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Abstract. With the increasing technology, digital images have become a widely used data type in 

crucial areas such as medical journalism and law. Since it is used in such important areas, it has 

become questionable whether digital images are original or not. Image splicing forgery is one of the 

most common forgery types applied to digital images. This work proposes a new image splicing 

detection and localization method. Our motivation is to reveal the boundaries of forgery by using 

statistical features of the image blocks. The proposed method has two main stages: training and 

localizing. In both phases, image blocks that contain edge information are used because the splicing 

operation causes some inconsistency on the edges. In the training stage, original blocks are selected 

from the regions that include original boundaries, and forged blocks are selected from the areas that 

contain splicing operation-induced edges. Transition probability matrices are calculated in eight 

directions to obtain the correlation of the borders between the neighbor blocks on original and splicing 

edges. These matrices are used as a feature for each block. The blocks are classified as authentic and 

spliced using SVM. A new post-processing step has been proposed to eliminate the false positives that 

may occur due to the presence of original regions that are likely to be detected as spliced edges in the 

image. The publicly available Columbia dataset has been used to show the effectiveness of the state-

of-the-art and proposed method. The results indicate that the proposed method has performed well 

even under JPEG compression and Gaussian blurring attacks. 

 

Keywords: Image Splicing Detection, Image Splicing Localization, Transition Probability Matrices, 

Image Forgery Detection. 

1. Introduction 

Thanks to technological developments, digital images are frequently created using cameras and 

smart mobile phones in daily life. In addition, they also are produced with special machines used in 

fields such as medicine and engineering, and their usage areas are becoming widespread. Digital 

images can be used when making an important decision and even as evidence in law. The 

advancement of technology has also enabled the easy use of image editing software and the creation of 

forged images without leaving any traces. For these reasons, the authenticity of the digital image has 

become questionable in recent years. Thus, proving the authenticity of digital images has also become 

an important research area under “Image forgery detection”. The methods to detect digital image 

forgeries are grouped into two categories: Passive (blind) and active (Lian and Kanellopoulos 2009). 

While blind techniques do not require any additional information to authenticate an image, active 

methods require prior embedded information called a watermark to authenticate the image. The need 

for extra details has made these methods disadvantageous (Rey and Dugelay 2002). 

Moreover, any image without signature/watermark information may need authentication. 

Although passive methods are enough to use the statistical features extracted from the image, they do 
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not need any extra information or data (Kundur and Hatzinakos 1999). Passive forgery detection 

methods deal with two forgery operations; Copy-move forgery and image splicing forgery. Copy 

move forgery is created by copying a region from the image and then pasting it to another area of the 

same image. Image splicing forgery is more challenging to detect and is created by splicing a region 

copied from another image into the image. An example of image splicing forgery is given in Fig. 1. A 

part from image (a) is copied and pasted onto image (b) to obtain a forged image.  

In literature, the image splicing detection methods can be divided into two groups according to 

system outputs. As seen in Table 1, one of them puts forward whether the input image is just forged or 

not. The other type of method also performs pixel-level localization of the duplicated region. 

 

The works in the first group use image feature such as statistical and textural to classify them. Image 

features are evaluated in different frequency domains also. Muhammad et al. (2014) used Steerable 

Pyramid Transform (SPT) and Local Binary Pattern (LBP) to obtain textural features of the image. 

According to study, the input image has been decomposed different scale sub-bands using SPT and 

LBP histograms extracted from all those sub-bands. For the final feature vector, these LBP histograms 

are concatenated. Using SVM, forged and original images are classified—experiments for the method 

realized on CASIA v1.0, CASIA v2.0, and Color Columbia datasets. The technique has achieved an 

average 96.20% accuracy ratio.  

Textural features are used by Shen et al. (2017) to detect forged images. They obtained features using 

the Discrete Cosine Transform (DCT) domain. Then they constructed Gray level co-occurrence 

matrices in the DCT domain and obtained textural features from those GLCMs. The method achieved 

98.54% and 97.73 accuracy rates on the CASIA v1.0 and CASIA v2.0 datasets. LBP, Local Phase 

Quantization (LPQ), and Weber Local Descriptor (WLD) are used as texture descriptors for feature 

extracting from the images (Shen et al. 2017, Agarwal and Chand 2015, Hussain et al. 2013, Alahmadi 

et al. 2017). Agarwal et al. (2015) proposed a method based on Entropy Filter and LPQ. An entropy 

filter is applied to the image at various scales, and LPQ is applied to extract texture features. 

Histograms obtained from the LPQ on different scales are used as texture features. Hussain et al. 

(2013) used the multi-scale Weber local descriptor in the color channels of the YCbCr space and 

compared it with LBP. WLD gave better results than LBP, as reported in the study. Another study on 

extracting textural features used LBP by Alahmadi et al. (2017). The method divides the images into 

blocks, and LBP transformation is applied in each block. LBP transformed image is transformed into 

the DCT domain to track the changes in the local frequency distribution. 

