Skip to main content

Advertisement

Log in

Effect of Nano Potassium Fertilizer on Cucumber Amino Acid Component, Volatile Metabolite Components and GLN Family Genes Expression

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To investigate the effect of nano-potassium silicate on the expression of glutamine (GLN) family gene, amino acid (AAs) componentand volatile metabolites (VMs) component of cucumber. With ordinary potassium silicate (OKSi) and nano-potassium silicate (NKSi) as different potassium fertilizer forms, the potassium levels (K2O) were set at 0 (CK), 150,300 and 450 kg·hm−2. Field experiment was conducted to study the effects of different forms of potassium fertilizers and potassium levels on content of amino acid components, species and contents of volatile substances in cucumbers, and on the expression of GLN family genes in cucumber fruits. The results indicated that the content of total amino acids was the highest in NKSi-300 and OKSi-450, and NKSi-300 brought greater increase of essential amino acids than OKSi-450. The content of volatile metabolites (VMs) under NKSi-450 treatment was highest. In NKSi treatment, GLN1.1, GLN1.2, GLN1.3 and GLN2 were upregulated, with the highest upregulation in NKSi-450, which was 8.28, 7.73, 9.26 and 5.62 times that of CK, respectively. Correlation analysis of cucumber GLN family gene expression and fruit amino acid and volatile metabolite components revealed that cucumber fruit GLN family gene expression and fruit glutamate (Glu) had a significant or extremely significant negative correlation with CsFGLN1.2, CsFGLN1.3 and CsFGLN2; in volatile metabolites, total alcohols had significant or extremely significant positive correlation with genes CsFGLN1.1 (r = 0.837*), CsFGLN1.2 (r = 0.936**), CsFGLN1.3 (r = 0.916**) and CsFGLN2 (r = 0.998**). Nano-potassium fertilizer can better improve the activity of related enzymes (GS, GOGAT, etc.) in nitrogen metabolism than ordinary potassium fertilizer, thereby increasing the expression of GLN family genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun, Q. B., Ruan, Y. L., Chen, P., Wang, S. J., Liu, X. M., & Lian, B. (2019). Effects of mineral-organic fertilizer on the biomass of green Chinese cabbage and potential carbon sequestration ability in karst areas of Southwest China. Acta Geochimica, 38(3), 430–439. https://doi.org/10.1007/s11631-019-00320-6

    Article  Google Scholar 

  2. Huang, S. W., Wang, L., Liu, L. M., Hou, Y. X., & Li, L. (2014). Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agronomy for Sustainable Development, 35(2), 369–400. https://doi.org/10.1007/s13593-014-0274-x

    Article  Google Scholar 

  3. Mullen, A. (2019). Expectations from nano in agriculture. Nature Nanotechnology, 14(6), 515–516. https://doi.org/10.1038/s41565-019-0471-5

    Article  Google Scholar 

  4. Li, T., Sun, F. Y., Gong, P., Wang, A., Yuan, L. X., & Yin, X. B. (2017). Effects of nano-selenium fertilization on selenium concentration of wheat grains and quality-related traits. Journal of Plant Nutrition and Fertilizer, 23(2), 427–433. https://doi.org/10.11674/zwyf.16217

    Article  Google Scholar 

  5. Yuan, T., Wang, Z. Y., Gu, S. K., Wang, F., Yang, D., & Chen, Y. (2017). Effect of combined application of low-level potassium fertilizer with nano-Mg(OH)2 on Chinese cabbage quality. Plant Nutrition and Fertilizer, 23(1), 254–261. https://doi.org/10.11674/zwyf.16081

    Article  Google Scholar 

  6. Davarpanah, S., Tehranifar, A., Davarynejad, G., Aran, M., Abadía, J., & Khorassani, R. (2017). Effects of foliar Nano-nitrogen and urea fertilizers on the physical and chemical properties of Pomegranate (Punica granatum cv. Ardestani) Fruits. HortScience, 52(2), 288–294. https://doi.org/10.21273/HORTSCI11248-16

    Article  Google Scholar 

  7. Jin, Z. J., Liu, Y., Xu, W. H., Yang, C., Chen, S. L., & Li, Y. H. (2020). Effects of Nano-potassium fertilizer on amino acid components and GLN family gene expression in Chinese cabbage. Applied Ecology and Environmental Research, 18(4), 5325–5342. https://doi.org/10.15666/aeer/1804_53255342

    Article  Google Scholar 

  8. Gascuel, Q., Diretto, G., Monforte, A. J., Fortes, A. M., & Granell, A. (2017). Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Frontiers in Plant Science, 8(8), e652. https://doi.org/10.3389/fpls.2017.00652

    Article  Google Scholar 

  9. Feng, N. X., Liang, Q. F., Feng, Y. X., Xiang, L., & Wong, M. H. (2020). Improving yield and quality of vegetable grown in paes-contaminated soils by using novel bioorganic fertilizer. Science of The Total Environment, 739, e139883. https://doi.org/10.1016/j.scitotenv.2020.139883

