Skip to main content
Log in

DOA Estimation With New Compensation Sparse Extension MIMO Radar

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The sparse Multiple-Input–Multiple-Output radar has large array element spacing, which has a great significance for reducing the mutual coupling effects. In this paper, the authors propose a compensation sparse arrays with flexible inter-element spacing (CSA-FIS). Compared with the sparse arrays with flexible inter-element spacing (SA-FIS), the CSA-FIS improves the situation in that the number of virtual sensors significantly decreases when the inter-element spacing of two sub-array is not coprime. Under the guarantee of lower mutual coupling effects, the system degrees of freedom (DOFs) and the number of consecutive virtual sensors are also improved. Meanwhile, a pre-processing DFT-compressed sensing (D-CS) algorithm is proposed, with the purpose to solve the problem that the traditional CS algorithm has a high calculation cost when all non-zero parameters must be estimated. Numerical simulations demonstrate the superiority of the CSA-FIS in terms of DOFs and estimation accuracy when compared with SA-FIS. Moreover, compared with the traditional CS algorithm, the D-CS has lower computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The position of the virtual sensor in this paper is the data generated by the simulation. Array location data to support the results of this study can be obtained from the corresponding authors upon request.

References

  1. Fishler E., Haimovich, A., & Blum, R. et al. (2004). MIMO radar: an idea whose time has come. In Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509), Philadelphia, pp. 71–78. https://doi.org/10.1109/NRC.2004.1316398.

  2. Li J., & Stoica, P. (2009). MIMO Radar diversity means superiority. MIMO Radar Signal Processing, IEEE, pp.1–64. https://doi.org/10.1002/9780470391488.ch1.

  3. Goudos, S. K., Miaris, G. S., Siakavara, K., et al. (2007). On the orthogonal nonuniform synthesis From a set of uniform linear arrays. IEEE Antennas and Wireless Propagation Letters, 6, 313–315. https://doi.org/10.1109/LAWP.2007.899915

    Article  Google Scholar 

  4. Wang, Z., Xie, W., Zou, Y., & Wan, Q. (2019). DOA Estimation using single or dual reception channels based on cyclostationarity. IEEE Access, 7, 54787–54795. https://doi.org/10.1109/ACCESS.2019.2912907

    Article  Google Scholar 

  5. Zou, Y., & Liu, H. (2020). TDOA Localization with unknown signal propagation speed and sensor position errors. IEEE Communications Letters, 24(5), 1024–1027. https://doi.org/10.1109/LCOMM.2020.2968434

    Article  Google Scholar 

  6. Xie, W., Wen, F., Liu, J., & Wan, Q. (2017). Source association, DOA, and fading coefficients estimation for multipath signals. IEEE Transactions on Signal Processing, 65(11), 2773–2786. https://doi.org/10.1109/TSP.2017.2669894

    Article  MathSciNet  MATH  Google Scholar 

  7. Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280. https://doi.org/10.1109/TAP.1986.1143830

    Article  Google Scholar 

  8. Chakrabarty, S., & Habets, E. A. P. (2019). Multi-Speaker DOA estimation using deep convolutional networks trained with noise signals. IEEE Journal of Selected Topics in Signal Processing, 13(1), 8–21. https://doi.org/10.1109/JSTSP.2019.2901664

    Article  Google Scholar 

  9. Malioutov D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53 (8), 3010–3022. https://doi.org/10.1109/TSP.2005.850882.

    Article  MathSciNet  MATH  Google Scholar 

  10. Shi, Z., Zhou, C., Gu, Y., Goodman, N. A., et al. (2017). Source estimation using coprime array: A sparse reconstruction perspective. IEEE Sensors Journal, 17(3), 755–765. https://doi.org/10.1109/JSEN.2016.2637059

    Article  Google Scholar 

  11. Shi, J., Hu, G., Zhang, X., et al. (2018). Generalized co-prime MIMO Radar for DOA estimation with enhanced degrees of freedom. IEEE Sensors Journal, 18(3), 1203–1212. https://doi.org/10.1109/JSEN.2017.2782746

    Article  Google Scholar 

  12. Liu, C., & Vaidyanathan, P. P. (2019). Robustness of difference coarrays of sparse arrays to sensor failures—Part I: A theory motivated by coarray MUSIC. IEEE Transactions on Signal Processing, 67(12), 3213–3226. https://doi.org/10.1109/TSP.2019.2912882

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, C., & Vaidyanathan, P. P. (2019). Robustness of difference coarrays of sparse arrays to sensor failures—Part II: Array geometries. IEEE Transactions on Signal Processing, 67(12), 3227–3242. https://doi.org/10.1109/TSP.2019.2912877

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang X., Xu, L., Xu, L., & Xu, D. (2010). Direction of Departure (DOD) and Direction of Arrival (DOA) estimation in MIMO Radar with reduced-dimension MUSIC. IEEE Communications Letters, 14 (12), 1161–1163. https://doi.org/10.1109/LCOMM.2010.102610.101581.