Markov Model is used by He et al. (2012) to obtain the image’s statistical features in DCT and 
Discrete Wavelet transform (DWT) domain. The method tested on Columbia, and CASIA v2.0 

datasets, 93.55% and 89.76% accuracy rates were achieved. Li et al. (2017) extracted Markov features 

on the Quaternion Discrete Cosine Transform (QDCT) domain and had a 92.38% accuracy ratio on the 

CASIA v2.0 dataset. Markov, based on another method proposed by Odabas Yildirim and Ulutas 

(2018), motivated by the studies presented by He et al. (2012) and Li et al. (2017), used a low-

frequency subband from the DWT domain. Computational complexity is reduced via this method, and 

it achieved approximately 98.93%, 99.77%, and 97.24% accuracy rates on CASIA v1.0, CASIA v2.0, 

and Columbia (color) datasets by using SVM. Odabas Yildirim and Ulutas (2018) used Markov 

transition probability matrices on the high-frequency subbands of DCT in another study. Block DCT 

(BDCT) is applied to the YCbCr transformed image, and 16 high frequency (HF) DCT coefficients are 

selected by zigzag scanning for every block. Quantization is realized to clarify the importance of HF 

DCT coefficients. These 16 HF coefficients are grouped to form a matrix of size 4x4, and a four-

directional Markov model is applied to these matrices to obtain statistical transitions on HF 

coefficients. The method used SVM for classification and tested on CASIA v1.0, CAISA v2.0, and 

Color Columbia datasets, and it gives approximately 99.98%, 99.89%, and 98.92% accuracy rates, 

respectively. Odabas Yildirim and Ulutas (2019) proposed an image forgery detection method using 

statistical and textural features on the SWT domain. Textural features are obtained from five Haralic 



texture descriptors from GLCMs, and statistical features are obtained from the four directional Markov 

model. Statistical and textural features are concatenated to form the final feature vector. The method 

has 99.29% accuracy on CASIA v1.0, 99.58% on CAISA v2.0, and 97.99% on Color Columbia 

datasets. 

The works in the second group localize the spliced region in the forged image. Some of these 

studies assume that the boundary between the spliced and the original region has been processed, such 

as median filtered (Bianchi and Piva 2012) or double JPEG compressed (Popescu and Farid 2005), or 

blurred (Bahrami et al. 2015), etc. This way, the localization problem has become detecting the 

specific operation locally. The noise-based methods are common studies in this group because patches 

from different images have generally different noise levels in spliced images. Zoran and Weiss (2009) 

proposed a statistical model for estimating noise variance and demonstrated its effectiveness in low-

level noise images. The method assumes that kurtosis values in different filters and scales will not 

change due to scaling, and any changes in these values will be caused by additional noise. The 

algorithm proposed is the first kurtosis-based method that does not require knowing kurtosis values. 

The basis of the noise estimation step is the assumption that the original, unforged image has 

unchanged statistics. That is, it assumes that the kurtosis of the responses of the authentic images to 

different filters is an unknown constant and that the spliced region and the external noise added to the 

image will change the kurtosis values along with the scales. Pan et al. (2011) used the noise level 

estimation method proposed by Zoran and Weiss (2009) to local image blocks, and the technique 

clustered blocks via coarse to refined clustering to localize the spliced area. Mahdian and Saic (2009) 

estimated the noise level in each block with a median-based noise variance estimator from each image 

block (not overlapping) in the high-frequency subband after the wavelet transformation of the image. 

Then, these blocks were combined by examining the noise differences between neighboring blocks to 

create a homogeneous area. However, the method's main disadvantage is determining the correct 

threshold value. If the threshold value is not chosen carefully, the combined area cannot be 

distinguished from the image. Popescu and Farid (2014) used noise variance in the study to detect the 

spliced region. The second and fourth moments were calculated from each image block to estimate 

noise variance. The method requires knowing the kurtosis of the original signal. 

 Lyu et al. (2014) extended the noise level estimation method and localized the spliced area with 

pixel level. The noise-based methods perform better when the noise differences between the original 

and spliced region are significant—the weakness of these methods is having a negligible noise level 

between the original image and the spliced patch. In practice, however, this difference in spliced 

images is relatively tiny, and current noise-based methods provide less accurate performance in this 

case. Zeng et al. (2017) proposed a new approach to eliminate this performance gap and detect forged 

patches in the images with minor noise differences. The study suggested PCA-based localization. The 

image is divided into blocks, and the local noise level was estimated using PCA. The method used the 

K-means algorithm to cluster blocks as original and spliced via their noise level. Pun et al. (2016) used 

multi-level noise estimation. The study presents visually distinguishable results utilizing multi-scale 

analysis. Yao et al. (2016) proposed to estimate the noise level function (NLF) based on Taylor 

expansion. By exploring the relationship between NLF and the camera response function (CRF), the 

method fits the NLF curve under the CRF. It then formulates a Bayesian maximum a posteriori (MAP) 

framework to optimize the NLF estimation. 

Zhang et al. (2019) suggested an image splicing detection technique to detect manipulations 

made without changing the content. First, the test image is divided into non-overlapping blocks using 

Simple Linear Iterative Clustering (SLIC). It then performs a block-level local noise estimate in the 

image and uses fuzzy c-averages aggregation to identify the spliced patch regions. It has higher 



detection accuracy and robustness than existing methods, especially when the noise difference 

between the spliced region and the original image is small. Dua et al. (2020) proposed a technique in 

which features are obtained by modeling the quantified DCT coefficients with a Double Stochastic 

Model (DSM) parameter of the DSM for the feature vector to classify images as forged and original 

with the using SVM. The localization process is carried out in two approaches, depending on the type 

of forgery. The localization of splicing forgery is performed using the correlation of the inter-block 

relationships of the dequantized DCT coefficients. In the localization of copy-paste forgery, moments 

of phase-matching properties are used for each block of the forged image.  

Another splicing localization method using noise inconsistency is proposed by Zeng et al. 

