Skip to main content

Advertisement

Log in

A Review of Design Consideration, Challenges and Technologies Used in 5G Antennas

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The telecommunications industry is one of the fastest growing sector. Technological upgradation is required every year to provide better service quality, coverage and capacity and providing more new features. Fifth generation (5G) is the most recent mobile generation that will offer high-speed internet and data services, minimal-latency services, reliable connections, ultra-high resolution multimedia services, and access to billions of devices which leads to possible the applications such as fully automated production industries, driverless autonomous car, tele-surgery and many more. 5G mobile networks will provide better service quality, coverage and capacity. Larger bandwidth is necessary to provide high data rate services. Due to a lack of frequency spectrum, the currently utilized microwave band is incapable of meeting the 5G objective. So, while the mm-Wave spectrum has a huge number of frequency bands available, high link loss and environmental absorptions are key limits that may be solved by constructing a wide band antenna with high gain, high efficiency, and a steerable narrow radiating beam. The most crucial component of a wireless communication system is the antenna, which transmits and receives radio waves. Microstrip antennas are popular for a variety of applications because to their small size, light weight, low profile, and simple fabrication, but they have some limitations, including low radiation efficiency, low gain, restricted bandwidth, and others. There are several problems and major issues that have yet to be resolved. To attain high performance, low cost, and planar layout, upcoming 5G technology necessitates certain alterations in standard antenna design methodologies. The objective of this study is to address 5G antenna design challenges and barriers, as well as to identify research gaps in this area. It will also cover possible antenna technologies used in antenna design, a review of some recently created antenna solutions, and performance comparisons. To attain the higher performance necessary for 5G and to solve design difficulties, many approaches such as massive MIMO, electromagnetic band gap, substrate integrated waveguide, metamaterials, metasurface, artificial magnetic conductor, dielectric superstrate, butler matrix, and others have been used in 5G antennas. Every approach has advantages and disadvantages, which are explained in this paper. By appropriately combining these strategies, one may obtain the requisite antenna performance for 5G. A review of current developments in 5G antennas based on these approaches is reviewed, along with their merits and limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Not applicable

Code availability

(software application or custom code): Not Applicable.

References

  1. A White Paper on Enabling 5 G in India. (2019). TRAI.

  2. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349. https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  3. Habaebi, M. H., Janat, M., & Rafiqul, I. M. (2018). Beam steering antenna array for 5G telecommunication systems applications. Progress In Electromagnetics Research M, 67, 197–207. https://doi.org/10.2528/PIERM17091802

    Article  Google Scholar 

  4. O’Hara, J. F., Ekin, S., Choi, W., & Song, I. (2019). A Perspective on terahertz next-generation wireless communications. Technologies, 7(2), 43. https://doi.org/10.3390/technologies7020043

    Article  Google Scholar 

  5. Hong, W., Baek, K. H., Lee, Y., Kim, Y., & Ko, S. T. (2014). Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69. https://doi.org/10.1109/MCOM.2014.6894454

    Article  Google Scholar 

  6. Kumar, S., Dixit, A. S., Malekar, R. R., Raut, H. D., & Shevada, L. K. (2020). Fifth generation antennas: A comprehensive review of design and performance enhancement techniques. IEEE Access, 8, 163568–163593. https://doi.org/10.1109/ACCESS.2020.3020952

    Article  Google Scholar 

  7. Uchendu, I., & Kelly, J. (2016). Survey of beam steering techniques available for millimeter wave applications. Progress In Electromagnetics Research B, 68, 35–54. https://doi.org/10.2528/PIERB16030703

    Article  Google Scholar 

  8. Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195. https://doi.org/10.1109/MCOM.2014.6736761

    Article  Google Scholar 

  9. Sazegar, M., Zheng, Y., Kohler, C., Maune, H., Nikfalazar, M., Binder, J. R., & Jakoby, R. (2012). Beam steering transmitarray using tunable frequency selective surface with integrated ferroelectric varactors. IEEE Transactions on Antennas and Propagation, 60(12), 5690–5699. https://doi.org/10.1109/TAP.2012.2213057

