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Abstract 

The work proposes a new technique to examine and reduce the unusual memory effects 

in digital filters with saturation nonlinearity when external interference is present via strict 

passivity approach. Novel criterion is given to show the performance of Hankel norm in 

interfered digital filters by using strict passivity approach. The unusual behaviour of digital 

filters about previous excitations can be checked by using this proposed criterion. Given criterion 

ensures the asymptotic stability nature when there is no external input. The dominance of the 

proposed method is represented by a mathematical example.  

Keywords: Digital filter, External interference, Hankel norm performance, Linear matrix 

inequality, Saturation nonlinearities, Strict passivity 

1. Introduction 

Since, last decades have shown the research importance in the field of signal processing 

digitally which leads to widespread investigation about the properties and behavior of digital 

filters [1]. Finite word length slows the performance while realizing the digital filters using any 

digital signal-based processors. Nonlinearities such as, quantization and overflow seem to 

happen when several signals are converted in discrete time systems using fixed point arithmetic, 
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which may lead to limit cycles owing to self-sustained oscillations. Limit cycles results in 

instability of the filter [2-7].  

While implementing a complex multi order digital filter on hardware (digital), it is 

usually made by combining numerous digital filters of low order. Due to this state in the system, 

there occurs external interference which results in instability and degrades the performance [8, 

9]. Thus, several results have been reported based on stability of digital filters with overflow 

nonlinearities when external disturbance is present [10-24].  

In general, undesired response of systems results in ringing due to past excitations. 

Ringing seems to appear in several electronic systems, mainly due to noise signals (e.g., 

oscillatory nature in digital filters, parasitic inductance and capacitance in electronics circuits). 

Regular monitoring of the systems should be done in the system in order to clear the ringing 

effects as it may result in performance degradation or malfunction. In electro-mechanical system, 

sudden change in parasitic components to resonate creates ringing effect. In audio systems, too 

much feedback oscillation results in ringing. Ringing in the system usually stores the energy and 

yields memory effects which is undesired when applied external inputs. Hence, ringing can be 

computed based on performance of Hankel norm in the system. Therefore, Hankel norm 

performance quantifies the unwanted memory effects which appears in the past with external 

inputs on future outputs [24, 25]. 

The basic concepts in the study of dynamical system are energy dissipation and 

consumption. Passivity symbolizes the energy consumption of a system and is used in various 

applications, e.g., electrical, chemical, mechanical, communication systems, etc. Passive systems 

are defined based on supply rate and storage function. The passivity theory provides a good 

method in analyzing the stability, design of complex energy-based systems [26, 27]. Passivity is 
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related to the property of input-output stability that is, if bounded input energy to the system 

yields bounded output energy. Passivity in state-space digital filters via saturation nonlinearity 

with external interference has been discussed in [19-23].  

This work proposes a new method to quantify the unwanted memory effects in digital 

filters along with saturation nonlinearity via passivity approach based on the performance of 

Hankel norm. A new criterion based on performance of Hankel norm in digital filters is attained 

with saturation nonlinearity via passivity approach. Given proposed criterion in digital filters can 

examine and reduce the unwanted memory effects which appears in the past with external inputs 

on future outputs. Along with the presented criterion, improvement of the given result can be 

done by using the diagonally dominant matrix approach based on Hankel norm performance, 

which are given as remarks. The attained criterion ensures the stability as well as asymptotic 

stability when there is no external input in digital filter. The result given in this paper are novel, 

which is based on memory effect and passivity approach.  

The arrangement of the work is given as follows: Section 2 brought out the details about 

system taken for analysis trailed by criterion obtained for the stability of fixed-point digital filters 

with Hankel norm performance via passivity approach. Mathematical example is given in 

Section 3 to prove the dominance of the given proposed result. Section 4 presents conclusion of 

the paper.  

2. System Description for Hankel norm analysis 

The system under consideration of digital filter is   

 ( 1) ( ( )) ( )k k k        

  1 1 2 2( ( )) ( ( )) ( ( ))
T

n n
k k k      L  
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  1 2( ) ( ) ( )
T

n
k k k   L , (1) 

  1 2( ) ( ) ( ) ( )
T

n
k k k k   L ( ),r S  (2) 

 1 2( ) ( ) ( ) ( )
T

pk k k k    L= ( ),r F   (3) 

where ( ) n
k R  represents the state vector, ( ) p

k R  denotes the linear combination vector of 

the states,  ( ) n
k R  indicates the external disturbance, a coefficient matrix S  n nR , and 

known matrix 
p nF R . For, saturation nonlinearities ( ( ))i i k   which are given as   

 

1, ( ) 1

( ( )) ( ), 1 ( ) 1

1, ( ) 1

i

i i i i

i

k

k k k

k


   




   
   

,          i=1, 2, …, n.     (4) 

 For a given 0   and for time 0K   the present work aims to find a stability criterion 

for the given system (1)-(3)   

 
1

2

0

( ) ( ) ( ) ( )
K

T T

k K k

k k k k
 

 

     , (5) 

with initial conditions as zero, when ( )r  0w . The digital filter has performance based on 

Hankel norm for   if (5) is fulfilled. Condition given in (5) used to define effects which appears 

in the past with external inputs on the future output states for the system defined by (1)-(3).  