(2020). The study is based on the approach that, unlike the existing noise-based methods, the spliced 

patch will have different sensor noise due to different ISO settings in other machines. A weighted 

function is proposed to model the relationship between scene brightness and sensor noise level, 

independent of image content, to analyze the character of the sensor noise. First, the noise level of the 

test image is estimated locally by the Principal Component Analysis (PCA) based algorithm. Before 

grouping noise levels, the k-means weighting operation is applied to those levels. Wang et al. (2020) 

also used noise inconsistency to detect spliced regions. The Laplace operator was used to extract local 

noise in the image. The Fuzzy C-means (FCM) clustering algorithm and adaptive thresholding were 

used to obtain the suspicious regions. The image is divided into K non-overlapping blocks using the 

Simple Linear Iterative Clustering (SLIC) algorithm, and each block's Laplace noise is extracted. It 

has been reported that the method is resistant to post-processing.  

Table 1. Different studies on image splicing in the literature 

Method Features Classifier İmage 
authentication 

Localization  

Muhammed et al. (2014) SPT-LBP SVM ✔ ➖ 

Shen et al. (2017) DCT-GLCM SVM ✔ ➖ 

Agarwal et al. (2015) Entropy Filter- LPQ SVM ✔ ➖ 

Hussain et al. (2013) WLD-LBP SVM ✔ ➖ 

Alahmadi et al. (2017) LBP-DCT SVM ✔ ➖ 

He et al. (2012) DCT-DWT-Markov SVM ✔ ➖ 

Li et al. (2017)  QDCT-Markov SVM ✔ ➖ 

Odabas Yildirim and 

Ulutas (2019) 

SWT-Markov, SWT-TF SVM ✔ ➖ 

Zoran and Weis (2009) Noise estimation ➖ ➖ ✔ 

Pan et al. (2011) Noise estimation 

(clustered blocks via 

coarse to fine) 

➖ ➖ ✔ 

Mahdian and Saic (2009) Noise estimation (median 

based) 

➖ ➖ ✔ 

Poposecu and Farid 

(2014) 

Noise variance (2nd and 

4th moments ) 

➖ ➖ ✔ 

Lyu et al. (2014) Noise level estimation ➖ ➖ ✔ 

Zeng et al. (2017) Noise estimation (PCA 

based) 

K-means   

Pun et al (2016) Multi-level noise 

estimation 

➖ ➖ ✔ 

Yao et al. (2016) Noise estimation, NFL 

and CRF (based on Taylor 

expansion) 

➖ ➖ ✔ 

Zhang et al. (2019) Noise estimation (SLIC) ➖ ➖ ✔ 



Dua et al. (2020) DCT-DSM SVM ✔ ✔ 

Zeng et al. (2020) Noise estimation (sensor 

noise-PCA) 

➖ ➖ ✔ 

Wang et al. (2020) Noise estimation (Laplace 

operatör-SLIC) 

FCM ➖ ✔ 

 

In summary, the methods in the literature use several features or techniques to determine the 

spliced region, as seen in Table 1. Some studies only classify the images, and others localize the 

spliced region on forged images. The studies that classify the images use a classifier, and generally, 

SVM is chosen, as can be seen in Table 1. When looking at the second column in Table 1, studies on 

splicing localization are generally based on noise estimation can be seen. Image patches from different 

image sources have different noise levels, which is proved by the noise-based methods. However, 

differences in the noise level must be significant enough to detect the forgery. The most critical 

shortcoming of these methods is that they are not resistant to JPEG compression attacks because the 

compression eliminates the correlation of noise. We aim to propose a new approach to overcome this 

weakness. As seen in Table 1, the studies focus on either the image's authenticity or the spliced 

region's localization. The study in the current paper proposed to achieve both authenticity and 

localization. Using transitions of edges, a system is designed to classify image blocks as forged or 

original; with this, the boundary of the spliced region has been located via the forged blocks. After 

marking the boundary of the spliced area, the next step is marking the whole patch of the spliced 

region. Mainly, the proposed method consists of two phases; the marking phase and the localization 

phase. We selected original and forged blocks from the newly generated dataset in the marking stage. 

Original blocks are selected from original images, and forged blocks are obtained using the boundary 

of the spliced region located in forged images. Transition probability matrices (TPMs) are calculated 

from each block to obtain feature vectors. SVM is used for training the system with features obtained 

from those original and forged blocks. SVM is chosen as the classifier because SVM can handle non-

linear solutions using different kernels. The advantages of SVM with other machine learning methods 

are: SVM supports both linear and non-linear solutions. 

In contrast, linear and logistic regression support only linear solutions, and outliers are better-taken 

care of by SVM than KNN (k-nearest neighbor). Studies on the splicing forgery in the literature such 

as Muhammed et al. 2014, Shen et al. 2017, Agarwal and Chand 2015, Hussain et al. 2013, Alahmadi 

et al. 2017, He et al. 2012, Li et al. 2017, Odabas Yildirim and Ulutas 2019, are also used SVM to 

authenticate the images as can be seen in Table 1. So, in this study, the performance of the SVM in 

classifying the blocks is researched. After classifying image blocks as forged or original, a boundary 

of the spliced region has been located via the forged blocks. After determining the spliced blocks, the 

tamper localization step is generated. First, this step aims to eliminate blocks that are incorrectly 

marked as forged blocks even though they are original. For this purpose, the connected components by 

the forged blocks are determined, and small-sized components are eliminated. After that, the spliced 

region is represented via alpha shapes associated with the remaining connected 

components. Compared to the existing image splicing methods, the advantages of the proposed 

method are listed below: 

 Most of the methods in the literature assume that the forgery boundary of the spliced image 

will be subject to distortions such as JPEG compression or blurring etc., and detect forgery 

by investigating these distortions. In the proposed method, it is possible to detect and 

localize spliced images that do not have these distortions since forgery can be detected 

without assuming these distortions. 

 The input image is evaluated whether forged or not, and the spliced region is localized if the 

image is revealed to be forged. Thus, the proposed method gathers the primary operations of 

the referenced methods collected in two separate classes above in a single framework. 

