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Abstract
In this paper, the online power control problem for energy harvesting wireless communica-
tion system with a finite storage capacity battery is addressed, where the channel state and 
energy harvesting rate are both unknown. A low complexity algorithm based online convex 
optimization is proposed to guarantee energy availability of energy harvesting node and 
maximize average long-term throughput. The proposed algorithm restricts maximum trans-
mission power with the information of state of charge, and allocates transmission power 
based on historical information. In addition, energy availability constraint is given by rig-
orous theoretical analysis to guarantee the optimization of average long-term throughput. 
Simulations have been conducted to demonstrate the effectiveness of the algorithm without 
considering probability distribution of energy arrival or channel coefficients. The proposed 
algorithm outperforms counterparts in different energy harvested rates.
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Emax	� Battery capacity
ℙ	� Feasible set
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MDP	� Markov decision process
OCO	� Online convex optimization
ODG	� Online descend gradient
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SOC	� State of charge
Ut(p;s)	� Throughput with power p at channel s

1  Introduction

Recently, energy harvesting (EH) technologies extend the lifetime of node by collect-
ing ambient energy (solar, vibration, RF, etc.) from environment [1]. The system with 
EH nodes has been considered to provide extremely cost-effective and fully passive 
solutions in Internet of Things (IoT) [2], especially in places where conventional power 
source are not accessible. Though the operation, efficiency and maturity of energy har-
vesting systems vary with each other, it is indispensability to support long-term node 
availability in most of real scenarios. Within the operating time, the power supply of EH 
node should be no less than the power consumption [3]. However, the harvested energy 
is usually not continuous and sometimes limited due to the intermittent nature of energy 
sources. Nodes powered by harvested energy need energy storage and power manage-
ment algorithm to provide uninterrupted power supply [4].

The efficiency of EH technologies is important to enhance node availability, while 
optimal power control plays a critical role in improving overall performance, especially 
in EH based wireless communication system [5]. Computing and communication are the 
main sources of power consumption during node operation. In most cases, the amount 
of power consumption on communication is bigger than other tasks, such like sensing 
and computing. Furthermore, it varies large along with the dynamic and unpredicta-
ble wireless channel. As a result, the power control problem of a EH based transmitter, 
which harvests energy from ambient environment and transmits information to remote 
wireless receivers with harvested energy is a big challenge [6]. The unknown wireless 
channel and intermittent nature of ambient environmental energy lead to the challenges 
of ensuring node continuity and maximizing communication throughput [7–9].

In practical scenarios, the characteristics of energy arrival rate and the coefficients 
of wireless channel are hard to be predicted. The learning theoretic approaches improve 
the power control strategies by identifying the model of energy arrival rate and channel 
distribution [10, 11]. However, the computing complexity increases sharply with the 
states number of energy arrival rate and wireless channel, that is unacceptable for low 
cost transmitter. Online convex optimization (OCO) [12] is a low complexity way to 
allocate power effectively by projecting power vector into feasible set, which is deter-
mined by constraints. However, the energy of battery may be exhausted if the average of 
harvested energy is below the maximum of feasible set. Then the OCO with stochastic 
constraints [13] is deeply analyzed, and a new algorithm of guaranteeing node continu-
ity is proposed which required a costly big-capacity battery [14].

In order to remove the constraint of battery capacity, this paper proposes an improved 
gradient descent algorithm based on OCO for power control problem. The algorithm 
adjusts the size of feasible set with the State of charge (SOC) (range is [0, 1]). When the 
SOC is close to 1, the feasible set is almost full size, which indicates maximum power is 
allocated. Otherwise, the feasible set is a fractional subset of full size set, extra energy 
would be stored for future when the harvested energy is bigger than maximum of cur-
rent fractional subset. By rigorous theoretical analysis, the conditions of energy avail-
ability guaranty and the lower bounder of average long term throughput are explicitly 
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given. Furthermore, the throughput and battery state are analyzed, the simulations dem-
onstrate the excellent results.

The benefits of proposed algorithm are as follows:

•	 Firstly, comparing with learning theoretic approaches [11], the proposed algorithm has 
low complexity and only relies last historical information.

•	 Secondly, the node continuity or energy available guaranty is fulfilled without a com-
plex setting of battery capacity, which is indispensable in algorithm [14].

•	 Thirdly, the proposed algorithm is scalable, that is easily to be deployed into the sce-
narios with one transmitter to many receivers.

