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Abstract 
 
Gain and phase error sensitivity of the array output is common to all high-resolution direction of 

arrival estimators. In this paper, we addressed the estimation of directions of arrival of multiple 

signals impinging on a non-uniform linear array in the presence of gain and phase perturbations. 

The effect of amplitude and phase distortion on a non-uniform array with defective or missing 

elements is considered. An iteration method is proposed to estimate and compensate for these 

errors to ensure maximum accuracy in DOA estimation. Computer simulations are shown to 

verify the efficacy of the proposed algorithm with the presence of array distortions.   

 

Keywords-Direction-of-arrival (DOA) estimation, non-uniform linear array, error calibration, 

gain and phase errors, compensation  

 
I. Introduction 

 
Practical implementation of direction-finding algorithms has got a lot of significance in many 

areas such as wireless, mobile, vehicular, marine communications, RADAR. An accurate 

estimation of signal directions is critically important in most of these scenarios. The uniform 

linear array structures are the preferred choice in most of the research works. Non- uniform 

linear arrays are also getting attention for a few years due to their excellent performance in 

several scenarios. Also, there can be situations where missing sensors results in loss of data and 

non-uniform spacing between the elements.  Other than this, most of the algorithms with high 

resolution undergo degradation in performance in the presence of array system errors. Such 

degradations in performance can be dealt with in the accurate knowledge of array parameters and 

proper calibration techniques. The robustness in the estimation of DOA can be achieved with 

active calibration techniques using calibration sources. The self-calibration methods use signal 

processing and optimization techniques for the calibration and compensation of these errors. An 



accurate calibration technique is adaptive to the varying physical conditions is required before 

estimating DOA in most of the applications [1,2,3].   

Self-calibration algorithms are very well used for uniform linear structures for the joint 

estimation of DOA and unknown gain and phase errors. A joint calibration using the least square 

method to avoid distortion using one auxiliary source is proposed [4]. DOA and phase 

calibrations are performed jointly in[5] for a linear equally spaced array that uses the least 

squares-based algorithm for self-calibration; no prior information of direction is required. 

Algorithms based on Eigen decomposition along with optimization techniques are implemented 

iteratively and non-iteratively for calibration. In [6], Friedlander and Weiss use this method to 

find DOA and for calibration applicable to any array structures, but it faces the problem of 

convergence to local optima. For unknown phase perturbations, a phase retrieval method is 

suggested in [7]. Direction estimation of mixed signals of far-field and near field with array 

errors is implemented [8], which uses the matrix transformation method. The preprocessing 

techniques such as spatial smoothing can improve the effective aperture and direction estimation 

accuracy [9,10] even in the presence of array perturbations. Among all these techniques, Eigen 

structure-based methods promise to deal with array system errors. To deal with the problems 

faced in [6], Liu proposed a method that uses the Hadamard product of array output and its 

conjugate [11]. Cao proposed another method for DOA estimation that uses the Hadamard 

product of the signal covariance matrix after gain compensation [12]. Phase compensation is not 

required in both these methods, but still, they are computationally expensive. These methods are 

not suitable for uniform linear arrays and need no calibration sources. 

There can be unequal spacing between elements due to space constraints when we operate with 

long uniform arrays or when there is a chance of some of the elements undergoing failure.  A 

proper array output is not obtained due to the non-uniform spacing created by these elements. 

Since the last decade, the research carried out on the design, implementation, and effective usage 

of non-uniform array structures shows the importance of non-uniformly spaced arrays. Eigen 

structure methods work well with uniform and non-uniform array configurations. Spectral 

multiple signal classification (MUSIC), root MUSIC, expectation-maximization (EM) [13,14], 

etc., are some of the successful algorithms applied to direction estimation in non-uniform linear 

arrays. Several techniques, including array interpolation, polynomial approach, and adaptive 



filtering, are used to estimate DOAs for the arbitrary array structures [15,16,17,18]. But the 

effect of array model errors is rarely discussed in the case of non-uniform array structures.  

This paper proposed to estimate gain-phase errors using a non-uniform array where the defective 

or missing elements create the unequal spacing. The effect of gain and phase errors and its 

calibration for an array with missing elements is not considered earlier according to the authors' 

knowledge. Here we consider performance impairments due to array perturbations and their 

compensation for the defective array. An iterative method is proposed to estimate the signal 

directions and array errors with the help of existing calibration and compensation techniques 

applied to a complex covariance matrix. The proposed method uses the calibration techniques 

used in [11] [12], but a complex error covariance matrix is used for DOA estimation, and a joint 

iterative method for calibration, compensation, and direction estimation is proposed.  