 Designing a learning-based approach with image blocks is the first in the literature. Using 

image blocks taken from different images makes the system more trustworthy. 



 It is aimed to have higher detection accuracy even in JPEG compression and Gaussian 

blurring attacks. 

The rest of the paper is organized as follows. The proposed method's details with subtitles 

(Marking Phase, Localization Phase) are given in Section 2, Section 3 offers Experimental results and 

discussion, and the paper concludes with Section 4. 

2. Proposed Method 

Image splicing operation causes some inconsistencies at the boundaries of the spliced region in a 

forged image. The method utilized from these inconsistencies to obtain the boundaries of the spliced 

regions. For this purpose, we proposed a learning-based approach to differentiate the boundaries of the 

spliced regions from the normal regions. The method consists of two phases: The marking phase and 

the localization phase, as seen in Fig. 2.While the first phase of the method marks the boundaries of 

the spliced region (the general diagram of this phase is given in Fig. 3 and Fig. 4), the second phase 

localizes exact spliced regions (the steps of this phase are given in Fig. 5). The details of these two 

phases will be given in the following sections. 

 

2.1. Marking Phase 

In this algorithm phase, the method aims to mark the boundary of the spliced region. For this 

purpose, the algorithm divides the image into overlapping blocks and uses extracted features from 

these blocks to mark them as spliced or normal. The method uses a learning-based approach to 

differentiate spliced blocks from normal ones. The marking phase consists of two steps. The system is 

trained using extracted features from the blocks of images in the dataset in the Training and Testing 

steps. The method marks the overlapping blocks of the test image as spliced or normal. Afterward, we 

call the blocks at the boundary of the spliced region “boundary block” and other blocks of the image 
will be called “normal block”.   

Training step: We create a new dataset (available at: 

https://drive.google.com/drive/folders/1K9wTcFrsqT_hD57HS3a0HKcgWLzeDQM_?usp=sharing) to 

train the system to differentiate standard blocks from boundary blocks. The details about the creation 

of a new dataset will be given in section 3.1. This dataset contains spliced images with a sharp 

transition at the boundary of spliced regions. All images in the dataset are used to train the system.  

Images are converted into YCbCr color space to obtain detailed information. Each color channel 

is evaluated separately, and the color channel Cr with the highest detection rate is chosen empirically 

by the method. The details of this experiment are given in Section 3.3. Cr channel of each image in the 

dataset is divided into overlapping blocks; some are normal, and some are boundary blocks. While 

boundary blocks (red-painted blocks in Fig. 3 indicate them) are used to introduce forged blocks to the 

system, regular blocks (green-painted blocks in Fig. 3 show them) are also used to introduce original 

blocks to the system. The training phase will be realized using the feature vectors extracted from 

regular and boundary blocks of all the images in the dataset. Fig.4 shows the general diagram of the 

feature extraction procedure. 

Our method utilizes a feature extraction procedure during the training and testing phases. In the 

training phase, feature vectors are obtained from all overlapping blocks of images in the newly created 

dataset, and the dataset also contains mask images. Thus, we can classify the blocks as normal or 

boundary during the training phase. SVM is used to train the system, and the following operations are 

applied to each block to extract features.  



Eight difference matrices through the horizontal, vertical, diagonal directions denoted by 

1 2F ,Fh h , 1 2F ,Fv v , 1 2 3 4F ,F ,F ,Fd d d d  are constructed for each block. Equations given in (1) are used to 

construct difference matrices from each block. Let current block denoted by B. 𝑭𝒉𝟏 = 𝐵(𝑢, 𝑣) − 𝐵(𝑢 + 1, 𝑣)    𝑭𝒉𝟐 = 𝐵(𝑢, 𝑣) − 𝐵(𝑢 − 1, 𝑣)     𝑭𝒗𝟏 = 𝐵(𝑢, 𝑣) − 𝐵(𝑢, 𝑣 + 1)  𝑭𝒗𝟐 = 𝐵(𝑢, 𝑣) − 𝐵(𝑢, 𝑣 − 1) 𝑭𝒅𝟏 = 𝐵(𝑢, 𝑣) − 𝐵(𝑢 − 1, 𝑣 − 1) 𝑭𝒅𝟐 = 𝐵(𝑢, 𝑣) − 𝐵(𝑢 − 1, 𝑣 + 1) 𝑭𝒅𝟑 = 𝐵(𝑢, 𝑣) − 𝐵(𝑢 + 1, 𝑣 − 1) 𝑭𝒅𝟒 = 𝐵(𝑢, 𝑣) − 𝐵(𝑢 + 1, 𝑣 + 1)        (1) 

Then transition probability matrices denoted by 1 8...PP  for eight difference matrices are calculated. 

These matrices give relative information about the current block with its neighboring blocks. Markov 

chains are used to model the states in the probabilistic system. A Markov chain's state Transition 

Probability matrix gives the probabilities of transitioning from one state to another (Pishro-Nik 2016). 

TPM provides the possibilities of transition from one state to another state. In the splicing localization 

problem, every block indicates a form, and its TPM is calculated with neighbored blocks (states). In 

general, Transition Probabilities are calculated using (2) in one-dimensional states. 

 𝑇𝑖,𝑗 = 𝑃(𝑆𝑚+1 = 𝑘|𝑆𝑚 = 𝑖)             (2) 

where (𝑆𝑚 = 𝑖) denotes “process is in state 𝑖” and the next state (𝑆𝑚+1 = 𝑗) represents “process is in 
state 𝑗”. Transition probability from state 𝑖 to state j can be calculated using 𝑃(𝑆𝑚+1 = 𝑗|𝑆𝑚 = 𝑖) and 

denoted by  𝑇𝑖,𝑗. Transition probabilities for all states are generally given in a matrix form as in (3). 