The paper is organized as follows. In the second section, related work is discussed. In the 
third section, system model is given and the problem is formulated. The new algorithm is 
proposed in the fourth section. In the fifth section, the performances are analyzed including 
average long-term throughput and energy-availability guaranty. In the sixth section, simu-
lations are shown and discussed to verify the advantageous properties. Finally, conclusion 
is given.

2 � Related Work

The power control or the energy allocation problem in EH based wireless system has been 
widely researched. Existing research can be divided into two groups based on whether the 
information (about the energy arrival and channel state) assumed to be available at the 
transmitter or not.

In offline optimization group [15], EH transmitter has almost ideal knowledge of future 
energy arrival amount or perfect prediction of channel state. Solar-based EH systems work 
well under such assumption, where the amount of harvested energy is almost predictable. 
In [16], the authors model the energy arrival rate and channel distribution as Markov Pro-
cess with known transition probability, optimize the power control by dynamic program-
ming. The transmitter allocates more energy for transmission when the wireless channel 
is predicted to be good, less energy in bad channel. When the wireless channel or energy 
arrival rate is known partially, the power control strategies are implemented based on pre-
diction of unknown part, such like the work on unknown channel distribution, on unknown 
energy arrival rate. In [17], the authors focus on the situation of hybrid energy storage, and 
battery imperfections situation is discussed in [18]. In [19], the authors consider a multi-
hop EH communication system and cover all possible harvesting profiles including con-
tinuous and discrete cases. Overall the solution of offline strategies show the upper bound 
of optimized throughput.

In online optimization group [8, 10], EH transmitter is assumed to know the statistics of 
underling EH arrival process or to have causal information about their realizations. In this 
case, the EH arrival process is model as approximated model, and online methods make 
decision on energy allocation based on predefined models. The model could be Markov 
decision process (MDP) or regression model based on statistic data [20]. In practical situa-
tion, the future channel state is unknown, and the learning theoretic approach is suitable for 
unpredictable case [21]. In this case, the transmitter learns the optimal energy allocation 
policies by performing actions and observing their rewards. Learning-based algorithms 
manage to gain rewards by minimizing the gap between online rewards and offline optimal 
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throughput. In [11], the authors assumed energy arrival and channel state as individual 
MDPs, and did not know the transition ratios. After a period of learning, the expected 
average throughput showed convergence in lower bounder. Recently deep reinforcement 
learning algorithm is implemented in a point-to-point EH wireless communication system 
where prior information about distribution on energy arrival process and channel coeffi-
cient both are not available [22].

For most EH-based wireless systems, the computational capability of node is limited. 
As a result, the computational complexity of power control algorithm must be considered. 
In most existing algorithms, the computational loads of value iteration or policy iteration 
algorithms increases sharply with the number of quantized states and/or actions [15]. The 
online convex optimization opens up a brand new way of optimizing energy allocation and 
long-term throughput. The Online descend gradient (ODG) algorithm, a traditional OCO 
algorithm, achieved acceptable regret on average long-term throughput in energy unlimited 
case [12]. However, the energy continuity is ignored. In limited energy capacity case, the 
authors in [13, 14] proposed an updated ODG version. By subtracting a vector, proposed 
algorithm help restrict total allocated energy. Related analysis showed the performance 
lower bounder based on assumption of huge battery capacity.

3 � System Model

In this paper, a point-to-point EH communication system is considered. The general 
configuration is similar as [14]. There are n sub-channels between the transmitter and 
receiver. In the beginning of time slot t, the EH transmitter allocates energy with vector 
p[t] = [p1[t], p2[t],… , pi[t],… , pn[t]] , where pi[t] is the energy allocated for sub-channel i 
in time slot t. Maximal transmission power of each time slot ( Pmax ) is defined. The Feasible 
set ( ℙ ) of energy allocation is defined as (1).

where pi ≥ 0,∀i ∈ {1, 2,… , n}.
Battery capacity ( Emax ) is defined, and the harvested energy in time slot t is e[t], which 

is known only at the end of time slot t. Assume available energy in the beginning of time 
slot t is E[t]. The dynamics of E[t] is described in the following Eq. (2).

where P[t] =
∑n

i=1
pi[t] and Emax ≥ E[t + 1] ≥ 0.

The states of all sub-channels in time slot t are displayed as a vector 
s[t] = [s1[t], s2[t],… , sn[t]] , which contains n sub-channels. The corresponding channel 
capacity of sub-channel i is log(1 + pi[t]si[t]) when assigning pi[t] energy into channel 
state si[t].