For the strict passive system, the condition follows as 

 
0 0

( ) ( ) ( ( ))
K K

T

k k

k k k 
 

     ,  0K  ,  (6) 

where   is nonnegative constant and ( ( ))k   is a positive semi-definite storage function. 

Theorem 1. Given 0  , suppose if there exist n n  positive definite symmetric matrices 

J and G , a positive definite diagonal matrix L  and positive scalars 0  , 1 0  such that 
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 J < K  (7) 

 

2

1

2

2  <

1
( ) 1

2

T T T 



  

       
  
 
         

0

S S J S L S

LS P I L J

S J J I

,  (8) 

 
1 2

T T T


 
   

0
S S + F F Q S L

LS G I L
,  (9) 

then the digital filter (1)-(3) is strictly passive with Hankel norm performance  . 

Proof. By choosing a Lyapunov function of quadratic as  

 ( ( )) ( ) ( )T
k k kB J   . (10) 

The first difference of (10) is specified by  

 ( ( )) ( ( 1)) ( ( ))k k k   B B B    

 =[ ( ( )) ( )] [ ( ( )) ( ))]T
k k k k J      ( ) ( )T

k k J   

 = ( ( )) ( ( ))T
k kJ    ( ( )) ( )T

k k J   ( ) ( ( ))T
k k J     

 ( ) ( )T
k k J  ( ) ( )T

k k J  . (11) 

Then, for a positive scalar  , we have 

 [ ( ) ( ) ( ( )) ( ( ))] 0T T
k k k k           (12) 

 [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ( ))] 0T T T T T T T
k k k k k k k k k k     S S S S            . (13) 

Adding and subtracting ( ) ( )T k k     and by using (13), (11) can be rewritten as 

 ( ( ))k B  ( ( )) ( ( ))T
k kJ    ( ( )) ( )T

k k  J ( ) ( ( ))T
k k J   ( ) ( )T

k k J   

  ( ) ( )T
k k J  ( ) ( )T

k k S ( ) ( )T
k k  2 ( ( )) ( )T

k k   LS  
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  2 ( ( )) ( )T
k k L   2 ( ( )) ( ( ))T

k k L    + ( ) ( )T T
k k S S   

  ( ) ( )T T
k k S  ( ) ( )T

k k S  ( ) ( )T
k k    

  ( ( )) ( ( ))T
k k J    ( )k  

=

2

1

( ) 2

( ( )) 2   

( ) 1
( ) 1

2

T T T
T

k

k

k

 



  

                             


 


S S J S L S

LS P I L J

S J J I

 

 

( )

( ( ))

( )

k

k

k

 
  
  


 


2( ) ( ) ( ) ( ) ( )T T
k k k k k       ,  (14) 

where  ( ) = 2 ( ( )) ( ) ( ( ))T
r k k k L     . It may be observed that ( )r  is nonnegative with 

respect to (4). Let us split the available storage function as ( ( ))rB x  and 
1
( ( ))rB x  which 

represents past and future output-based energy for the state ( (0))B   [25]. 

 Given LMI (8) is fulfilled, we have 

 
2( ( )) < ( ) ( )T

r k kB x   . (14) 

Sum on both the sides of (14) from 0 to 1K  gives                                         

 
1 1

2

0 0

( ( )) ( ( )) ( (0)) = ( ( )) ( ) ( )
K K

T

k r

k K K k k
 

 

   B = B B B      .  (15) 

 If LMI (8) is satisfied, we have  

 1
( ( )) < ( ) ( )T

k k kB     

Sum on both the sides of (15) from 0 to K gives                                         

 
1 1 1

0 0

( ( )) ( ( )) ( (0)) ( ) ( )
K K

T

K k

k K k k
 

   B = B B     .  (16) 
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Let us assume 
1( (0))  B  . Then, 

 
1

0

( ) ( ) ( ( ))
K

T

k

k k k


 w y B x   (17) 

holds true since  1( ( )) 0k B  . The given relation (17) satisfies (6) and, hence the digital 

filter (1)-(3) is supposed to be strict passive with external interference ( )rw  to the output ( )ry . 

On the other hand, consider ( ) =r 0w , r K  . 