    Article  Google Scholar 

  10. Askari, G., & Kamarei, M. (2017). Frequency and time domain design, analysis and implementation of a multi-gbps uwb wilkinson power divider for 5g new spectrum and CAR applications. Progress In Electromagnetics Research B, 77, 103–116. https://doi.org/10.2528/PIERB17042204

    Article  Google Scholar 

  11. Abdo, Y., Chaharmir, M. R., Shaker, J., & Antar, Y. M. M. (2013). Detailed study of millimeter wave EBG guide: Broadbanding techniques, modal structure, and crosstalk behavior. Progress In Electromagnetics Research B, 50, 141–156. https://doi.org/10.2528/PIERB13022010

    Article  Google Scholar 

  12. Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J., Kim, Y., & Aryanfar, F. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113. https://doi.org/10.1109/MCOM.2014.6736750

    Article  Google Scholar 

  13. Gandhi, O. P., & Riazi, A. (1986). Absorption of millimeter waves by human beings and its biological implications. IEEE Transactions on Microwave Theory and Techniques, 34(2), 228–235. https://doi.org/10.1109/TMTT.1986.1133316

    Article  Google Scholar 

  14. Zhadobov, M., Chahat, N., Sauleau, R., Le Quement, C., & Le Drean, Y. (2011). Millimeter-wave interactions with the human body: State of knowledge and recent advances. International Journal of Microwave and Wireless Technologies, 3(2), 237–247. https://doi.org/10.1017/S1759078711000122

    Article  Google Scholar 

  15. Zhou, H., & Aryanfar, F. (2013). Millimeter-wave open ended SIW antenna with wide beam coverage. In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (pp. 658–659). https://doi.org/10.1109/APS.2013.6710989

  16. Mohajer, M., Faraji-Dana, M., & Safavi-Naeini, S. (2014). Effects of resonance-based phase shifters on Ka-band phased array antenna performance for satellite communications. Progress In Electromagnetics Research B, 60, 259–274. https://doi.org/10.2528/PIERB14060906

    Article  Google Scholar 

  17. Khalily, M., Tafazolli, R., Xiao, P., & Kishk, A. A. (2018). Broadband mm-wave microstrip array antenna with improved radiation characteristics for different 5G applications. IEEE Transactions on Antennas and Propagation, 66(9), 4641–4647. https://doi.org/10.1109/TAP.2018.2845451

    Article  Google Scholar 

  18. Mao, C. X., Khalily, M., Xiao, P., Brown, T. W. C., & Gao, S. (2019). Planar sub-millimeter-wave array antenna with enhanced gain and reduced sidelobes for 5G broadcast applications. IEEE Transactions on Antennas and Propagation, 67(1), 160–168. https://doi.org/10.1109/TAP.2018.2874796

    Article  Google Scholar 

  19. Khalily, M., Tafazolli, R., Rahman, T. A., & Kamarudin, M. R. (2016). Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 15, 1305–1308. https://doi.org/10.1109/LAWP.2015.2505781

    Article  Google Scholar 

  20. Khalily, M., Tafazolli, R., Rahman, T. A., & Kamarudin, M. (2016). Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 15, 1305–1308.

    Article  Google Scholar 

  21. Roy, P., Vishwakarma, R. K., Jain, A., & Singh, R. (2016). Multiband millimeter wave antenna array for 5G communication. In 2016 International Conference on Emerging Trends in Electrical Electronics Sustainable Energy Systems (ICETEESES) (pp. 102–105). https://doi.org/10.1109/ICETEESES.2016.7581361

  22. Huang, H.-C. (2018). Overview of antenna designs and considerations in 5G cellular phones. In 2018 International Workshop on Antenna Technology (iWAT) (pp. 1–4). https://doi.org/10.1109/IWAT.2018.8379253

  23. Sanyog Rawat Tapan Nahar. (2021). Survey of 5G antenna for industrial automation applications. In Recent trends in Sciences, Engineering and Social Sciences (pp. 19–33). Manipal University Jaipur.

