. (2018). Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. Journal of biomedical informatics., 1(79), 117–128.

    Article  Google Scholar 

  9. Murugan, N. S., & Devi, G. U. (2019). Feature extraction using LR-PCA hybridization on twitter data and classification accuracy using machine learning algorithms. Cluster Computing, 22(6), 13965–13974.

    Article  Google Scholar 

  10. Gomathi, P., Baskar, S., Shakeel, M. P., & Dhulipala, S. V. (2019). Numerical function optimization in brain tumor regions using reconfigured multi-objective bat optimization algorithm. Journal of Medical Imaging and Health Informatics, 9(3), 482–489.

    Article  Google Scholar 

  11. Yuan, M., Zhang, Y. D., Zhu, C., Yu, T. F., Shi, H. B., Shi, Z. F., Li, H., & Wu, J. F. (2016). Comparison of intravoxel incoherent motion diffusion-weighted MR imaging with dynamic contrast-enhanced MRI for differentiating lung cancer from benign solitary pulmonary lesions. Journal of Magnetic Resonance Imaging., 43(3), 669–679.

    Article  Google Scholar 

  12. Shakeel, P. M., Burhanuddin, M. A., & Desa, M. I. (2019). Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks. Measurement, 145, 702–712.

    Article  Google Scholar 

  13. Singh, N., Asuntha, A. (2016). Lung cancer detection using medical images through image Processing. Journal of Chemical and Pharmaceutical Sciences (JCPS), 9(3), 1558–1561.

  14. Baskar, S., Shakeel, P. M., Sridhar, K. P., &Kanimozhi, R. (2019). Classification System for Lung Cancer Nodule Using Machine Learning Technique and CT Images. In 2019 International Conference on Communication and Electronics Systems (ICCES) (pp. 1957–1962). IEEE.

  15. Manogaran, G., Shakeel, P. M., Fouad, H., Nam, Y., Baskar, S., Chilamkurti, N., & Sundarasekar, R. (2019). Wearable IoT smart-log patch: An edge computing-based Bayesian deep learning network system for multi access physical monitoring system. Sensors, 19(13), 3030.

    Article  Google Scholar 

  16. Hotfiel, T., Carl, H. D., Swoboda, B., Engelhardt, M., Heinrich, M., Strobel, D., Wildner, D. (2015). Contrast-enhanced ultrasound in diagnostic imaging of muscle injuries: perfusion imaging in the early arterial phase. SportverletzungSportschaden Organ der Gesellschaft fur Orthopadisch-TraumatologischeSportmedizin, 30(1), 54–57.

  17. Ni, J., Cozzi, P., Hung, T. T., Hao, J., Graham, P., & Li, Y. (2016). Monitoring prostate tumor growth in an Orthotopic mouse model using three-dimensional ultrasound imaging technique. Translational oncology., 9(1), 41–45.

    Article  Google Scholar 

  18. Jensen, C. T., Vicens-Rodriguez, R. A., Wagner-Bartak, N. A., Fox, P. S., Faria, S. C., Carrion, I., Qayyum, A., & Tamm, E. P. (2015). Multidetector CT detection of peritoneal metastases: evaluation of sensitivity between standard 25 mm axial imaging and maximum-intensity-projection (MIP) reconstructions. Abdominal imaging., 40(7), 2167–2172.

    Article  Google Scholar 

  19. Chen, J., Wang, L., Yan, B., Zhang, H., & Cheng, G. (2015). Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method. Journal of X-ray science and technology., 23(6), 683–699.

    Article  Google Scholar 

  20. Pereira, S., Pinto, A., Alves, V., & Silva, C. A. (2016). Brain tumor segmentation using convolutional neural networks in MRI images. IEEE transactions on medical imaging., 35(5), 1240–1251.

    Article  Google Scholar 

  21. Norton, I., Essayed, W. I., Zhang, F., Pujol, S., Yarmarkovich, A., Golby, A. J., Kindlmann, G., Wassermann, D., Estepar, R. S., Rathi, Y., & Pieper, S. (2017). SlicerDMRI: Open source diffusion MRI software for brain cancer research. Cancer research., 77(21), e101–e103.

    Article  Google Scholar 

  22. Madru, R., Kjellman, P., Olsson, F., Wingårdh, K., Ingvar, C., Ståhlberg, F., Olsrud, J., Lätt, J., Fredriksson, S., Knutsson, L., & Strand, S. E. (2012). 99mTc-labeled superparamagnetic iron oxide nanoparticles for multimodality SPECT/MRI of sentinel lymph nodes. Journal of Nuclear Medicine., 53(3), 459–463.

    Article  Google Scholar 

  23. AlZu’bi, S., Shehab, M., Al-Ayyoub, M., Jararweh, Y., & Gupta, B. (2020). Parallel implementation for 3d medical volume fuzzy segmentation. Pattern Recognition Letters, 130, 312–318.

    Article  Google Scholar 

  24. Alsmirat, M. A., Al-Alem, F., Al-Ayyoub, M., Jararweh, Y., & Gupta, B. (2019). Impact of digital fingerprint image quality on the fingerprint recognition accuracy. Multimedia Tools and Applications, 78(3), 3649–3688.

    Article  Google Scholar 

  25. Li, D., Deng, L., Gupta, B. B., Wang, H., & Choi, C. (2019). A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Information Sciences, 479, 432–447.

    Article  Google Scholar 

  26. Manogaran, G., Srivastava, G., Muthu, B. A., Baskar, S., Shakeel, P. M., Hsu, C. H., ... & Kumar, P. M. (2020). A Response-aware Traffic Offloading Scheme using Regression Machine Learning for User-Centric Large-Scale Internet of Things. IEEE Internet of Things Journal, 8(5), 3360–3368. https://doi.org/10.1109/JIOT.2020.3022322.

  27. Kaushik, S., & Gandhi, C. (2019). Ensure hierarchal identity based data security in cloud environment. International Journal of Cloud Applications and Computing (IJCAC), 9(4), 21–36.

    Article  Google Scholar 

  28. Sundarasekar, R., Thanjaivadivel, M., Manogaran, G., Kumar, P. M., Varatharajan, R., Chilamkurti, N., & Hsu, C. H. (2018). Internet of things with maximal overlap discrete wavelet transform for remote health monitoring of abnormal ECG signals. Journal of medical systems, 42(11), 1–13.

    Article  Google Scholar 

  29. Chen, Y. F., Chang, W. H., Tsai, H. Y., Lee, M. M., & Wu, T. S. (2021). Bioactivities and action mechanisms of active compounds from Hottuynia cordata THUNB on human lung cancer cells. 11(2), 40–46. https://github.com/jannisborn/covid19_pocus_ultrasound.

  30. Wu, W., Lin, W., Hsu, C. H., & He, L. (2018). Energy-efficient hadoop for big data analytics and computing: A systematic review and research insights. Future Generation Computer Systems, 86, 1351–1367. https://litfl.com/ultrasound-library/.

Download references

Acknowledgements

This work was partially supported by Asia University, Grant No. ASIA-109-CMUH-25; and the National Natural Science Foundation of China (Grant No. 61872084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hsien Hsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, YC., Hsia, TC. & Hsu, CH. Software Optimization in Ultrasound Imaging Technique Using Improved Deep Belief Learning Network on the Internet of Medical Things Platform. Wireless Pers Commun 127, 2063–2081 (2022). https://doi.org/10.1007/s11277-021-08769-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08769-6

Keywords

Navigation