𝑃 = [𝑝11 𝑝12 … 𝑝1𝑛𝑝21 𝑝22 … 𝑝2𝑛⋮ ⋮ ⋮𝑝𝑛1 𝑝𝑛2 … 𝑝𝑛𝑛] 

  𝑝𝑖,𝑗 ≥ 0 𝑎𝑛𝑑 ∑ 𝑝𝑖,𝑘𝑛𝑘=1 = ∑ 𝑃(𝑆𝑚+1 = 𝑘|𝑆𝑚 = 𝑖)𝑛𝑘=1                                                (3) 

In the transition probability matrix, when we are in state i, the next state should be one of the possible 

states. Therefore, when we add all possible values of j, we should get the value 1. So, the sum of any 

row values of the matrix must be 1. Each image block is evaluated as a state, and correlation with its 

neighbor blocks is calculated with TPM. Eight TPMs are calculated for each block using (4) as 

indicated above.  
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where 𝑆𝑥 - 𝑆𝑦 denote width and height of block, 𝐹𝑛 denote the current difference matrices, 

, { 1, 1}k l    and 𝑚 ∈ {1 … 8}. 

 After obtaining eight transition probability matrices 1 8...PP  from the corresponding difference 

matrices ( 1 2F ,Fh h , 1 2F ,Fv v , 1 2 3 4F ,F ,F ,Fd d d d ), we concatenate them to construct corresponding feature 

vector for the current block.  

 Testing Step:   



     The method gets the test image and converts it into YCbCr space, and it also creates a mask 

image M, which consists of black pixels of the same size as the test image. Cr channel of the test 

image is divided into overlapping blocks. Feature extraction algorithm defined at the “Training step” 
is also applied to these blocks. And obtained feature vectors from them are given to SVM to mark 

their boundary or regular blocks at the mask image M. Mask image consists of black/white pixels, and 

white pixels denote boundary blocks. However, in the first phase of the algorithm (the Marking step), 

we mark the boundary of the spliced region. The second stage of the proposed method, called the 

“Localization Phase,” aims to localize the spliced area and eliminate false classification results. 

2. 2. Localization Phase 

After the abovementioned steps, white pixels at the mask image M represent the boundary block. 

However, some standard blocks on the mask image were also mistakenly labeled as boundary blocks 

due to false classification. 

 At this stage, blocks that are mistakenly marked as boundary blocks are eliminated, and then 

the spliced region is revealed. The block representation of this stage is given in Fig.5. As seen in the 

figure, our localization phase consists of two steps: Small components elimination, Boundary 

Determination, and Localization of the spliced area. We give details of these steps below. 

 

Small components elimination 

According to the experimental studies, it has been observed that the incorrect labels have a 

small size and are not continuous. On the other hand, it has been perceived that the correctly labeled 

boundary blocks are highly connected. Based on these observations, we proposed to use Connected 

Component Labeling (CCL) to connect district components (Haralic and Shapiro 1992). It is an 

algorithmic application of graph theory that subsets of connected components are uniquely labeled. In 

the proposed method, the dimensions of connected components are represented by 𝑆𝑖, i is the number 

of connected components. If 𝑆𝑖 is smaller than the predefined edge threshold 𝜕, i. component is 

eliminated. (We set 𝜕 = 75 experimentally).  

 

Boundary determination and localization the spliced area 

The spliced region is determined in the next step through the remaining connected components. 

Similar to the importance of revealing the object's shape in image processing-based systems, it is 

important here to accurately determine the spliced region. Just as the bounding hull via the convex 

hull, the concave hull, alpha shape (-shape), plays an important role in achieving this goal in image 

processing. The convex hull of a set of points is a convex polygon with a minimum area that includes 

all these points. The convex hull does not always specify the points region accurately. However, the 

alpha shape represents the points region more accurately than the convex hull (Edelsbrunger 1992). 

The proposed method uses the boundary of the alpha shapes to determine the closed region to 

complete spliced edges. To reveal the spliced edge more accurately, the boundaries are determined 

with shrink factor (s, [0,1]), to shrink the inside of the border to enfold the points via alpha shape. (we 

set s=0.7 experimentally). This parameter determines which alpha shape with an alpha radius will be 

selected according to an ordered alpha radius. Once the boundary of forgery is determined, the region 

within this boundary is considered the spliced region. The pseudocode of this approach is also given in 

Algorithm 1.  

Algorithm 1. Determine boundary (x, y, s) //boundary around (x, y)  

1. Find alphashapes  



2. Find critical alpha radius (alpha_crit) // it is needed to 

create a single region for alphashape 

3. Extract all alphavalues (alphavalues) //to create unique shapes 

above this critical value 

4. Select single alpha value according to shrink factor (s, [0, 

1])  

  (1-s)*numberofelements(alphavalues>=alpha_crit) 

5. Return the indices of the vertices of determined alphashape 

with specified alpha value 

 

We give some experiments to show the effectiveness of the localization phase. Some example 

images, given in Fig. 6 and 7, were produced during the localization phase of the two spliced images 

from the Columbia dataset. (The image names are canong3_nikond70_sub_20 and 

canonxt_kodakdcs330_sub_12 respectively).  

Fig.6(a) and 7(a) show mask images generated by the marking phase. We can perceive that falsely 

marked blocks in Fig. 6(a) are less than Fig. 7(a) because some regular blocks in Fig. 7(a) can 

accommodate abrupt color transition effects with neighboring blocks like boundary blocks. Thus, the 

classifier can label such blocks as boundary blocks. Images are given in Fig.6(b) and 7(b) are obtained 

after eliminating the false positives via Connected Component Labeling (Small components 

elimination phase). The pixels representing the spliced region shown in Fig.7 (b) are more continuous 

than in Fig.6 (b). Fig.6(c) and 7(c) show the determined boundary to represent the splice region, and 

(d)s show the determined final spliced areas.    