  24. Nahar, T., & Rawat, S. (2021). Survey of various bandwidth enhancement techniques used for 5G antennas. International Journal of Microwave and Wireless Technologies. https://doi.org/10.1017/S1759078720001804

    Article  Google Scholar 

  25. Liu, Q., Mkongwa, K. G., & Zhang, C. (2021). Performance issues in wireless body area networks for the healthcare application: A survey and future prospects. SN Applied Sciences, 3(2), 155. https://doi.org/10.1007/s42452-020-04058-2

    Article  Google Scholar 

  26. Ghanmi, A., Varsier, N., Hadjem, A., Conil, E., Picon, O., & Wiart, J. (2013). Study of the influence of the laterality of mobile phone use on the SAR induced in two head models. Comptes Rendus Physique, 14(5), 418–424. https://doi.org/10.1016/j.crhy.2013.02.007

    Article  Google Scholar 

  27. Samineni, P., Khan, T., & De, A. (2017). Modeling of electromagnetic band gap structures: A review. International Journal of RF and Microwave Computer-Aided Engineering, 27(2), e21055. https://doi.org/10.1002/mmce.21055

    Article  Google Scholar 

  28. Babu, N., Ansari, A. Q., Gangwar, D., Kanaujia, B., Kumar, S., & Gupta, S. (2022). Dual-band circularly-polarized EBG-based antenna for Wi-MAX/WLAN/ISM band applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09951-0

    Article  Google Scholar 

  29. Padhi, S. K., & Bialkowski, M. E. (2003). A microstrip yagi antenna using EBG structure. Radio Science. https://doi.org/10.1029/2002RS002697

    Article  Google Scholar 

  30. ITU-R. (2015). Studies on frequency-related matters for International Mobile Telecommunications identification including possible additional allocations to the mobile services on a primary basis in portion (s) of the frequency range between 24. 25 and 86 GHz for the. World Radiocommunication Conference, 238, 25–27.

    Google Scholar 

  31. Alheety, A., Islam, M., Rashid, A., Fadil, A., & Arabian, F. (2020). Performance evaluation of wireless data traffic in mm wave massive MIMO communication. Indonesian Journal of Electrical Engineering and Computer Science. https://doi.org/10.11591/ijeecs.v20.i3.pp1342-1350

    Article  Google Scholar 

  32. Xu, H.-X., Tang, S., Sun, C., Li, L., Liu, H., Yang, X., & Sun, Y. (2018). High-efficiency broadband polarization-independent superscatterer using conformal metasurfaces. Photonic Research, 6(8), 782–788. https://doi.org/10.1364/PRJ.6.000782

    Article  Google Scholar 

  33. Senthilkumar, S., Surendar, U., Christina, X. S., & William, J. (2022). A compact phased array antenna for 5G MIMO applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-10037-0

    Article  Google Scholar 

  34. Verma, A., Arya, R. K., & Nallanthighal, R. (2022). Wireless personal communications metasurface superstrate beam steering antenna with AMC for 5G/WiMAX/WLAN applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09993-4

    Article  Google Scholar 

  35. Dey, S., Kiran, N. S., & Dey, S. (2020). SIW butler matrix driven beam scanning array for millimeter wave 5G communication. In 2020 IEEE Asia-Pacific Microwave Conference (APMC) (pp. 709–711). https://doi.org/10.1109/APMC47863.2020.9331670

  36. Wang, Z., Dai, X., & Sun, W. (2020). Tri-beam slot antenna array based on substrate integrated waveguide (SIW) technology. International Journal of Microwave and Wireless Technologies, 12(3), 246–251. https://doi.org/10.1017/S1759078719001260

    Article  Google Scholar 

  37. Wan, W., Wang, Q., & Ye, T. (2019). Research of low-profile high performance new AMC antenna for 5G mm-wave AiP application. In 2019 20th International Conference on Electronic Packaging Technology (ICEPT) (pp. 1–4). https://doi.org/10.1109/ICEPT47577.2019.245133