Choose 

 ( ( )) ( ) ( )T
k k kW G   . (18) 

The first difference of (18) is specified by  

 ( ( )) ( ( 1)) ( ( ))k k k   W W W    

 =[ ( ( )) ( )] [ ( ( )) ( )]T
k k k k G      T

k k ( ) ( )G   

 = ( ( )) ( ( ))T
k k   G T

k k ( ) ( )G  . (19) 

Then, for a positive scalar 1 , we have 

 1[ ( ) ( ) ( ( )) ( ( ))] 0T T
k k k k           (20) 

 1[ ( ) ( ) ( ( )) ( ( ))] 0T T T T
k k k k       S S . (21) 

Using (21), (19) can be rewritten as 

 ( ( ))k W  ( ( )) ( ( ))T
k k   G ( ) ( )T

r r x G x ( ) ( )T
k k S ( ) ( )T

k k   

  +
1 ( ) ( )T T

k k  S S 1
( ( )) ( ( ))T T

k k     ( ) ( )T T
k k F F  

 ( ( ))kW  = 1

1

(

( ( ))

T T Tk +

k




  
      

) 0

0


 

S S G F F

G I

(

( ( ))

k

k

 
  
 

)
 

( ) ( )T
k k  ,  (22) 

Given LMI (9) is fulfilled, we have 



8 

 ( ( ) < ( ) ( )T
k k k )W    . (23) 

Sum on both the sides of (23) from K  to gives                                         

 ( ) ( ) < ( ( ) ( ( )) ( ( )) = ( ( ))T

r k

k k k K K




   )W = W W W       (24) 

 
1

2

1

0 0

( ) ( ) ( ( )) < ( ( )) < ( ( )) ( ) ( ) ( ) ( )
K K

T T T

r k r r

k k K K K k k k k 
 

  

            < W V V ,  (25) 

which satisfies (5) and (6). Therefore, the digital filter from (1)-(3) is said to be as Hankel norm 

performance and strictly passive. This completes Theorem 1 proof. 

Remark 1. Criterion in Theorem 1 is given in the form of Linear Matrix inequality (LMI)s and, 

hence, convex optimization procedures [28, 29] are used to fix a feasible solution to the obtained 

LMIs.  

Remark 2. To reduce the potential conservatism of Theorem 1, the diagonally dominant matrix 

approach used in [11] can be applied.  

Remark 3. Theorem 1 ensures absence of overflow oscillations when interference is present in 

digital filters with Hankel norm performance via strict passive approach. Further, it also shows 

the asymptotic stability nature without external interference. 

Remark 4. In the realization of a digital filter, it is generally needed to choose a filter structure 

which does not exhibit limit cycles and delivers acceptable performance. Further, the work can 

be extended for multidimensional [30] systems which seems to be near future effort. 

 

3. Illustrative examples  

Consider the subsequent example to confirm the superiority of the proposed result. 

Example 1. For simulation analysis, a digital filter (1)-(3) is considered with 
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0.4 0.6

0.12 0.2

 
  
 

S ,
0.01 0

0 0.01

 
  
 

F ,
sin(0.5 )

( ) 0.1
cos( )

k
k

k

 
  

 
 , 0.45  . (26) 

With the assistance of LMI toolbox in MATLAB [19, 20] one will be able to verify that given 

example for (8) and (9) has feasible values of unknown parameters.  

 
0.2895 0.0328

0.0328 0.3805

 
   

J , 
0.0634 0

0 0.1952

 
  
 

L ,   (27) 

 
10.2583 1.2651

1.2651 11.6411

 
   

G , 0.5920  , 1 16.4203   .
 

 (28) 

Therefore, the it is stable system with 0.45   in view of Theorem 1. Let K = 50, apply 

the external input for the time bound [0, 99] and do not exceed the bound. First and second 

components of ( )k are given in Figures 1 and 2 respectively, when ( )k  for 0 100k    and 

 ( ) 0 0
T

k   100k   is applied with external input when initial condition as zero. ( )k  for 

100k   denotes the memory effect in digital filter. Then, we attain  

 

200

100

99

0

( ) ( )

0.0907

( ) ( )

T

k

T

k

k k

k k

 

 









,  (29) 

which is under the given level. Thus, the performance based on Hankel norm is simulated and 

verified. Asymptotically stable nature of the digital filter without the external input  is shown in 

Figures 1 and 2. 
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Figure 1. Memory effect of  
1( )z k  for Example 1 

 

Figure 2. Memory effect of 
2 ( )z k  for Example 1 

4. Conclusion 

The proposed work discusses the performance based on Hankel norm in digital filters via 

strict passivity approach. Novel LMI criterion describing the performance of Hankel norm in 
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interfered digital filters via strict passivity approach are presented. By means of the obtained 

criterion in digital filters, it is easy to reduce the unwanted memory effects. The asymptotic 

stability property for digital filter when there is no external input are discussed. The worthful 

ness of the attained result is shown via mathematical example.  
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