The organization of the paper is as follows. The array signal and error model, calibration 

techniques, and compensating methods are discussed in section II. The simulation model and 

results that elucidate the performance of the proposed algorithm are given in Section III. Sections 

IV hold some conclusions. 

Notations: Bold capital letters for matrices and small letters for vectors. E (.) denote expectation, 

and (.)H denotes Hermitian transpose and diag () for diagonal matrix. 

 
II. Signal model and Problem formulation 

 
A. Signal model 

Consider an array antenna in the receiving mode with Q


 elements arranged linearly with half the 

wavelength among them. The array has defective elements, and the active elements count to Q. 

Then, J signals are impinging on this array from different directions. These signals are coming 

from far-field, which are narrowband and uncorrelated with directions 1 2[ , ............. ]s s sJ   . sJ  

Corresponds to jth direction. Then the received array signal can be represented as in (1) 𝒁(𝑡) = 𝑨൫𝛼௦௝൯𝑺(𝑡) + 𝑵(𝑡)                                                                                                                        (1) 

Where received array output signal is given as, 𝑄 × 1   vector, 𝒁(𝑡) = [𝒛𝟏(𝑡), 𝒛𝟐(𝑡), … … 𝒛𝑸(𝑡)] 
the array steering vector is obtained as  𝑨 = [𝒂(𝛼௦ଵ), 𝒂(𝛼௦ଶ), … … 𝒂൫𝛼௦௃൯], and the jth column is 

obtained as  𝒂൫𝛼௦௃൯ = [1 , exp ቀ− ௝ଶగ௱మ,಻ఒ ቁ , … … , exp ቀ− ௝ଶగ௱ೂ,಻ఒ ቁ], and 𝛥ொ,௃ = 𝑥𝑠𝑖𝑛(൫𝛼௦௃൯) 



the uncorrelated J×1 complex signal vector is 𝑺(𝑡) = ൣ𝒔𝟏(𝑡), 𝒔𝟐(𝑡) … … 𝒔𝑱(𝑡)൧  and the complex 

Gaussian noise 𝑵(𝑡) = ൣ𝒏𝟏(𝑡), 𝒏𝟐(𝑡) … … 𝒏𝑸(𝑡)൧ of Q×1 dimension which is uncorrelated. K 

snapshots of signals can be considered for evaluation.  

Considering the perturbations due to gain and phase, the array output matrix equation (1) can be 

modified accommodating the error as (2) 𝒁௘௥௥(𝑡) = 𝜹𝑨൫𝛼௦௃൯𝑺(𝑡) + 𝑵(𝑡)                                                                                                             (2) 

where 𝜹 = 𝝆ொ𝑒௝𝝍ೂ is the Q×1 error vector. where  𝝆ொ = 𝑑𝑖𝑎𝑔൫𝜌ଵ, 𝜌ଶ, … … 𝜌ொ൯ and   𝝍ொ =𝑑𝑖𝑎𝑔൫𝜓ଵ, 𝜓ଶ, … … 𝜓ொ൯ are the Q×Q gain error and the phase error diagonal matrices. 

DOA estimation  

We use an Eigen decomposition-based algorithm for DOA estimation; the covariance matrix of 

the array signal output in the absence of amplitude or phase distortions is 𝑹௭ = 𝐸[𝒁(𝑡)𝒁(𝑡)ு] = 𝑨൫𝛼௦௃൯𝑹௦௃𝑨൫𝛼௦௃൯ு + 𝜎ேଶ𝐈                                                                                 (3) 

Here 𝑹௦௃ is the Q×J matrix of signal covariance, 'I' is the Q×Q identity matrix, 𝜎ேଶ is the noise 

variance 

When we consider the error introduced due to gain and phase in the received signal, the 

covariance matrix of the array output   𝒁௘௥௥(𝑡)can be expressed as 𝑹௭௘௥௥ . 
The error covariance matrix 𝑹௭௘௥௥when calculated based on equation (3)  𝑹௭௘௥௥ = 𝐸[𝒁௘௥௥(𝑡)𝒁௘௥௥(𝑡)ு] = 𝜹𝑨൫𝛼௦௃൯𝑹௦௃𝑨൫𝛼௦௃൯ு𝜹𝑯 + 𝜎ேଶ𝐈                                                         (4) 

 

 The Eigen decomposition of 𝑹௭௘௥௥ gives large Eigenvalues corresponding to signal but with 

error and small Eigenvalues give noise information. The Eigenvectors corresponding to equation 

(4) spans the same subspace as 𝑹௭. Spectral peak search will provide the directions 

corresponding to the error matrix. 