  38. Liu, F., Zhang, Z., Lu, X., Gan, W., Yang, J., & Yang, S. (2020). Design of a Simple Antenna Based on AMC Reflector for Dual Ultra Broadband Applications. In 2020 Asia Conference on Computers and Communications (ACCC) (pp. 25–28). https://doi.org/10.1109/ACCC51160.2020.9347929

  39. Ibrahim, A. A., & Ali, W. A. E. (2021). High gain, wideband and low mutual coupling AMC-based millimeter wave MIMO antenna for 5G NR networks. AEU - International Journal of Electronics and Communications, 142, 153990. https://doi.org/10.1016/j.aeue.2021.153990

    Article  Google Scholar 

  40. Dilli, R. (2022). Hybrid beamforming in 5G nr networks using multi user massive MIMO at FR2 frequency bands. Wireless Personal Communications. Springer US. https://doi.org/10.1007/s11277-022-09952-z

  41. Gharbi, I., Barrak, R., Menif, M., Ribero, J. M., Diallo, A., & Ragad, H. (2019). High gain patch antenna array using dielectric superstrate for the 5G applications. In 2019 IEEE 19th Mediterranean Microwave Symposium (MMS) (pp. 1–4). https://doi.org/10.1109/MMS48040.2019.9157289

  42. Haraz, O. M., Elboushi, A., Alshebeili, S. A., & Sebak, A.-R. (2014). Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks. IEEE Access, 2, 909–913. https://doi.org/10.1109/ACCESS.2014.2352679

    Article  Google Scholar 

  43. Dilli, R. (2020). Analysis of 5G Wireless Systems in FR1 and FR2 Frequency Bands. In 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 767–772). https://doi.org/10.1109/ICIMIA48430.2020.9074973

  44. 5G spectrums and the worldwide gap: Where do regulators stand? (2020). Telecom Review. Retrieved December 9, 2020, from https://www.telecomreview.com/index.php/special-editions/2020/3781-5g-mena-2020

  45. Studies, C. for E. P. (2016). Global 5G spectrum update, (June). Retrieved from https://www.ceps.eu/sites/default/files/imagefield_thumbs/Luigi Ardito CEPS 26102016 BRUXELLES.pdf

  46. Tikhomirov, A., Omelyanchuk, E., & Semenova, A. (2018). Recommended 5G frequency bands evaluation. In 2018 Systems of Signals Generating and Processing in the Field of on Board Communications (pp. 1–5). https://doi.org/10.1109/SOSG.2018.8350639

  47. Wang, Y., Li, J., Huang, L., Jing, Y., Georgakopoulos, A., & Demestichas, P. (2014). 5G mobile: Spectrum broadening to higher-frequency bands to support high data rates. IEEE Vehicular Technology Magazine, 9(3), 39–46. https://doi.org/10.1109/MVT.2014.2333694

    Article  Google Scholar 

  48. Shimodaira, H., Tran, G. K., Sakaguchi, K., & Araki, K. (2015). Investigation on millimeter-wave spectrum for 5G. In 2015 IEEE Conference on Standards for Communications and Networking (CSCN) (pp. 143–148). https://doi.org/10.1109/CSCN.2015.7390435

  49. Diawuo, H. A., & Jung, Y.-B. (2018). Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications. IEEE Antennas and Wireless Propagation Letters, 17(7), 1286–1290. https://doi.org/10.1109/LAWP.2018.2842242

    Article  Google Scholar 

  50. Stanley, M., Huang, Y., Wang, H., Zhou, H., Alieldin, A., & Joseph, S. (2018). A Capacitive coupled patch antenna array with high gain and wide coverage for 5G smartphone applications. IEEE Access, 6, 41942–41954. https://doi.org/10.1109/ACCESS.2018.2860795

    Article  Google Scholar 

  51. Kuo, F.-Y., & Hwang, R.-B. (2014). High-isolation X-band marine radar antenna design. IEEE Transactions on Antennas and Propagation, 62(5), 2331–2337. https://doi.org/10.1109/TAP.2014.2307296