The figure shows that the Localization phase eliminates falsely labeled blocks and connects distinct, 

marked blocks via CCL. And then, the method creates the region using marked blocks by boundary 

determination algorithm. Various experiments are realized to show the effectiveness of the proposed 

method in the following section. 

3. Experimental Results and Discussion 

In this section, we evaluated the proposed method experimentally. First, the proposed method is 

compared with the state-of-the-art image splicing localization methods, and numerical results are 

given with pixel-level detection accuracy. Second, we tested the robustness of the proposed method 

against JPEG compression. Matlab R2016b is used to develop the technique and to evaluate its 

performance. The hardware platform used during development and testing is a PC with Intel(R) Core 

(TM) i7, 2.67 GHz processor, and 8 GB RAM.  

3. 1. Datasets 

In this study, two datasets are used. One of them is created by us (available at: 

https://drive.google.com/drive/folders/1K9wTcFrsqT_hD57HS3a0HKcgWLzeDQM_?usp=sharing) 

for the training stage and the second dataset is the Columbia dataset (Hsu and Chang 2006) which can 

be used commonly. 

3. 1. 1. Design details of the generated forged image dataset  

We created a small data set to obtain original and forged blocks for the training phase of the proposed 

method. The dataset contains 89 authentic images selected from different commonly used data sets 



(Casia (Dong and Wang 2013) and Grip (Cozzolino et al. 2015)) and their forged versions created 

using GIMP (GNU image manipulation program). Original and spliced edges obtained from forged 

images that are available at 

(https://drive.google.com/drive/folders/1K9wTcFrsqT_hD57HS3a0HKcgWLzeDQM_?usp=sharing). 

We have created forged images so that the human eye can detect the spliced regions because the 

blocks at the border of the areas spliced must include sharp transitions to train the system more 

accurately. There are some examples of our original and forged images in Fig.8. 

Forged regions can be detected by the human eyes, as can be seen in Fig.7. (a, b, e, f) are the forged 

images have sharply spliced regions. Their masks are given c, d, g, and h, respectively. The proposed 

system determines boundary blocks with the help of those forged image masks shown in Fig.9. For 

this purpose, the mask image is scanned from the top left to the bottom right. If a white pixel is 

encountered after the black pixel during scanning, the boundary block is created by taking the pixels at 

one distance from the white pixel. Then the block corresponding to the boundary block obtained from 

the mask image in the YCbCr representation of the same image is taken as a forged block. In Fig 9 (b), 

the red blocks show boundary blocks, while the orange blocks in the YCbCr image Fig. 9 (b) show 

splice blocks. Other edge blocks, except for the splice boundary blocks in the image, were taken as the 

original block. The classification model is trained with forged and original edge blocks that can be 

sharply distinguished from each other, and then all the blocks of the test image are questioned to label 

authentic or forged. 

3. 1. 2. Columbia Dataset 

We tested the proposed method on the Columbia uncompressed image splicing detecting evaluating 

dataset for the more realistic test (Hsu and Chang 2006). Four cameras (Canon G3, Canon 350D Rebel 

XT, Nikon D70, and Kodak DCS330) are used for original images in this dataset, and 180 spliced 

images are created with these authentic images by using Adobe Photoshop. Image splicing detection 

methods based on noise level inconsistency are commonly used in this dataset because images have 

been taken from four cameras and different cameras mean different noise levels. 

 

3. 2. Evaluating Metrics 

 

The evaluation metrics are used to quantify the classifier's performance. In this process, boundary 

blocks from input test images are classified as forged or authentic, so binary classification is used to 

label the blocks as genuine or forged. Spliced boundary blocks have been labeled "0", and the original 

blocks marked "1" by the method. SVM and radial basis function kernel are used to classify the 

boundary blocks. 10-fold cross-validation is used to get a more accurate estimation of the 

performance. During the training phase, 22716 spliced and 22631 original blocks were used. The 

training dataset is partitioned into ten equal subsets where the numbers of authentic and spliced blocks 

in each subset are the same. There are ten folds, and each fold is a test in which a subset is selected as 

the testing set; meanwhile, nine remaining subsets are combined with the training set. After classifying 

the sub-blocks, the post-processing operation is generated for the elimination of false-positive 

classification and painting the pixels in the spliced region. The final spliced part is revealed with the 

localization of the boundary block. The performance of the proposed method is analyzed at the pixel 

level. In this analysis, it is checked whether each pixel of the test image is correctly labeled. In the 

experimental study, we used TPR (True Positive Rate) and FPR (False Positive Rate) as defined in (5) 

for evaluating the performance of the proposed method for pixel-level evaluation. In this study, TPR is 

used for the probability of pixels correctly detected in the spliced region, and FPR is used for the 

possibility of pixels seen as spliced. However, they become original pixels (falsely detected). Destruel 

and others (2018) used F-measure and Matthews Correlation Coefficient (MCC) metrics for a full 

comparison of the popular studies for pixel-level evaluation on the Columbia dataset. We also 



obtained our experimental results for this study and other popular reference studies using the same 

metrics for performance evaluation. These metrics are given in (6). TPR = 𝑇𝑃𝑇𝑃+𝐹𝑁 ∙ 100 ,   FPR = 𝐹𝑃𝐹𝑃+𝑇𝑁 ∙ 100                     (5) 

 

F-measure=
2∙ 𝑇𝑃2∙𝑇𝑃+𝐹𝑃+𝐹𝑁,       MCC = 

𝑇𝑃∙ 𝑇𝑁−𝐹𝑃∙ 𝐹𝑁 √𝑃∙ (𝑇𝑃+𝐹𝑃)∙ 𝑁∙ (𝑇𝑁+𝐹𝑁) , 𝑃 = 𝑇𝑃 + 𝐹𝑁, N=TN+FP              

(6) 

where TP (True Positive) is the number of correctly detected ‘the forged pixels’ in the spliced 

region, TN (True Negative) is the number of correctly detected  ‘the original pixels’ in the non-spliced 

region, FP (False Positive) is the number of falsely labeled as ‘the original pixels’ in the spliced region 

and FN (False Negative) is the number of spliced pixels that are falsely detected as ‘the original 
pixels’.  

