Skip to main content
Log in

Gain Enhancement of Antipodal Vivaldi Antenna for 5G Applications Using Metamaterial

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact with a high gain antipodal Vivaldi antenna (AVA) is implemented for 5G applications. The proposed AVA dimensions are 24 mm \(\times\) 50 mm \({\times}\) 1 mm. The ‘V’ metamaterial exhibits negative relative permittivity property and hence it is epsilon negative metamaterial (ENG). These ENG unit cells are arranged in between two flares of AVA to transfer most of the energy in the end-fire direction. The antenna gain varies between 10.9 and 13.82 dBi in the entire frequency range of 24–30 GHz which makes it suitable for 5G communication applications. Also, the proposed antenna covers 24.25–29.50 GHz 5G frequency spectrum band. Next, the simulated results and the measured results match each other. Because of its wide bandwidth, enhanced gain, and compactness, the proposed antenna is preferable for employing it in the 5G communication devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar, S., Dixit, A. S., Malekar, R. R., Raut, H. D., & Shevada, L. K. (2020). Fifth generation antennas : A comprehensive review of design and performance enhancement techniques. IEEE Access, 8, 163568–163593.

    Article  Google Scholar 

  2. Ramanujam, P., Arumugam, C., Venkatesan, R., & Ponnusamy, M. (2020). Design of compact patch antenna with enhanced gain and bandwidth for 5G mm-wave applications. IET Microwaves, Antennas and Propagation, 14(12), 1455–1461.

    Article  Google Scholar 

  3. Biswas, A., & Gupta, V. R. (2020). Design and development of low profile MIMO antenna for 5G new radio smartphone applications. Wireless Personal Communications, 111(3), 1695–1706.

    Article  Google Scholar 

  4. Ramanujam, P., Ponnusamy, M., & Ramanujam, K. (2021). A compact wide-bandwidth Antipodal Vivaldi Antenna array with suppressed mutual coupling for 5G mm-wave applications. AEU International Journal of Electronics and Communications, 133, 153668.

    Article  Google Scholar 

  5. Esmail, B. A. F., Majid, H. A., Dahlan, S. H., Abidin, Z. Z., Himdi, M., Dewan, R., Rahim, M. K. A., & Ashyap, A. Y. I. (2020). Reconfigurable metamaterial structure for 5G beam tilting antenna applications. Waves in Random and Complex Media 1–14. https://doi.org/10.1080/17455030.2020.1720933

  6. Sharawi, M. S., Ikram, M., & Shamim, A. (2017). A two concentric slot loop based connected array MIMO antenna system for 4G / 5G terminals. IEEE Transactions on Antennas and Propagation, 65(12), 6679–6686.

    Article  Google Scholar 

  7. Kumar, S., & Dixit, A. S. (2021). A bibliometric survey on antipodal vivaldi antenna. Library Philosophy and Practice 5400. https://digitalcommons.unl.edu/libphilprac/5400

  8. Dixit, A. S., Shevada, L. K., Raut, H. D., Malekar, R. R., & Kumar, S. (2020). Fifth generation antennas: A bibliometric survey and future research directions. Library Philosophy and Practice, 2020, 1–24.

    Google Scholar 

  9. Gibson, P. (1979). The Vivaldi aerial. 9th European Microwave Conference, 1, 101–105.

    Google Scholar 

  10. Gazit, E. (1988). Improved design of the Vivaldi antenna. IEE Proceedings H-Microwaves, Antennas and Propagation, 135, 89–92.

    Article  Google Scholar 

  11. Dixit, A. S., & Kumar, S. (2020). A survey of performance enhancement techniques of antipodal Vivaldi antenna. IEEE Access, 8, 45774–45796.

    Article  Google Scholar 

  12. Tiwari, N., & Rama Rao, T. (2017). Substrate integrated waveguide based high gain planar antipodal linear tapered slot antenna with dielectric loading for 60 GHz communications. Wireless Personal Communications, 97(1), 1385–1400.

    Article  Google Scholar 

  13. Moosazadeh, M., Kharkovsky, S., & Case, J. T. (2015). Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials. IET Microwaves, Antennas & Propagation, 10(3), 1–9.

    Google Scholar 

  14. Nassar, I. T., & Weller, T. M. (2015). A novel method for improving antipodal Vivaldi antenna performance. IEEE Transactions on Antennas and Propagation, 63(7), 3321–3324.

    Article  Google Scholar 

  15. Wang, N. N., Fang, M., Chou, H. T., Qi, J. R., & Xiao, L. Y. (2018). Balanced antipodal Vivaldi antenna with asymmetric substrate cutout and dual-scale slotted edges for ultrawideband operation at millimeter-wave frequencies. IEEE Transactions on Antennas and Propagation, 66(7), 3724–3729.

    Article  Google Scholar 

  16. Li, L., Xia, X., Liu, Y., & Yang, T. (2016). Wideband balanced antipodal Vivaldi antenna with enhanced radiation parameters. Progress in Electromagnetics Research C, 66, 163–171.