    Article  Google Scholar 

  52. Agarwal, D. S. (2021). Concurrent 60/94 GHz SIR based planar antenna for 5G/MM-wave imaging applications. Wireless Personal Communications, 121, 1–11. https://doi.org/10.1007/s11277-021-08691-x

    Article  Google Scholar 

  53. Deb, P., & De, D. (2022). Sustainable spectrum allocation strategy for 5G mobile network. Wireless Personal Communications, 125, 1–24. https://doi.org/10.1007/s11277-022-09738-3

    Article  Google Scholar 

  54. Ojaroudiparchin, N., Shen, M., Zhang, S., & Pedersen, G. F. (2016). A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals. IEEE Antennas and Wireless Propagation Letters, 15, 1747–1750. https://doi.org/10.1109/LAWP.2016.2532607

    Article  Google Scholar 

  55. Asma, K., Wakrim, L., Saida, I., & Hassani, M. (2022). Beam-steerable ultra-wide-band miniaturized elliptical phased array antenna using inverted-L-shaped modified inset feed and defected ground structure for 5G smartphones millimeter-wave applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09737-4

    Article  Google Scholar 

  56. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., & Zhang, J. C. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082. https://doi.org/10.1109/JSAC.2014.2328098

    Article  Google Scholar 

  57. Yassin, M. E., Mohamed, H. A., Abdallah, E. A. F., & El-Hennawy, H. S. (2019). Single-fed 4G/5G multiband 2.4/5.5/28 GHz antenna. IET Microwaves, Antennas and Propagation, 13(3), 286–290. https://doi.org/10.1049/iet-map.2018.5122

    Article  Google Scholar 

  58. Yu, B., Yang, K., Sim, C.-Y.-D., & Yang, G. (2018). A novel 28 GHz beam steering array for 5G mobile device with metallic casing application. IEEE Transactions on Antennas and Propagation, 66(1), 462–466. https://doi.org/10.1109/TAP.2017.2772084

    Article  Google Scholar 

  59. Li, G., Zhai, H., Ma, Z., Liang, C., Yu, R., & Liu, S. (2014). Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals. IEEE Antennas and Wireless Propagation Letters, 13, 1128–1131. https://doi.org/10.1109/LAWP.2014.2330065

    Article  Google Scholar 

  60. Mao, C.-X., Gao, S., & Wang, Y. (2017). Broadband high-gain beam-scanning antenna array for millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 65(9), 4864–4868. https://doi.org/10.1109/TAP.2017.2724640

    Article  Google Scholar 

  61. Viikari, V., Luomaniemi, R., Ala-Laurinaho, J., Kurvinen, J., Kähkönen, H., Lehtovuori, A., & Leino, M. (2019). 5G Antenna Challenges and Opportunities. In 2019 16th International Symposium on Wireless Communication Systems (ISWCS) (pp. 330–334). https://doi.org/10.1109/ISWCS.2019.8877314

  62. Frølund-Pedersen, G. (2013). Mobile phone antenna performance 14.

  63. Krogerus, J., Toivanen, J., Icheln, C., & Vainikainen, P. (2007). effect of the human body on total radiated power and the 3-D radiation pattern of mobile handsets. IEEE Transactions on Instrumentation and Measurement, 56(6), 2375–2385. https://doi.org/10.1109/TIM.2007.903591

    Article  Google Scholar 

  64. Hannula, J.-M., Saarinen, T., Holopainen, J., & Viikari, V. (2017). Frequency reconfigurable multiband handset antenna based on a multichannel transceiver. IEEE Transactions on Antennas and Propagation, 65(9), 4452–4460. https://doi.org/10.1109/TAP.2017.2725384

    Article  Google Scholar 

  65. Kurvinen, J., Kähkönen, H., Lehtovuori, A., Ala-Laurinaho, J., & Viikari, V. (2019). Co-designed mm-wave and LTE handset antennas. IEEE Transactions on Antennas and Propagation, 67(3), 1545–1553. https://doi.org/10.1109/TAP.2018.2888823

