Skip to main content
Log in

A Scalable Mobility Management Scheme for PMIPv6 with Multiple Control and Data Plane

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Distributed Mobility Management (DMM) is an alternative to Centralized Mobility Management (CMM) schemes. In DMM, signal and data forwarding functionalities are separated into control and data planes. Although, such separations are beneficial to handle densely populated users and voluminous data, it fails to address scalability issue. Researchers suggest to deploy multiple control planes to handle signalling load in densely populated network. But these schemes are not suitable to process voluminous data. In this paper, we propose a DMM framework by deploying multiple instances of control and data planes to handle densely populated network with voluminous traffic. We suggest two algorithms for selecting control plane and data plane for visitor mobile nodes in a foreign network. Performance parameters like convergence time of proposed algorithms, domain capacity, handoff latency and packet delivery cost are examined analytically and verified with ns−3 simulations. Results are compared with Proxy MIPv6 (PMIPv6) and Distributed-PMIPv6 (D-PMIPv6) protocols. Observations reveal that proposed DMM solution significantly outperforms the above stated benchmark approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Johnson, D. B., & Perkins, C. E. (2004). Mobility Support in IPv6, RFC 3775.

  2. Soliman, H., et al. (2008). Hierarchical Mobile IPv6 mobility management (HMIPv6), RFC 5380.

  3. Koodli, R. (2009). Fast Handovers for Mobile IPv6. RFC 5568.

  4. Dutta, N., & Misra, I. S. (2014). Multilayer hierarchical model for mobility management in IPv6: A mathematical exploration. Wireless Personal Communications, 78(2), 1413–1439.

    Article  Google Scholar 

  5. Chen, J., et al. (2014). A dynamic architecture for mobility management in hierarchical mobile IPv6. Journal of Computers, 9(5), 1168–1176.

    Google Scholar 

  6. Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy Mobile IPv6. RFC 5213.

  7. Jalin, F. A., & Alsaqour, R. (2016). A simulation study of proxy mobile IPV6 (PMIPV6) protocol. ARPN Journal of Engineering and Applied Sciences, 11(7), 4701–4706.

    Google Scholar 

  8. Gao, T., Deng, X., & Guo, N. (2017). An anonymous authentication scheme based on group IBS for PMIPv6 network. Advances in Intelligent Systems and Computing (AISC), 612, 330–341.

    Article  Google Scholar 

  9. Chai, H. S., Jeong, J., & Cho, C. H. (2017). Security analysis of fast inter-LMA domain handover scheme in proxy mobile IPv6 networks. Pervasive and Mobile Computing, 39, 100–116.

    Article  Google Scholar 

  10. Giust, F., et al. (2011). A network-based localized mobility solution for distributed mobility management. In 14th IEEE international symposium on WPMC, Brest, France (pp. 1–5).

  11. Zubair, M., Kong, X., & Mahfooz, S. (2014). DMAM: Distributed mobility and authentication mechanism in next-generation networks. Security and Communication Networks, 8(5), 845–863.

    Article  Google Scholar 

  12. Nguyen TT, Bonnet C. (2015). A hybrid centralized-distributed mobility management for supporting highly mobile users. In: IEEE international conference on communications (pp. 3945–3951) London, UK.

  13. Ernest, P. P., et al. (2015). Distributed mobility management with distributed routing management at access routers for network-based mobility support. Wire Personal Communications, 84(1), 181–205.

    Article  Google Scholar 

  14. Ernest, P. P., et al. (2016). Design and performance evaluation of distributed mobility management schemes for network mobility. Journal of Network and Computer Applications, 61, 46–58.

    Article  Google Scholar 

  15. Raza, S. M., Thorat, P., Challa, R., & Choo, H. (2017). On demand inter domain mobility in SDN based Proxy Mobile IPv6. In 2017 International Conference on Information Networking (ICOIN) (pp. 194–199). IEEE.

  16. Do, T. X., & Kim, Y. (2017). Control and data plane separation architecture for supporting multicast listeners over distributed mobility management. ICT Express, 3(2), 90–95.

