Skip to main content
Log in

Computer-Assisted Collaborative Learning for Enhancing Students Intellectual Ability Using Machine Learning Techniques

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Computer-assisted Collaborative Learning (CCL) is a good teaching technique to enhance students' learning and intellectual performance consistency. Several studies have been undertaken to recognize variables that affect student intellectual ability. Observation obtained from the studies helped students in the right way and improved their habits and personal condition in learning and intellectual performance. In this paper, the proposed method has a multi-level multi-class classification algorithm. The dataset is transformed into various problem syntheses, and adaptive methods such as Binary Significance (BS), Label Powerset (LP), Classifier Series (CS), K-Nearest Neighbor (KNN), and Machine Learning integrated K-Nearest Neighbor (MLiKNN) adaptive classifier algorithm. Finally, the variables that significantly impact the student's success are identified, and recommendations for enhancing those factors are suggested to enhance the student's intellectual ability. The outcomes observed from the proposed classifier framework provide more recommended strategies to enhance students' learning environment and intellectual ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nguyen, N. T., Liu, B. H., Pham, V. T., & Luo, Y. S. (2019). On maximizing the lifetime for data aggregation in wireless sensor networks using virtual data aggregation trees. Computer Networks, 105, 99–110.

    Article  Google Scholar 

  2. Gao, J., Wang, H., &Shen, H. (2020). Task failure prediction in cloud data centers using deep learning. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2020.2993728.

  3. Gan, B., Menkhoff, T., & Smith, R. (2015). Enhancing students’ learning process through interactive digital media: New opportunities for collaborative learning. Computers in Human Behavior., 1(51), 652–663.

    Article  Google Scholar 

  4. Law, Q., Chung, J., Leung, L., & Wong, T. (2017). Perceptions of collaborative learning in enhancing undergraduate education students’ engagement in teaching and learning English. US-China Education Review., 7(2), 89–100.

    Google Scholar 

  5. Wu, C. H., Hwang, G. J., Kuo, F. R., Huang, I. (2013). A mindtool-based collaborative learning approach to enhancing students' innovative performance in management courses. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.163

  6. Do, D. T., Le, T. A., Nguyen, T. N., Li, X., & Rabie, K. M. (2020). Joint impacts of imperfect CSI and imperfect SIC in cognitive radio-assisted NOMA-V2X communications. IEEE Access, 8, 128629–128645.

    Article  Google Scholar 

  7. Gheisari, M., Najafabadi, H. E., Alzubi, J. A., Gao, J., Wang, G., Abbasi, A. A., & Castiglione, A. (2021). OBPP: An ontology-based framework for privacy-preserving in IoT-based smart city. Future Generation Computer Systems, 123, 1–13.

    Article  Google Scholar 

  8. Manogaran, G., Alazab, M., Saravanan, V., Rawal, B. S., Shakeel, P. M., Sundarasekar, R., Nagarajan, S. M., Kadry, S. N., & Montenegro-Marin, C. E. (2020). Machine learning assisted information management scheme in service concentrated IoT. IEEE Transactions on Industrial Informatics., 17(4), 2871–2879.

    Article  Google Scholar 

  9. Hakak, S., Alazab, M., Khan, S., Gadekallu, T. R., Maddikunta, P. K., & Khan, W. Z. (2021). An ensemble machine learning approach through effective feature extraction to classify fake news. Future Generation Computer Systems., 117, 47–58.

    Article  Google Scholar 

  10. Khan, M. A., Kadry, S., Zhang, Y. D., Akram, T., Sharif, M., Rehman, A., & Saba, T. (2021). Prediction of COVID-19-pneumonia based on selected deep features and one class kernel extreme learning machine. Computers & Electrical Engineering., 90, 106960.

    Article  Google Scholar 

  11. Manogaran, G., Vijayakumar, V., Varatharajan, R., Kumar, P. M., Sundarasekar, R., & Hsu, C. H. (2018). Machine learning based big data processing framework for cancer diagnosis using hidden Markov model and GM clustering. Wireless personal communications., 102(3), 2099–2116.