    Article  Google Scholar 

  17. Dixit A. S., & Kumar, S. (2020). A miniaturized antipodal vivaldi antenna for 5G communication applications. In 2020 7th international conference on signal processing and integrated networks (SPIN) (pp. 800-803). https://doi.org/10.1109/SPIN48934.2020.9071075.

  18. Dixit, A. S., Kumar, S., Urooj, S., & Malibari, A. (2021). A highly compact antipodal Vivaldi Antenna array for 5G millimeter wave applications. Sensors, 21(7), 1–15.

    Article  Google Scholar 

  19. Ramanujam, P., Ramesh Venkatesan, P. G., Arumugam, C., & Ponnusamy, M. (2020). Design of miniaturized super wideband printed monopole antenna operating from 0.7 to 18.5 GHz. AEU International Journal of Electronics and Communications, 123, 1–9.

    Article  Google Scholar 

  20. Raut, H. D., Shevada, L. K., Malekar, R. R., Dixit, A. S., & Kumar, S. (2021). Metamaterials in 5G antenna designs: A bibliometric survey. Library Philosophy and Practice 5401. https://digitalcommons.unl.edu/libphilprac/5401.

  21. Singh, G., Ni, R., & Marwaha, A. (2015). A review of metamaterials and its applications. International Journal of Engineering Trends and Technology, 19(6), 305–310.

    Article  Google Scholar 

  22. Dixit, A., & Kumar, S. (2020). The enhanced gain and cost-effective antipodal Vivaldi antenna for 5G communication applications. Microwave and Optical Technology Letters, 62, 1–10.

    Article  Google Scholar 

  23. Gangwar, D., Das, S., & Yadava, R. L. (2014). Reduction of mutual coupling in metamaterial based microstrip antennas: The progress in last decade. Wireless Personal Communications, 77(4), 2747–2770.

    Article  Google Scholar 

  24. Zhu, S., Liu, H., & Wen, P. (2019). A new method for achieving miniaturization and gain enhancement of Vivaldi antenna array based on anisotropic metasurface. IEEE Transactions on Antennas and Propagation, 67(3), 1952–1956.

    Article  Google Scholar 

  25. Li, X., Zhou, H., Gao, Z., Wang, H., & Lv, G. (2017). Metamaterial slabs covered UWB antipodal Vivaldi antenna. IEEE Antennas and Wireless Propagation Letters, 16, 2943–2946.

    Article  Google Scholar 

  26. Boujemaa, M. A., Herzi, R., Choubani, F., & Gharsallah, A. (2018). UWB antipodal Vivaldi antenna with higher radiation performances using metamaterials. Applied Physics A, 714, 1–7.

    Google Scholar 

  27. Deng, R. C., Yang, X. M., Ma, B., Li, T. Q., Chen, H. Y., Yang, Y., et al. (2019). Performance enhancement of novel antipodal Vivaldi antenna with irregular spacing distance slots and modified-w-shaped metamaterial loading. Applied Physics A, 125(5), 1–11.

    Google Scholar 

  28. Tahar, Z., Xavier, D., & Benslama, M. (2018). An ultra-wideband modified Vivaldi antenna applied to ground and through the wall imaging. Progress In Electromagnetics Research C, 86(August), 111–122.

    Article  Google Scholar 

  29. Karmakar, A., Bhattacharjee, A., Saha, A., & Bhawal, A. (2019). Design of a fractal inspired antipodal Vivaldi antenna with enhanced radiation characteristics for wideband applications. IET Microwaves, Antennas and Propagation, 13(7), 892–897.

    Article  Google Scholar 

  30. Deng, J. Y., Cao, R., Sun, D., Zhang, Y., Yong, T., & Guo, L. X. (2020). Bandwidth enhancement of an antipodal Vivaldi antenna facilitated by double ridge substrate integrated waveguide. IEEE Transactions on Antennas and Propagation, 68, 1–4.

    Article  Google Scholar 

  31. Honari, M. M., Ghaffarian, M. S., & Mirzavand, R. (2021). Miniaturized antipodal Vivaldi antenna with improved bandwidth using exponential strip arms. Electronics (Switzerland), 10(1), 1–12.

    Google Scholar 

  32. Moosazadeh, M. (2020). Sidelobe level reduction using Teflon for a microwave and millimetrewave antipodal Vivaldi antenna. IET Microwaves, Antennas and Propagation, 14(6), 474–478.

    Article  Google Scholar 

  33. Moosazadeh, M., Kharkovsky, S., Case, J. T., & Samali, B. (2017). Antipodal Vivaldi antenna with improved radiation characteristics for civil engineering applications. IET Microwaves, Antennas & Propagation, 11(6), 796–803.

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by Major Research Project, Symbiosis International (Deemed University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, A.S., Kumar, S. Gain Enhancement of Antipodal Vivaldi Antenna for 5G Applications Using Metamaterial. Wireless Pers Commun 121, 2667–2679 (2021). https://doi.org/10.1007/s11277-021-08842-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08842-0

Keywords

Navigation