Skip to main content
Log in

Magnetodielectric Nanocomposite Antenna for Triple Band Including 5G

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An innovative magnetodielectric nanocomposite antenna is proposed for enhancing antenna parameters of monopole radiator by coplanar waveguide (CPW) feeding. A magnetodielectric nanocomposite radiator works in triband that covers the frequency band in WLAN, WiMAX and 5G. This compact antenna incorporates three radiating elements, whose total width is only 35% width of signal strip and length of the longer monopole is only 0.18 wavelength at its resonance frequency. To obtain a good impedance bandwidth for the triple band operation, two narrow rectangular patches (4 × 2 mm2, 4.5 × 1.5 mm2) are embedded in the two radiating elements of antenna. Carbon-coated cobalt (CCo) in coalesce with polyaniline (PANI) results in a magnetodielectric polymer-based nanocomposite. To enhance the antenna parameter the ‘L’ shaped slot upright to CPW ground, which is filled with PANI/CCo magnetodielectric nanocomposite. The resulting antenna produce good 10-dB impedance bandwidth of 0.43 GHz (2.30–2.73 GHz), 0.41 GHz (3.35–3.76 GHz) and 0.94 GHz (5.02–5.96 GHz) for entire WLAN/WiMAX bands are covered, 2.3–2.4 GHz inclusively 2.5–2.69 GHz 5G bands and 82% band width of 3.3–3.8 GHz 5G band are also included along with good radiation characteristics for entire triple band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

References

  1. Lee, J. N., Kim, J. H., Park, J. K., & Kim, J. S. (2009). Design of dual-band antenna with U-shaped open stub for WLAN/UWB applications. Microwave and Optical Technology Letters, 51(2), 284–289. https://doi.org/10.1002/mop.24033

    Article  Google Scholar 

  2. Koo, T. W., Kim, D., Ryu, J. I., Kim, J. C., & Yook, J. G. (2011). A coupled dual-u-shaped monopole antenna for WiMAX triple-band operation. Microwave and Optical Technology Letters, 53(4), 745–748. https://doi.org/10.1002/mop.25842

    Article  Google Scholar 

  3. Kshetrimayum, R. S. (2009). Printed double-T monopole antennas for triband applications. Microwave and Optical Technology Letters, 51(7), 1640–1642. https://doi.org/10.1002/mop.24446

    Article  Google Scholar 

  4. Kuo, Y. L., & Wong, K. L. (2003). Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations. IEEE Transactions on Antennas and Propagation, 51(9), 2187–2192. https://doi.org/10.1109/TAP.2003.816391

    Article  Google Scholar 

  5. Du, C., Li, X., & Zhong, S. (2019). Compact liquid crystal polymer based tri-band flexible antenna for WLAN/WiMAX/5G applications. IEEE Access. https://doi.org/10.1109/access.2019.2941212

    Article  Google Scholar 

  6. Gu, J., Zhong, S., Xue, L., & Sun, Z. (2008). Dual-band monopole antenna with L-shaped strips for 2.4/5 GHz WLAN applications. Microwave and Optical Technology Letters, 50(11), 2830–2833. https://doi.org/10.1002/mop

    Article  Google Scholar 

  7. Jo, S., Choi, H., Shin, B., Oh, S., & Lee, J. (2014). A CPW-fed rectangular ring monopole antenna for WLAN applications. International Journal of Antennas and Propagation, 2014, 1–6. https://doi.org/10.1155/2014/951968

    Article  Google Scholar 

  8. Yu, K., Liu, X. (2017). Design of tri-band antenna with rectangular ring for WLAN and WiMAX application. (pp. 1–3). https://doi.org/10.1109/APCAP.2017.8420552.