Precision, Recall, and F-measure metrics were used in the literature to evaluate the performance 

at the image level, that is, whether the image is forged or not. We also used these metrics for a fair 

comparison (7).  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃 , 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃+𝐹𝑁           (7) 

Where, for image-level evaluation, TP represents the number of correctly detected forged images, FP 

represents mistakenly labeled forged images, and FN represents the forged images that are falsely 

detected as the original.  

3. 3. Experimental Analyses 

The proposed method is used YCbCr color space, and each of the channels (Y, Cb, Cr) is 

evaluated separately. Firstly, the training stage has been processed on the Y channel, and the test 

image is samely converted to the Y channel, then the localization stage has been processed on this 

channel. Then Cb and Cr channels were evaluated, respectively. An example result of the test images 

can be seen in Fig.10. The first row shows the impact of the first image (Image 1), and the second row 

shows the result of another image (Image 2) on different color channels. From left to right, each row 

shows the Y, Cb, and Cr results, respectively. As can be seen in Fig.10 (a) and (d) Y channel has no 

good results in both detection accuracy and falsely detected block on the two images. Fig.10 (c) and 

Fig. 10 (f) show that the best results are obtained on Cr. The Cr channel has low falsely detected 

blocks and better continuity of boundary blocks. With those results, the Cr channel is selected for the 

other experimental results details below. 

We tested the proposed method on the Columbia dataset (Ng et al. 2004) to evaluate the 

detection accuracy of spliced regions. We took four splicing images from Columbia and tested the 

detection accuracy rate of our method on these images and the methods proposed by Pan et al. (2011), 

Lyu et al. (2014), Zeng et al. (2017), Mahdian and Saic (2009) and Zhang et al. (2019). Fig.11 shows 

four examples of spliced images, and their detection results and pixel-level comparison are given in 

Fig. 12. We also compared the related methods to the whole Columbia dataset in Fig. 13. The 

proposed method was also tested against post-processing operations; JPEG-compression and Gaussian 

blur (Fig. 13 (b,c)). 

In Fig.11, the first row shows the spliced images chosen from Columbia dataset, and the second 

row shows the detection results of the proposed method. The spliced regions are marked with a green, 

and pixels incorrectly labeled as spliced are marked red. The third row shows the detection results of 

the method proposed by Pan et al. (2011). While green grids are used to mark the spliced regions that 



are detected correctly, red grids represent blocks that are detected falsely. The fourth row shows the 

detection result of the method proposed by Lyu et al. (2014). Spliced regions are marked green, and 

red represents the falsely detected blocks. The fifth row shows the detection result of the method 

proposed by Zeng et al. (2017), and the sixth row shows the detection of the results of the method 

proposed by Mahdian and Saic (2009), the spliced regions are marked in the green grid, and falsely 

detections are marked with a red grid. The seventh row shows the detection result of the method 

proposed by Zhang et al. (2019), and spliced regions are marked with white. 

We aim to obtain higher TPR and lower FPR results than other works. Fig.11 shows that the proposed 

method detects spliced regions more accurately when compared to similar works. In Fig.11, images 

can be numbered from left to right, No.1-4. The method proposed by Lyu et al. (2014) detects some 

original blocks as spliced blocks in Image 1, and it also does not capture the spliced blocks correctly, 

as seen in the figure. The same situation also occurs for the method proposed by Mahdian and Saic 

(2009). The proposed method has high detection accuracy in Image 1. The method proposed by Pan et 

al. (2011) does not capture the spliced blocks in Image 2. The methods offered by Pan et al. (2011), 

Lyu et al. (2014), and Mahdian and Saic (2009) have falsely detected blocks in Image 3, and the 

proposed method has the highest detection accuracy in this image.   

Detection results of Fig.11 are given in Fig.12 with TPR and FPR values. The proposed method is 

superior to other methods. Only the method proposed by Zhang et al. (2019) differs less from the TPR 

proposed in this paper on Image 1 and 2. The proposed method has low FPR generally only Zhang et 

al. (2019) have lower FPR in Image 1 and Image 4. Zeng et al. (2017) also have lower FPR than the 

proposed method but have lower TPR than the proposed methods, as seen in Fig. 12 (b). Having lower 

FPR is not meaningly. FPR and TPR results should be evaluated together. So the proposed method has 

good results among the other results in Fig. 12. 

The robustness of the image splicing detection algorithm is an essential factor in evaluating the 

algorithm's performance. Splice methods suggested in the literature seem insufficient, especially 

against jpeg compression. For this reason, as another experimental study, we evaluated the robustness 

of the proposed approach to jpeg attacks. We compared it with related studies' overall Columbia 

dataset before and after post-processing (jpeg and blur attack). The average pixel-level comparison 

results are reported in Fig.13. As seen in Fig.13 (a), the proposed method has a higher TPR on the 

whole dataset. The false-positive rate of the proposed method is the lowest value among the related 

techniques. The method is robust against JPEG compression compared with the other methods, as can 

be seen in Fig.13 (b). The proposed method is also robust Gaussian blur, as can be seen in Fig. 13 (c). 