    Article  Google Scholar 

  66. Wu, Z., Wu, B., Su, Z., & Zhang, X. (2018). Development challenges for 5G base station antennas. In 2018 International Workshop on Antenna Technology (iWAT) (pp. 1–3). https://doi.org/10.1109/IWAT.2018.8379163

  67. Li, L., Niu, X., Chai, Y., Chen, L., Zhang, T., Cheng, D., & You, X. (2016). The path to 5G: mm wave aspects. Journal of Communications and Information Networks, 1(2), 1–18. https://doi.org/10.1007/bf03391553

    Article  Google Scholar 

  68. Nguyen, N. L., & Vu, V. Y. (2019). Gain enhancement for MIMO antenna using metamaterial structure. International Journal of Microwave and Wireless Technologies, 11(8), 851–862. https://doi.org/10.1017/S175907871900059X

    Article  MathSciNet  Google Scholar 

  69. Wu, J., Cheng, Y. J., & Fan, Y. (2016). Millimeter-wave wideband high-efficiency circularly polarized planar array antenna. IEEE Transactions on Antennas and Propagation, 64(2), 535–542. https://doi.org/10.1109/TAP.2015.2506726

    Article  MathSciNet  MATH  Google Scholar 

  70. Akbari, M., Gupta, S., Farahani, M., Sebak, A. R., & Denidni, T. A. (2017). Analytic study on CP enhancement of millimeter wave DR and patch subarray antennas. International Journal of RF and Microwave Computer-Aided Engineering, 27(1), e21053. https://doi.org/10.1002/mmce.21053

    Article  Google Scholar 

  71. MANTASH, M., Kakhki, M. B., & DENIDNI, T. A. (2018). Millimeter-Wave Circularly Polarized Vivaldi Antenna Using Simple Single Layer 2D FSS Polarizer. In 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM) (pp. 1–2). https://doi.org/10.1109/ANTEM.2018.8572921

  72. Tong, K.-F., & Wong, T.-P. (2007). Circularly polarized U-slot antenna. IEEE Transactions on Antennas and Propagation, 55(8), 2382–2385. https://doi.org/10.1109/TAP.2007.901930

    Article  Google Scholar 

  73. Chen, A., Zhang, Y., Chen, Z., & Cao, S. (2010). A ka-band high-gain circularly polarized microstrip antenna array. Antennas and Wireless Propagation Letters, IEEE, 9, 1115–1118. https://doi.org/10.1109/LAWP.2010.2093866

    Article  Google Scholar 

  74. Mantash, M., & Denidni, T. A. (2019). CP antenna array with switching-beam capability using electromagnetic periodic structures for 5G applications. IEEE Access, 7, 26192–26199. https://doi.org/10.1109/ACCESS.2019.2901440

    Article  Google Scholar 

  75. Mittra, R. (2018). Some Challenges in Millimeter Wave Antenna Designs for 5G. In 2018 International Symposium on Antennas and Propagation (ISAP) (pp. 1–2).

  76. Kamran Shereen, M., Khattak, M. I., & Witjaksono, G. (2019). A brief review of frequency, radiation pattern, polarization, and compound reconfigurable antennas for 5G applications. Journal of Computational Electronics, 18(3), 1065–1102. https://doi.org/10.1007/s10825-019-01336-0

    Article  Google Scholar 

  77. Ehyaie, D., & Mortazawi, A. (2011). A 24-GHz modular transmit phased array. IEEE Transactions on Microwave Theory and Techniques, 59(6), 1665–1672. https://doi.org/10.1109/TMTT.2011.2140122

    Article  Google Scholar 

  78. Garcia-Marin, E., Masa-Campos, J. L., & Sanchez-Olivares, P. (2019). Planar array topologies for 5G communications in ku band [Wireless Corner]. IEEE Antennas and Propagation Magazine, 61(2), 112–133. https://doi.org/10.1109/MAP.2019.2895633