    Article  Google Scholar 

  10. Khodakovskaya, M. V., Kim, B. S., Kim, J. N., Alimohammadi, M., Dervishi, E., Mustafa, T., & Cernigla, C. E. (2013). Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small (Weinheim an der Bergstrasse, Germany), 9(1), 115–123. https://doi.org/10.1002/smll.201201225

    Article  Google Scholar 

  11. Villagarcia, H., Dervishi, E., de Silva, K., Biris, A. S., & Khodakovskaya, M. V. (2012). Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small (Weinheim an der Bergstrasse, Germany), 8(15), 2328–2334. https://doi.org/10.1002/smll.201102661

    Article  Google Scholar 

  12. Saxena, M., Maity, S., & Sarkar, S. (2014). Carbon nanoparticles in ‘biochar’boost wheat (Triticum aestivum) plant growth. RSC Advances, 4(75), 39948–39954. https://doi.org/10.1039/c4ra06535b

    Article  Google Scholar 

  13. Yang, J. H., Wang, C. L., & Dai, H. L. (2008). Soil agrochemical analysis and environmental monitoring. China Land Press.

  14. Rajkumar, G., Shanmugam, S., Galvâo, M. D. S., Dutra Sandes, R. D., Leite Neta, M. T. S., Narain, N., & Mujumdar, A. S. (2017). Comparative evaluation of physical properties and volatiles profile of cabbages subjected to hot air and freeze drying. LWT-Food Science and Technology, 80, 501–509. https://doi.org/10.1016/j.lwt.2017.03.020

    Article  Google Scholar 

  15. Yvon, M., & Rijnen, L. (2001). Cheese flavour formation by amino acid catabolism. International Dairy Journal, 11(4–7), 185–201. https://doi.org/10.1016/S0958-6946(01)00049-8

    Article  Google Scholar 

  16. Anjanadevi, I. P., John, N. S., John, K. S., Jeeva, M. L., & Misra, R. S. (2015). Rock inhabiting potassium solubilizing bacteria from Kerala, India: Characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology, 56(1), 67–77. https://doi.org/10.1002/jobm.201500139

    Article  Google Scholar 

  17. Lu, Z. F., Lu, J. W., Pan, Y. H., Lu, P. P., Li, X. K., Cong, R. H., & Ren, T. (2016). Physiological mechanisms in potassium regulation of plant photosynthesis. Plant Physiology Journal, 52(12), 1773–1784. https://doi.org/10.13592/j.cnki.ppj.2016.0372

    Article  Google Scholar 

  18. Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C., & Subba Rao, A. (2015). Characterization of zinc oxide nano particles and their effect on growth of Maize (Zea mays L.) plant. Journal of Plant Nutrition, 38(10), 1505–1515. https://doi.org/10.1080/01904167.2014.992536

    Article  Google Scholar 

  19. Lioe, H. N., Apriyantono, A., Takara, K., Wada, K., & Yasuda, M. (2005). Umami taste enhancement of MSG/NaCl mixtures by Subthreshold L-α-Aromatic Amino acids. Journal of Food Science, 70(7), s401–s405. https://doi.org/10.1111/j.1365-2621.2005.tb11483.x

    Article  Google Scholar 

  20. Chen, S., Zhang, R., Hao, L., Chen, W., & Cheng, S. (2015). Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars. PLoS ONE, 10(3), e0119444. https://doi.org/10.1371/journal.pone.0119444

    Article  Google Scholar 

  21. Fross, D. A., Dunstone, E. A., Ramshaw, E. H., & Stark, W. (1962). The flavor of cucumbers. Journal of Food Science, 27(1), 90–93. https://doi.org/10.1111/j.1365-2621.1962.tb00064.x

    Article  Google Scholar 

  22. Palma-Harris, C., McFeeters, R. F., & Fleming, H. P. (2001). Solid-Phase Microextraction (SPME) technique for measurement of generation of fresh cucumber flavor compounds. Journal of Agricultural and Food Chemistry, 49(9), 4203–4207. https://doi.org/10.1021/jf010182w

    Article  Google Scholar 

  23. Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2014). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613–4623. https://doi.org/10.1093/jxb/eru128

    Article  Google Scholar 

  24. Pérez-Tienda, J., Corrêa, A., Azcón-Aguilar, C., & Ferrol, N. (2014). Transcriptional regulation of host transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiology and Biochemistry, 75, 1–8. https://doi.org/10.1016/j.plaphy.2013.11.029

    Article  Google Scholar 

  25. Zahoor, R., Dong, H., Abid, M., Zhao, W., Wang, Y., & Zhou, Z. (2017). Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environmental and Experimental Botany, 137, 73–83. https://doi.org/10.1016/j.envexpbot.2017.02.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fund of China Agriculture Research System (CARS-23-B13), and the National Science and Technology Pillar Program of China (No. 2007BAD87B10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaoting Hu and Yanhua Li should be as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Li, Y., Xu, W. et al. Effect of Nano Potassium Fertilizer on Cucumber Amino Acid Component, Volatile Metabolite Components and GLN Family Genes Expression. Wireless Pers Commun 124, 449–473 (2022). https://doi.org/10.1007/s11277-021-09368-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09368-1

Keywords

Navigation