The system model is shown in Fig.  1, where EH transmitter chooses p[t + 1] at the 
beginning of time slot t + 1 . We define the reward Ut(p[t];s[t])] as the sum throughput of all 
n sub-channels in (3).

(1)ℙ =

{
p ∈ ℝ

n ∶

n∑

i=1

pi ≤ Pmax

}
.

(2)E[t + 1] = E[t] + e[t] − P[t].
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Throughput with power p at channel s (Ut(p;s)) is defined, ant it is a non-negative, non-
decreasing, and concave utility function. The Ut(p;s) is obtained at the end of time slot t by 
calculating (3), while power decision p[t] is decided at the beginning of time slot, where 
channel state and energy arrival of previous time slot is known, as shown in Fig. 1. So the 
objective of power control is to find a policy � , a sequence of p[t], t = 1, 2,… T  , so that 
the transmitter can send out as more information as possible by all sub-channels in T time 
slots. The mathematical description is as follow:

s.t (1) and (2).

4 � Proposed Algorithm

In traditional OCO, the allocated power of next time slot P[t + 1] is the projection in 
fixed feasible set of power vector, which is obtained by ODG method. The feasible set 
is restricted by Emax . As a convex function, the allocated power P[t + 1] would be equal 
to Emax without any restriction, for which a sketch in two-dimensional space is shown in 
Fig. 2a. In energy limited case, the energy availability conditions shown in (5) must be sat-
isfied, that is energy allocation should be no more than available energy.

In [14], the authors subtract an additional vector from the power vector, so that the new 
power vector is moved into the inner of feasible set, and a sketch is shown in Fig. 2b. The 

(3)Ut(p[t];s[t]) =

n∑

i=1

log(1 + pi[t]si[t]).

(4)max J
�
=

1

T

T∑

t=1

Ut(p;s),

(5)E[t + 1] ≥ P[t + 1], ∀t ∈ 0, 1, 2,… T .

Fig. 1   Basic system model
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Fig. 2   Power control with OCO 
algorithms
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modification ensures (5) with the buff provided by a big capacity battery. Inspired by frac-
tional allocation policy in [15], this paper adjusts the feasible set size to ensure (5). The 
new algorithm obtains SOC (range is [0, 1]) at the beginning of time slot t + 1 , and restricts 
feasible set of power control via SOC. The power control strategy is handled under the new 
feasible set. A sketch for the idea of proposed algorithm is shown in Fig. 2c.

The description of the algorithm is shown as follows.
Algorithm:
Setup of the initial time t = 1:
p[1] = [0, 0,… 0]T are the initial power of the channels, E[1] = Eini is the initial energy.
Procedures:
At the end of each time slot t ∈ {1, 2,… T} , do the follows:
Step 1: obtain current SOC q[t + 1]

Step 2: Restrict the maximum of transmission power.

where pi ≥ 0,∀i ∈ 1, 2,… , n

Step 3: power control

where Proj
ℙq
{⋅} represents the projection onto feasible set ℙq and ∇pUt(p;s) represents a 

gradient of function ∇pUt(p;s) at point p = p[t].
As shown in Fig. 1 and the algorithm description, the SOC value ( 0 ≤ q[t + 1] ≤ 1 ) is 

available when deciding energy allocation p[t + 1] , because SOC relies on E[t + 1] only. In 
the step 2, the feasible set of power control is restricted by SOC, which is dynamic along 
with harvested energy and allocated energy. In step 3, projection is done in the restricted 
feasible set.

5 � Algorithm Analysis

When deploying OCO into energy allocation problem in EH based wireless system, the 
energy availability guarantee should be fulfilled as (5). Then the regret of actions should be 
analysed in order to provide the lower bounder of performance. In the following part, the 
power control policy of proposed algorithm is analysed in above two aspects.

5.1 � Energy Availability Guaranty

In order to implement the power control decision in proposed algorithm, the SOC in time 
slot t + 1 must satisfy following energy availability constraint (5).

(6)q[t + 1] = E[t + 1]∕Emax

(7)

Pmax
q

= q[t + 1]Pmax

ℙq =

{
p ∈ ℝ

n ∶

n∑

i=1

pi ≤ Pmax
q

,

}

(8)p[t + 1] = Proj
ℙq
{p[t] + q[t + 1]∇pUt(p;s)}
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Theorem 1  (Energy guaranty) If Pmax ≤ Emax , then the energy availability is guaranteed.