FPR values of the methods proposed by Zeng et al. (2017), Mahdian and Saic (2009), and Zhang et al. 

(2019) are lower than the proposed method, but these methods are not robust enough for JPEG 

compression. This is because compression destroys the noise correlation. Compression artifacts on the 

compressed images with QF=95 cannot be perceived. Correlation between spliced edges with their 

neighbor pixel is not changing so much, and edge information on the blocks, which are at the 

boundary of spliced regions, does not decrease gradually with such a quality factor value. The 

proposed method is also robust Gaussian blur, as shown in Fig. 13 (c). The technique has the highest 

TPR and the lowest FPR among the related processes, and the second high TPR is obtained by Zhang 

et al. (2019). 

In another experimental study at the pixel level, a comparative analysis of the proposed method 

with other image splicing detection methods in the literature that have localization stage (Krawetz 

2007, Ferrara et al. 2012, Wandji et al. 2014, Lyu et al. 2014, Cozzoloni et al. 2015, Salloum et al. 

2017, Destruel et al. 2018). Since the performances of the reference studies were presented using the 

F-measure and MCC metrics, this experiment was also evaluated using them. In Table 2, the average 

results on the Columbia dataset are given. The results of the reference studies were collected from the 

literature (Destruel et al., 2018). As can be seen from the table, the highest average result obtained 



with F-measure and MCC metrics belongs to the proposed method. According to these values obtained 

from experimental studies, Salloum et al. (2017) and the proposed method have the same average F-

measure values. According to evaluation with the MCC metric, the proposed method has the highest 

performance in labeling forged pixels. 

Table 2. The average results of pixel level classification 

Methods F-measure MCC 

Krawetz (2007) 0.47 0.23 

Mahdian and Saic (2009) 0.57 0.41 

Ferrara et al. (2012) 0.47 0.23 

Wandji et al. (2014) 0.50 0.33 

Lyu et al. (2014) 0.53 0.35 

Cozzoloni et al. (2015) 0.45 0.21 

Salloum et al. (2017) 0.61 0.48 

Destruel et al. (2018) 0.5 0.39 

Proposed method 0.61 0.55 

 

Finally, the performance of the proposed method at the image level was evaluated to assess the 

performance of correct detection of the test image as forged or original. For this purpose, the forged 

images (number of 180 forged images) and authentic images (number of 180 original images) in the 

Columbia dataset are used. Destruel et al. (2018) performed the comparison with the method proposed 

by Hsu and Chang (2010) using Precision and Recall metrics. To make a fair comparison with these 

studies, we also used the Precision and Recall metrics, and also the F-measure values, the harmonic 

mean of these two metrics, were also evaluated. The average results of image level classification are 

given in Table 3. As can be seen from the table, the highest average result was obtained by the 

proposed method according to three metrics. According to these values obtained from experimental 

studies, it has been proven that the proposed method has the highest performance in labeling forged 

images. 

Table 3. The average results of image level classification 

Methods Precision Recall F-measure 

Hsu and Chang (2010) 0.70 0.70 0.70 

Destruel and others (2018) 0.78 0.78 0.78 

Proposed method 0.81 0.99 0.89 

 

4. Conclusion 

 

In this work, we have proposed to design a system that can detect image splicing clues. Based on 

the assumption that spliced edges have different features than the original edges, we exploited edge 

statistics via Transition Probability Matrices between the boundary of spliced regions and original 

edge blocks to reveal edge types. Firstly, in the training stage, we created a dataset for selecting 

boundary blocks of the spliced area and original blocks. 22716 spliced and 22631 original blocks are 

obtained from this dataset, and the system is trained with these blocks. The second stage of the method 

is the localization of the spliced region of the test image. The test image is divided into overlapping 

blocks, and each block is classified using SVM with obtained feature vectors. After labeling image 

blocks according to the results of SVM, spliced edges are revealed. The post-processing stage comes 

into play to eliminate pixels that are mistakenly labeled as spliced edges and then accurately display 

the spliced region. Experimental results showed that the designed system has a higher accuracy 

detection rate than the related methods and is robust against even under JPEG compression and 

Gaussian blur attacks. 
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Figures

Figure 1

An Example for Image Splicing (a, b) original images (c) spliced image

Figure 2

Main steps of the proposed method

Figure 3

The �owchart of marking phase



Figure 4

Detail of feature extraction procedure in marking phase

Figure 5

The steps of the localization phase



Figure 6

Obtained images of each step of the localization phase (Image name: canong3_nikond70_sub_20) (a)
Labeled forged blocks (b) After small component elimination (c) Determined boundary (d) Final output

Figure 7

Obtained images of each step of the localization (Image name: canonxt_kodakdcs330_sub_12) (a)
Labeled forged blocks (b) After small component elimination (c) Determined boundary (d) Final output



Figure 8

Examples of forged images in created data set. (a, b, e, f) Forged images, (c, d, g, h) Masks respectively.



Figure 9

Selecting boundary blocks of spliced region (a) spliced image (b) mask image

Figure 10

Experimental results of images on different color channel (a,d) results of Y channel (b,e) results of Cb
channel (c,f) results of Cb channel

Figure 11

Detection results of the splicing images



Figure 12

Pixel-level performance comparison (%) for the four test images in Fig.11 (a) TPR comparison (b) FPR
comparison

Figure 13

Pixel-level performance comparison (%) for the Columbia dataset. (a) before post processing results (b)
after post-processing (JPEG compression) results (c) after post-processing (Gaussian blur) results