  9. Yoon, J. H. (2006). Fabrication and measurement of rectangular ring with open-ended CPW-fed monopole antenna for 2.4/5.2-GHz WLAN operation. Microwave and Optical Technology Letters, 48(8), 1480–1483. https://doi.org/10.1002/mop.21736

    Article  Google Scholar 

  10. Chandan, Bharti, G., Srivastava, T., & Rai, B. S. (2018). Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless LAN applications. AIP Conference Proceedings, 1952, 1–8. https://doi.org/10.1063/1.5031999

    Article  Google Scholar 

  11. Liu, W. C., & Wu, C. M. (2006). CPW-fed shorted F-shaped monopole antenna for 5.8-GHz RFID Application. Microwave and Optical Technology Letters, 48(3), 573–575. https://doi.org/10.1002/mop.21410

    Article  Google Scholar 

  12. Liu, H., Member, S., Ku, C., & Yang, C. (2010). Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications. IEEE Antennas and Wireless Propagation Letters, 9, 240–243. https://doi.org/10.1109/LAWP.2010.2044860

    Article  Google Scholar 

  13. Saraswat, R. K., Dubey, S., Singh, K. J., Sharma, N., & Kachhawa, V. (2018). Design of multi-band octagonal shape patch antenna for WLAN/WiMAX applications, in 2018 8th international conference on communication systems and network technologies designs (pp. 21–24). https://doi.org/10.1109/CSNT.2018.05.

  14. Kumar, G., Jain, S., Sharma, M.D., & Yadav, A. (2020). Designing of triple band rejection CPW feed circular UWB antenna. Department of Electronics and Communication, Global Institute of Technology, Jaipur, India.

  15. Pei, J., Wang, A. G., Gao, S., & Leng, W. (2011). Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 10, 298–301. https://doi.org/10.1109/LAWP.2011.2140090

    Article  Google Scholar 

  16. Chen, H. D., & Chen, H. T. (2004). A CPW-fed dual-frequency monopole antenna. IEEE Transactions on Antennas and Propagation, 52(4), 978–982. https://doi.org/10.1109/TAP.2004.825620

    Article  Google Scholar 

  17. Fan, S. T., Yin, Y. Z., Hu, W., Song, K., & Li, B. (2012). Novel CPW-FED printed monopole antenna with an n-shaped slot for dual-band operations. Microwave and Optical Technology Letters, 54(1), 240–242. https://doi.org/10.1002/mop.26475

    Article  Google Scholar 

  18. Chen, H., Yang, X., Yin, Y. Z., Fan, S. T., & Wu, J. J. (2013). Triband planar monopole antenna with compact radiator for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 1440–1443. https://doi.org/10.1109/LAWP.2013.2287312

    Article  Google Scholar 

  19. Wei, H., Jian-Jun, W., Zheng, S.-F., & Ren, J. (2016). Compact ACS-fed printed antenna using dual edge resonators for tri-band operation. IEEE Antennas and Wireless Propagation Letters, 15, 207–210. https://doi.org/10.1109/LAWP.2015.2480799

    Article  Google Scholar 

  20. Gautam, A. K., Kumar, L., Kanaujia, B. K., & Rambabu, K. (2016). Design of compact F-shaped slot triple-band antenna for WLAN/WiMAX applications. IEEE Transactions on Antennas and Propagation, 64(3), 1–6. https://doi.org/10.1109/TAP.2015.2513099

    Article  Google Scholar 

  21. Liu, T., & Sun, Y. (2019). CPW-fed compact multiband monopole antenna for WLAN/WiMAX application. In 2019 IEEE MTT-S international wireless symposium (pp. 1–3). https://doi.org/10.1109/IEEE-IWS.2019.8804075.

  22. El Kamchi, N., Belaabed, B., Wojkiewicz, J. L., Lamouri, S., & Lasri, T. (2013). Hybrid polyaniline/nanomagnetic particles composites: High performance materials for EMI shielding. Journal of Applied Polymer Science, 127(6), 4426–4432. https://doi.org/10.1002/app.38036

    Article  Google Scholar 

  23. Rmili, H., Miane, J. L., Zangar, H., & Olinga, T. (2006). Design of microstrip-fed proximity-coupled conducting-polymer patch antenna. Microwave and Optical Technology Letters, 48(4), 655–660. https://doi.org/10.1002/mop.21435

    Article  Google Scholar 

  24. Zahir, H., et al. (2016). Design fabrication and characterisation of polyaniline and multiwall carbon nanotubes composites-based patch antenna. IET Microwaves, Antennas and Propagation, 10(1), 88–93. https://doi.org/10.1049/iet-map.2015.0211