Proof  Based on the definition of Proj{⋅} and algorithm design, we obtain

If Pmax ≤ Emax , then

	�  ◻

5.2 � Lower Bound for Long‑Term Average Expected Throughput

Upper bound on the diameter of ℙ(D) is defined, that is, ∀x, y ∈ ℙ, ‖x − y‖ ≤ D . Upper bound 
of the gradient of Ut(p;s)(G) is defined, that is, ‖∇pUt(p;s)‖ ≤ G,∀p ∈ ℙ, t ∈ {1, 2,… T} . 
Then we give the main result of this paper.

Theorem  2  (Main Result) If the long term average throughput is defined as (4), then 
under proposed algorithm, when T → ∞ , the lower bounder of average long term through-
put can be given by

where p∗ = argmaxp∈ℙ
∑T

t=1
Ut(p;s) in energy unlimited situation.

Before proving the Theorem 2, we need to introduce the following three lemmas first.

Lemma 1  Let pz = Proj
ℙ
{p} , and py = Proj

ℙq
{p} , where q ∈ [0, 1] , Then for any p ∈ Rn , 

‖pz − py‖ ≤ (1 − q)D.

Proof 

1.	 If p ∉ ℙ , then ‖pz − py‖ ≤ (1 − q)D.
2.	 If p ∈ ℙ , but p ∉ ℙq , then ‖pz − py‖ ≤ (1 − q)D.
3.	 If p ∈ ℙq , then ‖pz − py‖ = 0.

	�  ◻

Lemma 2  Based on proposed algorithm description, q[t + 1] follows the below inequality 
constraint.

P[t + 1] ≤
E[t + 1]

Emax
Pmax =

Pmax

Emax
E[t + 1]

P[t + 1] ≤
Pmax

Emax
E[t + 1] ≤ E[t + 1].

(9)
lim
T→∞

1

T

T∑

t=1

Ut(p;s) ≥ lim
T→∞

1

T

T∑

t=1

Ut(p
∗;s)

(GD +
G2

2
),

q[t + 1] ≥
(
1 −

Pmax

Emax

)
q[t].
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Proof  Based on projection definition, we obtain

Recall

Then

Therefore,

	�  ◻

Lemma 3  [12] Let c1, c2,… cT ∶ ℙ → ℝ be an arbitrary sequence of convex differenti-
able functions. Let p1,… , pT ∈ ℙ be defined by p1 = 0 and pt+1 = Proj

ℙ
{pt + �∇ct(pt)} , 

then for G = max ‖∇ct(pt)‖,

Below we give the proof of our main result.

Proof of Theorem 2  Let energy vector p[t] is the output of the proposed algorithm, based 
on Lemma 1, we can get

Then for all p, pz ∈ ℙq and at time slot t, we have

Sum (10) from t = 1 to t = T  , and consider Lemma 2, we obtain

P[t] =

n∑

i=1

pi[t] ≤ Pmaxq[t] = Pmax E[t]

Emax
.

E[t + 1] = E[t] + e[t] − P[t].

E[t + 1] ≥E[t] + e[t] − Pmax E[t]

Emax

≥

(
1 −

Pmax

Emax
E[t]

)

q[t + 1] ≥
(
1 −

Pmax

Emax

)
q[t].

max
p∈ℙ

T∑

t=1

ct(p) −

T∑

t=1

ct(pt) ≤
D2

�
+ T�

G2

2
.

‖pz − p‖ ≤ (1 − q)D.

(10)
�Ut(pz;s) − Ut(p;s)� ≤G‖pz − p‖

≤GD(1 − q[t]).



3522	 J. Guo, X. Zhang 

1 3

The pz and p are the output of Zinkevich’s policy [12] and proposed policy, respectively. 
Considering Lemma 3, we get

Combine (11) and (12), then we get

From Theorem 1, one gets E[t] ≥ P[t] . Then 1

q[t+1]
 is bounded. Finally,

	�  ◻

T∑

t=1

Ut(p;s) ≥

T∑

t=1

Ut(pz;s) − GDT + GD

T∑

t=1

q[t]

=

T∑

t=1

Ut(pz;s) − GDT

+ GDq[1]

T∑

1

(
1 −

Pmax

Emax

)T−t

≥

T∑

t=1

Ut(pz;s) − GDT + GD
E[1]

Pmax

(11)
T∑

t=1

Ut(p
∗;s) −

T∑

t=1

Ut(pz;s) ≤
D2

2q[t + 1]
+

G2

2

T∑

t=1

q[t].