Eigen decomposition of the matrix 𝑹௭ yields the signal as well as noise Eigenvectors. 𝑹௭௘௥௥ = 𝑼௤௦𝑬௦𝑼௤௦ு + 𝑼௤௡𝑬௡𝑼௤௡ு                                                                                                           (5) 𝑬௦ = 𝑑𝑖𝑎𝑔ൣ𝑒ଵ,𝑒ଶ, … … 𝑒௃൧ and 𝐸௡ = 𝑑𝑖𝑎𝑔[𝑒௃ାଵ,𝑒௃ାଶ, … … 𝑒ொ]  are diagonal matrices. 𝑈௤௦  and 𝑈௤௡    

provide information about the signal and noise Eigen values. A spectral peak search will give 

actual signal directions. 

 

 



B. Calibration and compensation  
 
We construct the error covariance matrix of the array output given in Equation (4). Eigen 

decomposition gives the signal and noise Eigenvectors; the larger J values correspond to the 

signal, and J+1 to Q values correspond to the noise power.  The noise power is removed for the 

estimation of gain error. If the Qth diagonal element of Rzerr is given as Rzerr(q,q) and the first 

element is  Rzerr(1,1), then gain error can be calculated from the diagonal elements of covariance 

matrix as 𝝆௤ = 𝑠𝑞𝑟𝑡 ቀ(𝑹𝑧𝑒𝑟𝑟(௤,௤)ିఙಿಿమ(𝑹𝑧𝑒𝑟𝑟(ଵ,ଵ)ିఙಿಿమ ቁ                                                                                                                                  (6) 

 

and 𝜎ேேଶ = ଵொି௃ ∑ 𝑼௤௡ொ௤ୀ௃ାଵ                                                                                                                                 (7)  

 𝑼௤௡ are Eigenvalues corresponding to noise q  is the gain error estimate, and 𝜎ேேଶ  is the estimate 

of 𝜎ேଶ . 

The phase error can be estimated by the following method. 

 𝑭 = ∑ 𝑴௝ு௃௝ୀଵ ൫𝛼௦௃൯𝑼ொି௃𝑼ொି௃ு 𝑴௝൫𝛼௦௃൯                                                                                                   (8) 

 

 Where 𝑴 = 𝑑𝑖𝑎𝑔(𝒂൫𝛼௦௃൯) 

 𝑼 = [𝑢௃ାଵ,𝑢௃ାଶ, … … 𝑢ொ], corresponds to the J+1×Q noise Eigenvector 𝒘 = [1,0,0 … … … 0] 
The solution for phase error is obtained from (8) as 𝑝௘ = 𝑭ିଵ𝒘𝒘ு𝑭ିଵ𝒘                                                                                                                                             (9) 

ψe=angle(𝑝௘) 

The term e is the estimate of phase error. 

 

 

 



C. Compensation of gain-phase error 

After estimating the error in gain and phase present (6),(8), and (9), the gain –phase error vector 

is reconstructed as  𝜹𝒆𝒔𝒕 = 𝝆ொ௘௦௧𝑒௝𝝍ೂ೐ೞ೟ .The diagonal matrix of which is 𝜹௘௦௧ᇱ = 𝑑𝑖𝑎𝑔(𝜹௘௦௧) 

 

The combined gain–phase error matrix of the estimated values is compensated. 𝑹௭௘௥௥ᇱ = 𝜹௘௦௧ᇱ 𝑨𝑹௦𝑨ு𝜹௘௦௧ᇱ ு + 𝜎𝑁𝑁2 𝑰                                                                                                                 (10)    𝑹௭௘௥௥ᇱ − 𝜎𝑁𝑁2 𝑰 = 𝜹௘௦௧ᇱ 𝑨𝑹௦𝑨ு𝜹௘௦௧ᇱ ு                                                                                                      (11)  
Using (11) compensated matrix 𝑹௭௖௢௠௣ can be obtained as 𝑹௭௖௢௠௣ = (𝜹௘௦௧ᇱ )𝑷(𝜹௘௦௧ᇱ ିଵ)ு

                                                                                                      (12)  
 Where 𝑷 = 𝑹௭௘௥௥ᇱ − 𝜎𝑁𝑁2 𝑰  
For the compensated covariance matrix 𝑹௭௖௢௠௣the Eigenvalue decomposition is performed by 

including the estimated noise. The directions after compensating the errors are calculated by 

searching the peaks near the expected direction of signals. 