    Article  Google Scholar 

  79. Ershadi, E., Keshtkar, A., Abdelrahman, A., Xin, H., & Ershadi, E. (2017). Wideband high gain antenna subarray for 5G application. Progress In Electromagnetics Research C. https://doi.org/10.2528/PIERC17061301

    Article  Google Scholar 

  80. Yin, J., Wu, Q., Yu, C., Wang, H., & Hong, W. (2019). Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 67(7), 4474–4483. https://doi.org/10.1109/TAP.2019.2911266

    Article  Google Scholar 

  81. Sodré, A. C., da Costa, I. F., dos Santos, R. A., Filgueiras, H. R. D., & Spadoti, D. H. (2018). Waveguide-based antenna arrays for 5G networks. International Journal of Antennas and Propagation, 2018, 5472045. https://doi.org/10.1155/2018/5472045

    Article  Google Scholar 

  82. Nahar, T., & Rawat, S. (n.d.). Efficiency enhancement techniques of microwave and millimeter-wave antennas for 5G communication: A survey. Transactions on Emerging Telecommunications Technologies. Doi: https://doi.org/10.1002/ett.4530

  83. Nahar, T., & Rawat, S. (2020). Low Cost Planar Millimeter Wave Antenna Array for 5G Mobile Applications. In 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN) (pp. 621–626). https://doi.org/10.1109/ICACCCN51052.2020.9362828

  84. Marzouk, H. M., Ahmed, M. I., & Shaalan, A. A. (2019). A Novel Dual-band 28/38 GHz Slotted Microstip MIMO Antenna for 5G Mobile Applications. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (pp. 607–608). https://doi.org/10.1109/APUSNCURSINRSM.2019.8888799

  85. Malhat, H., Elhenawy, A., Zainud-Deen, S., & Al-Shalaby, N. (2022). Planar reconfigurable plasma leaky-wave antenna with electronic beam-scanning for MIMO applications. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09972-9

    Article  Google Scholar 

  86. Mantash, M., & Tarot, A.-C. (2016). On the bandwidth and geometry of dual-band AMC structures. In 2016 10th European Conference on Antennas and Propagation (EuCAP) (pp. 1–4). https://doi.org/10.1109/EuCAP.2016.7481589

  87. Peng, L., Ruan, C. L., & Xiong, J. (2012). Compact EBG for multi-band applications. IEEE Transactions on Antennas and Propagation, 60(9), 4440–4444. https://doi.org/10.1109/TAP.2012.2207036

    Article  Google Scholar 

  88. Chen, H. N., Song, J.-M., & Park, J.-D. (2019). A compact circularly polarized mimo dielectric resonator antenna over electromagnetic band-gap surface for 5G applications. IEEE Access, 7, 140889–140898. https://doi.org/10.1109/ACCESS.2019.2943880

    Article  Google Scholar 

  89. Shen, X., Liu, Y., Zhao, L., Huang, G.-L., Shi, X., & Huang, Q. (2019). A miniaturized microstrip antenna array at 5G millimeter-wave band. IEEE Antennas and Wireless Propagation Letters, 18(8), 1671–1675. https://doi.org/10.1109/LAWP.2019.2927460

    Article  Google Scholar 

  90. Dadgarpour, A., Zarghooni, B., Virdee, B. S., & Denidni, T. A. (2015). Enhancement of tilted beam in elevation plane for planar end-fire antennas using artificial dielectric medium. IEEE Transactions on Antennas and Propagation, 63(10), 4540–4545. https://doi.org/10.1109/TAP.2015.2456937

    Article  MathSciNet  MATH  Google Scholar 

  91. Modak, S., Surender, D., Shome, P., & Khan, T. (2022). Switchable/Tunable Band-notched characteristics in UWB and UWB-MIMO antennas: A comprehensive review. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-10036-1

    Article  Google Scholar 

  92. Jeyakumar, D., Malar, E., Srinitha, S., Muthuchidambaranathan, P., & Ramesh, A. (2022). Hybrid beamforming in large-scale antenna array for 5G indoor communication network deployments. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09808-6