    Article  Google Scholar 

  15. Zhang, W. Y., Vorobyov, S. A., & Guo, L. (2015). DOA estimation in MIMO radar with broken sensors by difference co-array processing. In 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Cancun, 2015, 321–324. https://doi.org/10.1109/CAMSAP.2015.7383801

    Article  Google Scholar 

  16. Liu, C., & Vaidyanathan, P. P. (2016). Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part I: Fundamentals. IEEE Transactions on Signal Processing, 64(15), 3997–4012. https://doi.org/10.1109/TSP.2016.2558159

    Article  MathSciNet  MATH  Google Scholar 

  17. Amani N., Roy, V. (2019). MIMO-Sparse Radars for enhanced DOA estimation of spatio-temporal correlated sources. In 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain, pp. 243–246.https://doi.org/10.1109/APWC.2019.8870432.

  18. Zheng, W., Zhang, X., Gong, P., & Zhai, H. (2018). DOA estimation for Coprime linear arrays: An ambiguity-free method involving full DOFs. IEEE Communications Letters, 22(3), 562–565. https://doi.org/10.1109/LCOMM.2017.2787698

    Article  Google Scholar 

  19. Vaidyanathan P. P. & Pal, P. (2010). Sparse sensing with coprime arrays. In 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2010, pp. 1405–1409. https://doi.org/10.1109/ACSSC.2010.5757766.

  20. Xie, Q., Pan, X., & Xiao, S. (2019). Enhance degrees of freedom for Coprime array using OptSpace Algorithm. IEEE Access, 7, 32672–32680. https://doi.org/10.1109/ACCESS.2019.2903106

    Article  Google Scholar 

  21. Moffet, A. (1968). Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 16(2), 172–175. https://doi.org/10.1109/TAP.1968.1139138

    Article  Google Scholar 

  22. Pal, P., & Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167–4181. https://doi.org/10.1109/TSP.2010.2049264

    Article  MathSciNet  MATH  Google Scholar 

  23. Pal, P., & Vaidyanathan, P. P. (2012). Multiple level nested array: An efficient geometry for 2qth order cumulant based array processing. IEEE Transactions on Signal Processing, 60(3), 1253–1269. https://doi.org/10.1109/TSP.2011.2178410

    Article  MathSciNet  MATH  Google Scholar 

  24. Qin, S., Zhang, Y. D., & Amin, M. G. (2014). DOA estimation of mixed coherent and uncorrelated signals exploiting a nested MIMO system. In IEEE Benjamin Franklin Symposium on Microwave and Antenna Sub-systems for Radar, Telecommunications, and Biomedical Applications (BenMAS). Philadelphia, PA, 2014, pp 1–3. https://doi.org/10.1109/BenMAS.2014.7529468

  25. Chen, C.-Y., & Vaidyanathan, P. P. (2008). Minimum redundancy MIMO radars. In 2008 IEEE International Symposium on Circuits and Systems. Seattle, WA,, pp 45–48. https://doi.org/10.1109/ISCAS.2008.4541350

  26. Huang, Y., Liao, G., Li, J., et al. (2017). Sum and difference coarray based MIMO radar array optimization with its application for DOA estimation. Multidimensional Systems and Signal Processing, 28, 1183–1202. https://doi.org/10.1007/s11045-016-0387-2

    Article  MathSciNet  MATH  Google Scholar 

  27. BouDaher, E., Ahmad, F., & Amin, M. G. (2015). Sparsity-based direction finding of coherent and uncorrelated targets using active nonuniform arrays. IEEE Signal Processing Letters, 22(10), 1628–1632. https://doi.org/10.1109/LSP.2015.2417807

    Article  Google Scholar 

  28. Shi, J., Hu, G., Zhang, X., & Sun, F. (2019). Sparsity-based DOA estimation of coherent and uncorrelated targets with flexible MIMO Radar. IEEE Transactions on Vehicular Technology, 68(6), 5835–5848. https://doi.org/10.1109/TVT.2019.2913437

    Article  Google Scholar 

  29. Cao, R., Liu, B., Gao, F., & Zhang, X. (2017). A low-complex one-Snapshot DOA estimation algorithm with massive ULA. IEEE Communications Letters, 21(5), 1071–1074. https://doi.org/10.1109/LCOMM.2017.2652442

    Article  Google Scholar 

  30. Shi J., Hu, G., Zhou, H., & Zhang, X. (2018). Sparsity-Based DOA estimation of coherent and uncorrelated targets with Co-Prime MIMO Radar. In 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 2018, pp. 1–5. https://doi.org/10.1109/ICDSP.2018.8631640.

Download references

Funding

This work was supported by the China Postdoctoral Science Foundation under Grant no. 2019M662257, the Aeronautical Science Foundation of China under Grant no.201901096002 and  the National Science Foundation in Shaanxi Province of China no.2021JM-222.

Author information

Authors and Affiliations

Authors

Contributions

GC and JG designed the array structure and algorithms scheme. GC performed simulation experiments on the designed array structure and the proposed algorithm. GC, CW and JG contributed to the drafting and revision of the manuscript. The final manuscript read and approved by all authors.

Corresponding author

Correspondence to Jian Gong.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Tian, B., Gong, J. et al. DOA Estimation With New Compensation Sparse Extension MIMO Radar. Wireless Pers Commun 122, 23–40 (2022). https://doi.org/10.1007/s11277-021-08874-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08874-6

Keywords

Navigation