D. Summary of the Proposed Algorithm 

In summary, the proposed algorithm consists of the following steps: 

Step1: Construct the error covariance matrix of complex signals using (4) assuming initial DOAs 

Step2: Perform Eigen decomposition of (4) 

Step3: Calculate noise power from (5) using (7) 

Step4: Estimate the gain and phase error vectors in the absence of noise using (6),(8), and (9) 

Step5: Reconstruct the covariance matrix with estimated error values and noise with (10)  

Step5: Errors are compensated using (12) 

Step6: Estimate the DOAs using compensated error covariance matrix using a peak search 

method 

Discussion 

This paper deals with gain-phase calibration for an array of non-uniform spacing created by the 

missing or defective elements. The missing elements result in the loss of sufficient data for the 

estimation process. Other than this, the adverse effect caused by the gain phase perturbations also 

causes signal imperfections. The Eigen structure methods can be effective in the case of 

minimum perturbations. But as the error increases, these algorithms fail and show inferior  



 

 

 

Fig.1. A 7 element non-uniform linear array with three defective elements 

 

estimation performance. Hence in the proposed method, we combine the Eigen structure method 

and existing calibration and compensation techniques for DOA estimation. The proposed method 

is not dealt with this way in any earlier works for a non-uniform linear array structure. The Eigen 

structure methods in [11] and [12] also deal with non-uniform spacing, but the array structure 

and signal model are different. When applied to the missing elements array, the comparison of  

these methods provide the proposed method's efficiency. The computational time taken for the 

proposed method is less than half the time taken by the other two methods. 

 

III. Simulation and results 
 

Some representative simulations are implemented for a linear array of 10-elements with missing 

elements. For the following simulations, an array configuration [0, 1, 2, 4, 5, 8, 9]*λ/2is 

considered as shown in Fig.1, where λ is the wavelength corresponding to the center frequency. 

The array has one by third of the elements present at the ends and at the center keeping the 

aperture same [13], [16]. Three signal sources are assumed to be sending signals from directions 

-30, -10, and 20 degrees received by the array. The signals are Gaussian and are uncorrelated 

with narrow bandwidth arriving from far-field. At the array output, these signals are affected by 

noise and perturbations caused by array elements. The noise is assumed as white and un-

correlated. The error introduced by gain is generated as  𝜌ொ = 1 + 3.4641𝜎ఘ𝜂ఘand the error in phase 



as  𝜓ொ = 3.4641𝜎ట𝜂ట . The random numbers 𝜂ఘ and 𝜂𝜓uniformly distributed in the range between 

-0.5 and +0.5. The standard deviations in gain and phase are respectively 𝜎ఘand 𝜎ట. 

 

For all simulations, gain error σρ and phase error σψ are fixed as 0.4 and 40 degrees. The 

simulations are demonstrated for the array set up shown in Fig.1.Comparing the suggested 

method with Eigen structure methods proposed in [11] and [12] is illustrated. These methods use 

the array covariance matrix's complex conjugate matrix with gain error, and phase error 

compensated separately and did not follow a joint iterative method. And in our method, we 

follow joint calibration and estimation for a joint gain phase error matrix. 

The performance metric chosen for accuracy is by calculating the Average Root Mean Square 

Error (ARMSE) given in Equation (13) with 100 iterations. The ARMSE is estimated in different 

experiments for various signals to noise ratio(SNR), the number of signal snapshots, and varying 

standard deviation of a phase error value. The average ARMSE is calculated as 

 

A𝑅𝑀𝑆𝐸 = ට∑ ∑ (|൫𝛼𝑠𝐽൯ − ൫𝛼𝑠𝐽𝑒𝑠𝑡൯|)2/(𝑛𝐾)௄௟ୀଵ௡௜ୀଵ )                                                                                (13) 

 

Where𝛼௦௃ corresponds to actual values, and 𝛼௦௃௘௦௧ are the estimated values. 

A. Performance with SNR and Snapshots 
 
Experiment-1 is conducted to evaluate the performance of various SNR. To know the SNR 

effect, the snapshots to be fixed as 500and vary the SNR from -5dB to +20dB in steps of 5dB for 

the signals mentioned. The deviations in amplitude and phase fixed at 𝜎ఘ=0.4 and 𝜎ట=40degrees. 