    Article  Google Scholar 

  93. Ben Mabrouk, I., Al-Hasan, M., Nedil, M., Denidni, T. A., & Sebak, A.-R. (2020). A novel design of radiation pattern-reconfigurable antenna system for millimeter-wave 5G applications. IEEE Transactions on Antennas and Propagation, 68(4), 2585–2592. https://doi.org/10.1109/TAP.2019.2952607

    Article  Google Scholar 

  94. Li, M., Luk, K.-M., Ge, L., & Zhang, K. (2016). Miniaturization of magnetoelectric dipole antenna by using metamaterial loading. IEEE Transactions on Antennas and Propagation, 64(11), 4914–4918. https://doi.org/10.1109/TAP.2016.2599176

    Article  Google Scholar 

  95. Chaimool, S., Rakluea, C., & Akkaraekthalin, P. (2013). Mu-near-zero metasurface for microstrip-fed slot antennas. Applied Physics A, 112(3), 669–675. https://doi.org/10.1007/s00339-013-7703-6

    Article  Google Scholar 

  96. Chaimool, S., Chung, K., & Akkaraekthalin, P. (2010). Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metama-Terial reflective surface. Progress in Electromagnetics Research B, 22, 23–37. https://doi.org/10.2528/PIERB10031901

    Article  Google Scholar 

  97. Xu, H.-X., Tang, S., Wang, G.-M., Cai, T., Huang, W., He, Q., & Zhou, L. (2016). Multifunctional microstrip array combining a linear polarizer and focusing metasurface. IEEE Transactions on Antennas and Propagation, 64(8), 3676–3682. https://doi.org/10.1109/TAP.2016.2565742

    Article  MathSciNet  MATH  Google Scholar 

  98. Cai, T., Wang, G., Zhang, X.-F., Wang, Y., Zong, B., & Xu, H. (2015). Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials. IEEE Transactions on Antennas and Propagation, 63, 2306–2311.

    Article  Google Scholar 

  99. Zhu, S., Liu, H., & Wen, P. (2019). A new method for achieving miniaturization and gain enhancement of vivaldi antenna array based on anisotropic metasurface. IEEE Transactions on Antennas and Propagation, 67(3), 1952–1956. https://doi.org/10.1109/TAP.2019.2891220

    Article  Google Scholar 

  100. Liu, W., Chen, Z. N., & Qing, X. (2015). Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna. IEEE Transactions on Antennas and Propagation, 63(7), 3325–3329. https://doi.org/10.1109/TAP.2015.2429741

    Article  Google Scholar 

  101. Liu, W., Chen, Z. N., & Qing, X. (2014). 60-GHz thin broadband high-gain LTCC metamaterial-mushroom antenna array. IEEE Transactions on Antennas and Propagation, 62(9), 4592–4601. https://doi.org/10.1109/TAP.2014.2333052

    Article  MATH  Google Scholar 

  102. Dey, S., & Dey, S. (2020). EBG Superstrate Loaded Circularly Polarized Fabry-Perot Cavity Antenna at Sub-6 GHz for Satellite and 5G Cellular Communications. In 2020 International Symposium on Antennas & Propagation (APSYM) (pp. 101–104). https://doi.org/10.1109/APSYM50265.2020.9350725

  103. Denidni, T. A., & Libar, T. E. (2003). Wide band four-port butler matrix for switched multibeam antenna arrays. In 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. (Vol. 3, pp. 2461–2464). https://doi.org/10.1109/PIMRC.2003.1259161

  104. Nedil, M., Denidni, T., Djaiz, A., & Habib, A. (2008). A new ultra-wideband beamforming for wireless communications in underground mines. Progress in Electromagnetics Research M, 4, 1–21. https://doi.org/10.2528/PIERM08070207

    Article  Google Scholar 

Download references

Funding

No funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Rawat.

Ethics declarations

Conflicts of interest

There is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahar, T., Rawat, S. A Review of Design Consideration, Challenges and Technologies Used in 5G Antennas. Wireless Pers Commun 129, 1585–1621 (2023). https://doi.org/10.1007/s11277-023-10193-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10193-x

Keywords

Navigation