    Article  Google Scholar 

  25. Kaufmann, T., Verma, A., Truong, V.-T., Weng, B., Shepherd, R., & Fumeaux, C. (2012). Efficiency of a compact elliptical planar ultra-wideband antenna based on conductive polymers. International Journal of Antennas and Propagation, 2012, 1–11. https://doi.org/10.1155/2012/972696

    Article  Google Scholar 

  26. Chen, S.J., Fumeaux, C., Talemi, P., Chivers, B. and Shepherd, R. (2016). Progress in conductive polymer antennas based on free-standing polypyrrole and PEDOT: PSS. In 2016 17th international symposium on antenna technology and applied electromagnetics (ANTEM) (pp. 1–4). IEEE

  27. Verma, A., Fumeaux, C., Truong, V. T., & Bates, B. D. (2009). A 2 GHz polypyrrole microstrip patch antenna on Plexiglas™ substrate. In 2009 asia pacific microwave conference (pp. 36–39). IEEE.

  28. Verma, A., Fumeaux, C., Truong, V. T., & Bates, B. D. (2010). Effect of film thickness on the radiation efficiency of a 4.5 Ghz polypyrrole conducting polymer patch antenna. In 2010 asia-pacific microwave conference (pp. 95–98). IEEE.

  29. Oueiny, C., Berlioz, S., & Perrin, F. X. (2014). Carbon nanotube-polyaniline composites. Progress in Polymer Science, 39(4), 707–748. https://doi.org/10.1016/j.progpolymsci.2013.08.009

    Article  Google Scholar 

  30. Hamouda, Z., Wojkiewicz, J. L., Pud, A. A., Kone, L., Bergheul, S., & Lasri, T. (2018). Magnetodielectric nanocomposite polymer-based dual-band flexible antenna for wearable applications. IEEE Transactions on Antennas and Propagation, 66(7), 3271–3277. https://doi.org/10.1109/TAP.2018.2826573

    Article  MATH  Google Scholar 

  31. Kainz, Q. M., et al. (2014). Synthesis of functionalized, dispersible carbon-coated cobalt nanoparticles for potential biomedical applications. Faraday Discussions, 175, 27–40. https://doi.org/10.1039/c4fd00108g

    Article  Google Scholar 

  32. Yan, B., Sheng, W., Cui, J., & Lu, J. (2019). Compact wideband CPW-fed tri-band antenna with multi-shaped strips for WLAN/WiMAX applications. In Proceedings of the 49th European microwave conference.

  33. Ma, Z., Yang, S., & Fang, Z. (2020). Design of a high gain tri-band antenna based on the polygonal outer frame nested thunderbolt branch and AMC reflector. In International conference on communication technology proceedings, ICCT, vol. 2020-Oct (pp. 867–870). https://doi.org/10.1109/ICCT50939.2020.9295835.

  34. Kumar, R., & Kamatham, Y. (2019). Compact tri-band monopole antenna for 2.4/5.8 GHz WLAN and 8.3 GHz ITU-T applications. In ICECCT.

  35. Awan, W. A., Naqvi, S. I., Hussain, N., Zaidi, A., Naqvi, A. H., & Hameed, A. (2020). Electrically small frequency reconfigurable antenna for heterogeneous applications. In 2020 international conference on UK-China emerging technologies (UCET) (pp. 1–3). IEEE.

  36. Maity, B., & Nayak, S. K. (2020). Wideband CPWfed U-shaped antenna array for WLAN and WiMAX applications. In 2020 11th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–4). IEEE.

Download references

Funding

No fund received for this project.

Author information

Authors and Affiliations

Authors

Contributions

All authors are approved for this work.

Corresponding author

Correspondence to Abhilash S. Vasu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasu, A.S., Sreeja, T.K. Magnetodielectric Nanocomposite Antenna for Triple Band Including 5G. Wireless Pers Commun 129, 1161–1173 (2023). https://doi.org/10.1007/s11277-023-10181-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10181-1

Keywords

Navigation