    Article  Google Scholar 

  12. Dimililer, K., Dindar, H., & Al-Turjman, F. (2020). Deep learning, machine learning and internet of things in geophysical engineering applications: An overview. Microprocessors and Microsystems, 80, 103613.

  13. Shafiq, M., Tian, Z., Bashir, A. K., Jolfaei, A., & Yu, X. (2020). Data mining and machine learning methods for sustainable smart cities traffic classification: A survey. Sustainable Cities and Society., 1(60), 102177.

    Article  Google Scholar 

  14. Verma, C., Stoffová, V., Illés, Z., Tanwar, S., & Kumar, N. (2020). Machine learning-based student’s native place identification for real-time. IEEE Access., 13(8), 130840–130854.

    Article  Google Scholar 

  15. Sivaram, M., Lydia, E. L., Pustokhina, I. V., Pustokhin, D. A., Elhoseny, M., Joshi, G. P., & Shankar, K. (2020). An optimal least square support vector machine based earnings prediction of blockchain financial products. IEEE Access., 29(8), 120321–120330.

    Article  Google Scholar 

  16. Basheer, S., Gandhi, U. D., Priyan, M. K., & Parthasarathy, P. (2019). Network support data analysis for fault identification using machine learning. International Journal of Software Innovation (IJSI)., 7(2), 41–49.

    Article  Google Scholar 

  17. Xu, X., Chen, Y., Zhang, J., Chen, Y., Anandhan, P., & Manickam, A. (2020). A novel approach for scene classification from remote sensing images using deep learning methods. European Journal of Remote Sensing., 8, 1–3.

    Google Scholar 

  18. Venkatesan, S., Sathishkumar, V. E., Park, J., Shin, C., & Cho, Y. (2020). A Prediction of nutrition water for strawberry production using linear regression. International journal of advanced smart convergence., 9(1), 132–140.

    Google Scholar 

  19. Muthukumaran, V., Ezhilmaran, D., Muchtadi-Alamsyah, I., Udhayaku-Mar, R., & Manickam, A. (2020). New public key cryptosystem based on combination of NREP and CSP in non-commutative near-ring. Journal of Xi’an University of Architecture and Technology., 12(3), 4534–4539.

    Google Scholar 

  20. Shakeel, P. M., Baskar, S., Fouad, H., Manogaran, G., Saravanan, V., & Montenegro-Marin, C. E. (2021). Internet of things forensic data analysis using machine learning to identify roots of data scavenging. Future Generation Computer Systems., 115, 756–768.

    Article  Google Scholar 

  21. Nieto, Y. V., García-Díaz, V., & Montenegro, C. E. (2019). Decision-making Model at Higher Educational Institutions based on Machine Learning. J. UCS., 25(10), 1301–1322.

    Google Scholar 

  22. Wisesa, O., Andriansyah, A., & Khalaf, O. I. (2020). Prediction analysis for business to business (B2B) sales of telecommunication services using machine learning techniques. Majlesi Journal of Electrical Engineering., 14(4), 145–153.

    Article  Google Scholar 

  23. Pradeepa, S., Manjula, K. R., Vimal, S., Khan, M. S., Chilamkurti, N., & Luhach, A. K. (2020). DRFS: Detecting risk factor of stroke disease from social media using machine learning techniques. Neural Processing Letters., 9, 1–9.

    Google Scholar 

  24. Kumar, A., Abhishek, K., Nerurkar, P., Ghalib, M. R., Shankar, A., & Cheng, X. (2020). Secure smart contracts for cloud-based manufacturing using Ethereumblockchain. Transactions on Emerging Telecommunications Technologies., 13, e4129.

    Google Scholar 

  25. Manogaran, G., Srivastava, G., Muthu, B. A., Baskar, S., Shakeel, P. M., Hsu, C. H., Bashir, A. K., & Kumar, P. M. (2020). A response-aware traffic offloading scheme using regression machine learning for user-centric large-scale internet of things. IEEE Internet of Things Journal., 8, 3360–3368.

    Article  Google Scholar 

  26. Khelifi, H., Luo, S., Nour, B., Moungla, H., Ahmed, S. H., & Guizani, M. (2020). A blockchain-based architecture for secure vehicular Named Data Networks. Computers & Electrical Engineering., 86, 106715.