For 100 iterations, the direction estimation accuracy is found for different SNR and plotted in 

Fig.2. This experiment is performed with a large error to know the proposed methods' efficiency 

in a worse scenario. And it is obvious that compared to other methods for the proposed method, 

the accuracy is excellent.  

Experiment-2 evaluates the performance of algorithms with more sample points. The out-turn of 

the number of snapshots in the estimation accuracy is evaluated, for which the SNR to be 10 dB, 

as shown in Fig.3. The standard deviations in gain and phase error are fixed as 𝜎ఘ= 0.4 

and𝜎ట=40degrees as in the previous case. The snapshots are varied from 200 to 1200 in steps of 

200 and estimated RMSE with the same number of iterations. However, the performance is 



improved with the increase in snapshots for the proposed and methods in [11] & [12]. So, an 

increase in SNR and snapshots helps improve the accuracy to a great extent when unknown array 

errors are present. 

B. Performance with deviations in gain and phase errors 
 
Experiment-3 is conducted with the standard deviation of phase error 𝜎ట varying from 10 to 90 

degrees for the same setup. Stable performance is obtained from all methods, including the 

proposed method with phase error variations.Fig.4.illustrates independence from the error after 

compensation for all methods. The phase error independence of algorithms in [11] & [12] are 

already proven.  

The spatial spectrum showing the effect of perturbations in gain and phase is demonstrated in 

Fig.5. It shows the effectiveness of the proposed method in eliminating array errors to an extent. 

The spectrum is plotted for 1000 snapshots and SNR 20dB with the standard deviations in gain 

and phase 0.4 and 40 degrees. 

Experiments 4 & 5 are performed to know the influence of gain and phase error variations on 

arrays with different missing elements for a particular SNR.  These experiments are conducted 

for 500 snapshots considering gain error and phase error separately. It is concluded from Fig.6. 

and Fig.7. that the proposed method gives fewer error variations across the elements. 

 
Fig.2. ARMSE vs. SNR curves for 500 snapshots, the standard deviation of gain and phase 

   
            error σρ=0.4, σψ=40°. 



 

 
 
Fig.3. ARMSE vs. the number of snapshots curves for SNR=10dB, the standard deviation in gain 
and phase errors σρ=0.4, σψ=40° 
 

 
 
Fig.4. ARMSE vs. the number of snapshots curves for SNR=10dB, the standard deviation in gain 

and phase errors σρ=0.4, σψ=40° 
 



 
 
Fig.5. Spatial spectrum with error and after compensation for a non-uniform linear array 
   

 
Fig.6. ARMSE curves for the number of sensors vs. gain error estimates for different SNR from -

5dB to 20dB in steps of 5dB. 
    



 
  

Fig.7. ARMSE curves for the number of sensors vs. phase error estimates for different SNR from 
-5dB to 20dB in steps of 5dB. 
         
C. Performance with Number of sensors 
 
In experiment 6, comparing the performance of non-uniform linear array with error and with 

compensation by removing the elements one by one is given in Table.1. The experiment is 

performed for 500 snapshots and SNR 10dB with the same error specifications as in other 

experiments. From the ARMSE values given in the table, the proposed method works effectively 

with a greater number of missing elements. 

Table.1. RMSE values for different configurations of NLA with gain phase error and with 
compensation 

 
Number of 

missing elements 
Array configuration ARMSE without 

compensation 
(deg) 

ARMSE with 
compensation   (deg) 

1 [0 1 2 3 4 6 7 8 9] *λ/2 
 

0.9567 0.0283 

2 [0 1 2 4 5 7 8 9] *λ/2 
 

1.0993 0.0306 

3 [0 1 2 4 5 8 9] *λ/2 
 

1.0771 0.0580 

4 [0 24 5 8 9] *λ/2 
 

1.1355 0.1319 

5 [0 1 3 6 9] *λ/2 
 

1.1372 0.5547 



 
 
IV. Conclusion 
 
An algorithm to reduce the effect of array perturbations caused due to amplitude and phase 

changes is demonstrated in this paper. Several experiments are conducted to evaluate the 

proposed methods' performance to determine the accuracy of DOA estimation in a defective 

array. The proposed algorithm could significantly eliminate the perturbations caused by gain and 

phase errors. Comparing the existing Eigen structure methods shows the improved performance 

of the proposed method with SNR and snapshots. However, the proposed method is good at 

compensating for the performance deterioration caused due to gain and phase variations. The 

effect of coherent signals in such a scenario can be considered for future research. 
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