T∑

t=1

Ut(p;s) ≥

T∑

t=1

Ut(p
∗;s) + GD

E[1]

Pmax
−

D2

2q[t + 1]

− GDT −
G2

2

T∑

t=0

q[t]

≥

T∑

t=1

Ut(p
∗;s) + GD

E[1]

Pmax
−

D2

2q[t + 1]

− (GD +
G2

2
)T

lim
T→∞

1

T
Ut(p;s) ≥ lim

T→∞

1

T
Ut(p

∗;s) − (GD +
G2

2
)

Table 1   Simulation parameters Name Value Description

n 2 Number of sub-channels
�1, �2 1 Rayleigh info of sub-channel 1, 2
P
max 10 Maximum transmitting power

E
max ≥ P

max Battery capacity
e[t] Uniform Energy arrival rate
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6 � Simulations

In this section, the properties of proposed power control algorithm on EH based wire-
less system are analyzed. In EH transmitter, there are two sub-channels, which are two 
independent Rayleigh fading channels. The maximum transmitting power is set to 10. The 
energy harvesting rate follows uniform distribution within [0, Emax ]. Firstly, the energy 
availability guarantee of proposed algorithm is demonstrated. Then the comparison on 
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average long-term throughput between proposed algorithm and algorithm in [14] are 
shown under different setups. The simulation settings are listed in Table 1.

Energy Availability Guarantee Figure 3 shows the trajectories of E[t] − P[t] with dif-
ferent Emax under the condition of Emax ≥ Pmax . When Emax = 50 , the remaining power is 
fluctuating between 10 and 30 as shown in red line. When Emax = 10 , the remaining power 
is fluctuating between 0 and 10 as shown in blue line. It can be seen that E[t] − P[t] ≥ 0 
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always holds as time goes on, then it is clearly that the energy availability is guaranteed as 
long as the inequality Emax ≥ Pmax is satisfied.

The minimal required battery capacity is Pmax , which is 10 in simulation. However, the 
minimal required battery capacity [14] exceeds 100, which is much bigger than 10. A small 
required battery capacity is easy to reduce the overall node cost.

Average Long-Term Throughput Analysis Figure 4 shows the average long term through-
put trajectories of the proposed algorithm with different E(e[t]), where the E[e(t)] is the 
mean value of e(t). We can get that the performance relies on the energy harvest rate, that 
is, when average value of e(t) increases, the average throughput also increases. The sum 
throughput of all sub-channels is a convex function of allocated power.

In the following part, the comparisons of average long-term throughput and battery state 
are demonstrated in Figs. 5 and 6, respectively. The average harvest rate e[t] equals to 4 is 
an example of low energy harvesting rate, while 2 is an example of extremely low energy 
harvesting rate. In both figures, red color solid and dotted lines are the results of our pro-
posed algorithm, the blues are the results of the compared algorithm in [14]. Regardless of 
the average harvest rate e[t], we see that both algorithms achieve throughput convergence 
along with the time slot. In Fig. 5, the solid lines indicate that proposed algorithm outper-
forms counterpart, the dotted lines share similar performance. Overall, proposed algorithm 
utilizes harvested energy better.

In order to deeply analyze the throughput performance, the battery state is shown. In 
Fig. 6, the SOC follows a flat oscillation in proposed algorithm, while in other algorithm, 
the battery level fluctuates in a wider range. The proposed algorithm uses the SOC as a 
negative input so as to reduce the dynamic of SOC. In compared algorithm, the allocated 
powers rely on the subtracted vector, which is mostly affected by the channel distribution. 
As a result, the blue solid and dotted lines show similar fluctuation level when the channel 
distribution is same. The SOC dynamic of our proposed algorithm is more conducive to 
extend battery lifetime comparing with the other algorithm, as deep charge-discharge cycle 
may reduce the battery lifetime. Furthermore, the average SOC of proposed algorithm is 
below another algorithm’s, that is the main reason of achieving higher throughput.

7 � Conclusions

In this paper, a power control problem in EH based wireless communication system aim-
ing to maximize throughput is discussed in this paper. In our setup, the wireless trans-
mitter does not know any future information about channel state and energy arrival rate. 
The setup is reasonable in actual situation. This paper proposes a simple online algorithm 
which fulfils energy availability guarantee, and achieves outstanding performance in aver-
age long-term throughput. The required battery capacity is small, which is suitable for low-
cost wireless sensor node. The battery states are smooth in simulations, which is good for 
battery lifetime. Furthermore, the analysis model is scalable and is also suitable for one 
transmitter sends out information to many receivers respectively.
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