    Article  Google Scholar 

  27. Jones AD, Jagannathan KA, Rhoades A, Srivastava AK, Grotjahn R, Ullrich PA. Decision-relevant metrics for regional hydroclimate phenomena. InAGU Fall Meeting Abstracts 2018 Dec (Vol. 2018, pp. GC14C-01).

  28. Al-Samarraie, H., & Saeed, N. (2018). A systematic review of cloud computing tools for collaborative learning: Opportunities and challenges to the blended-learning environment. Computers & Education., 1(124), 77–91.

    Article  Google Scholar 

  29. Chen, C., Jones, K. T., & Xu, S. (2018). The Association between Students’ Style of Learning Preferences, Social Presence, Collaborative Learning and Learning Outcomes. Journal of Educators Online., 15(1), n1.

    Article  Google Scholar 

  30. Loes, C. N., & Pascarella, E. T. (2017). Collaborative learning and critical thinking: Testing the link. The Journal of Higher Education., 88(5), 726–753.

    Article  Google Scholar 

  31. Heflin, H., Shewmaker, J., & Nguyen, J. (2017). Impact of mobile technology on student attitudes, engagement, and learning. Computers & Education., 1(107), 91–99.

    Article  Google Scholar 

  32. Sung, Y. T., Yang, J. M., & Lee, H. Y. (2017). The effects of mobile-computer-supported collaborative learning: Meta-analysis and critical synthesis. Review of educational research., 87(4), 768–805.

    Article  Google Scholar 

  33. Bower, M., Lee, M. J., & Dalgarno, B. (2017). Collaborative learning across physical and virtual worlds: Factors supporting and constraining learners in a blended reality environment. British Journal of Educational Technology., 48(2), 407–430.

    Article  Google Scholar 

  34. Chen, J., Wang, M., Kirschner, P. A., & Tsai, C. C. (2018). The role of collaboration, computer use, learning environments, and supporting strategies in CSCL: A meta-analysis. Review of Educational Research., 88(6), 799–843.

    Article  Google Scholar 

  35. Nam, C. W. (2017). The effects of digital storytelling on student achievement, social presence, and attitude in online collaborative learning environments. Interactive Learning Environments., 25(3), 412–427.

    Article  Google Scholar 

  36. Avci, H., & Adiguzel, T. (2017). A case study on mobile-blended collaborative learning in an English as a foreign language (EFL) context. International Review of Research in Open and Distributed Learning. https://doi.org/10.19173/irrodl.v18i7.3261

  37. Khan, A. B., & Mansoor, H. S. (2020). Integrated Collaborative Learning Approach (ICLA): Conceptual framework of pedagogical approach for the integration of language skills. Competitive Social Science Research Journal., 1(1), 14–28.

    Google Scholar 

  38. vanLeeuwen, A., & Janssen, J. (2019). A systematic review of teacher guidance during collaborative learning in primary and secondary education. Educational Research Review., 1(27), 71–89.

    Article  Google Scholar 

  39. McCarthy, J. (2017). Enhancing feedback in higher education: Students’ attitudes towards online and in-class formative assessment feedback models. Active Learning in Higher Education., 18(2), 127–141.

    Article  Google Scholar 

  40. Reis, R. C., Isotani, S., Rodriguez, C. L., Lyra, K. T., Jaques, P. A., & Bittencourt, I. I. (2018). Affective states in computer-supported collaborative learning: Studying the past to drive the future. Computers & Education., 1(120), 29–50.

    Article  Google Scholar 

  41. Reich, J., Tingley, D., Leder-Luis, J., Roberts, M. E., & Stewart, B. (2015). Computer-assisted reading and discovery for student generated text in massive open online courses. Journal of learning analytics, 2(1), 156–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: Juan Wang. Acquisition of data: Fang Liu. Analysis and/or interpretation of data: Juan Wang.

Corresponding author

Correspondence to Juan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, F. Computer-Assisted Collaborative Learning for Enhancing Students Intellectual Ability Using Machine Learning Techniques. Wireless Pers Commun 127, 2443–2460 (2022). https://doi.org/10.1007/s11277-021-09073-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09073-z

Keywords

Navigation