    Article  Google Scholar 

  17. Yi, L., Zhou, H., Huang, D., & Zhang, H. (2013). D-PMIPv6: A distributed mobility management scheme supported by data and control plane separation. Mathematical and Computer Modelling, 58(5–6), 1415–1426.

    Article  Google Scholar 

  18. Rodriguez-Natal, A., Portoles-Comeras, M., Ermagan, V., Lewis, D., Farinacci, D., Maino, F., & Cabellos-Aparicio, A. (2015). LISP: A southbound SDN protocol? IEEE Communications Magazine, 53(7), 201–207.

    Article  Google Scholar 

  19. Farinacci, D., Meyer, D., & Lewis, D. (2013). The locator/ID separation protocol (LISP), RFC 6830.

  20. Krishnan, S., Koodli, R., Loureiro, P., Wu, Q., & Dutta, A. (2012). Localized routing for proxy mobile IPv6”, RFC 6705.

  21. Lee, J. H., & Chung, T. M. (2010). How much do we gain by introducing route optimization in proxy mobile ipv6 networks?. Annals of Telecommunications, 65(5), 233–246.

    Article  Google Scholar 

  22. Ogiela L, Ogiela MR (2012). Advances in cognitive information systems, in cognitive systems. In Monographs, vol. 17. Springer.

  23. Bettstetter, C., Hartenstein, H., & Perez-Costa, X. (2004). Stochastic properties of the random waypoint mobility model. Wireless Networks, 10, 555–567.

    Article  Google Scholar 

  24. ns-3 Network Simulator, available online http://www.nsnam.org.

  25. Choi, H. Y., Min, S. G., Han, Y. H., Park, J., & Kim, H. (2010). Implementation and evaluation of proxy mobile IPv6 in NS-3 network simulator. In 2010 proceedings of the 5th international conference on ubiquitous information technologies and applications (pp. 1–6). Sanya, China.

  26. Kreutz, D., et al. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.

    Article  Google Scholar 

  27. Khan, M. A., Dang, X. T., Doersch, T., & Peters, S. (2018). Mobility management approaches for SDN-enabled mobile networks. Annals of Telecommunications, 73(11), 719–731.

    Article  Google Scholar 

  28. Ghaleb, S. M., Subramaniam, S., Ghaleb, M., & Ejmaa, M. E. (2019). An efficient group-based control signaling within proxy mobile IPv6 protocol. Computers, 8(4), 75. https://doi.org/10.3390/computers8040075

    Article  Google Scholar 

  29. Gohar, M., Anwar, S., Ali, M., Choi, J. G., Alquhayz, H., & Koh, S. J. (2020). Partial bicasting with buffering for proxy mobile IPV6 mobility management in CoAP-based IoT networks. Electronics, 9, 598. https://doi.org/10.3390/electronics9040598

    Article  Google Scholar 

  30. Kang, B., & Anh, K. Q. (2017). Choo H (2017) Implementation of fast handover for proxy mobile IPv6: Resolving out-of-order packets. PLoS ONE, 12(10), e0182375. https://doi.org/10.1371/journal.pone.0182375

    Article  Google Scholar 

  31. Leiter, Á., & Bokor, L. (2019). A flow-based and operator-centric dynamic mobility management scheme for proxy mobile IPv6. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2019/4567317

    Article  Google Scholar 

  32. Cominardi, L., Giust, F., Bernardos, C. J., & De La Oliva, A. (2017). Distributed mobility management solutions for next mobile network architectures. Computer Networks, 121, 124–136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiren Kumar Deva Sarma.

Ethics declarations

Conflict of interest

There is no data associated with this research. Authors do not have any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, N., Sarma, H.K.D. A Scalable Mobility Management Scheme for PMIPv6 with Multiple Control and Data Plane. Wireless Pers Commun 123, 2581–2606 (2022). https://doi.org/10.1007/s11277-021-09254-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09254-w

Keywords

Navigation