
Building a Usable and Accessible
Semantic Web Interaction Platform

Roberto García1, Juan Manuel Gimeno1, Ferran Perdrix1,2, Rosa Gil1,

Marta Oliva1, Juan Miguel López1, Afra Pascual1, Montserrat Sendín1

1 Universitat of Lleida. Jaume II, 69. 25001 Lleida, Spain
{rgarcia, jmgimeno, ferranp, rgil, oliva, juanmi, apascual, msendin}@diei.udl.cat

2 Segre Media Group. Del Riu 6. 25007 Lleida, Spain
fperdrix@diarisegre.com

Abstract. Semantic Web applications take off is being slower than expected, at least

with respect to “real-world” applications and users. One of the main reasons for this

lack of adoption is that most Semantic Web user interfaces are still immature from the

usability and accessibility points of view. This is due to the novelty of these

technologies, but this also motivates the exploration of alternative interaction

paradigms, different from the "traditional" Web or Desktop applications ones. Our

proposal is realized in the Rhizomer platform, which explores the possibilities of the

object-action interaction paradigm at the Web scale. This paradigm is well suited for

heterogeneous resource spaces such as those common in the Semantic Web.

Resources, described by metadata, correspond to the objects in the paradigm.

Semantic web services, which are dynamically associated to these objects, correspond

to the actions. The platform is being put into practice in the context of a research

project in order to build an open application for media distribution based on Semantic

Web technologies. Moreover, its usability and accessibility have been evaluated in

this real setting and compared to similar systems.

Keywords. Semantic Web, interaction, usability, accessibility.

1. Introduction

For a complete success of the Semantic Web it is important for it to be adopted by a
critical mass of “real world” end users, i.e. users outside the Semantic Web research
and development community. Nowadays, this has not happened yet and, as some
reports point out [1], this is due in part to the fact that end users find it very difficult
to use. Even researches and advanced users of the Semantic Web community find it
complicated [2].

The Human Computer Interaction (HCI) discipline proposes a methodology
specially focused on this purpose: the User Centred Design (UCD) [3], which is
applied with the aim of obtaining usable products. Usability is defined as the degree
of effectiveness, efficiency and satisfaction when a product is used by certain users to
achieve specific goals within a defined context of use [4].

One of the main reasons why there are so many usability issues in the Semantic
Web is because its nature requires changes in the way interaction is sustained,
especially due to the fact that it is based on heterogeneous and unanticipated data.
Previous systems, even Web-based systems, are commonly based on homogeneous
data whose characteristics are known when the interface is being developed.

For instance, traditionally, many interactive systems have been based on the
Action-Object [5] paradigm: first, the user selects the action he wants to carry out
from pull-down lists that organise the available actions in a hierarchical manner.
Then, the user selects the object over which the action should be carried out. For
instance, the user first selects the “Open” action from a menu and next the document
this action should be applied to.

This is a quite usable interaction model when there is a conceptually homogeneous
set of objects to which actions are applied. If this is not the case, it is difficult to
maintain a clear arrangement of actions because, firstly, it is difficult to organize it
hierarchically and, secondly, because it requires the user to deal simultaneously with a
great amount of them in order to find the one he is interested in. This provokes user’s
cognitive overload and, consequently, usability decays.

However, the Semantic Web promotes and facilitates the creation of very
heterogeneous object sets due to the fact that one of its greatest strengths is the ability
to integrate multiple sources of data. Consequently, a Semantic Web application that
tries to take advantage of this fact will be usually based on a set of heterogeneous
objects.

To follow an Action-Object interaction paradigm in these cases will frequently
result in a less usable Semantic Web application. By contrast, the alternative based on
an Object-Action [6] paradigm is the natural way of interaction in environments
characterized by a high degree of heterogeneity of the objects being manipulated.

In this case, the interaction begins when the user selects an object or a set of
objects he/she is interested in. Then, the user selects the action that he/she wants to
apply on this object, which is chosen from the set of available actions for it. This
paradigm simplifies the interaction and can improve usability in heterogeneous
contexts like the ones we can find in many Semantic Web applications. Users find it
easier to identify and organise objects than actions. In fact, ontologies are mainly

about objects and, in the case of the Semantic Web, web ontologies can be used to
attain this.

On the other hand, the group of available actions for an object can be easily
determined from the restrictions defined by these ontologies. Consequently, it is
possible to exploit the knowledge captured by Semantic Web ontologies in order to
give support to the users while they interact under an Object-Action paradigm, freeing
them from this burden so they can concentrate on more productive tasks. This
approach is especially appropriate in very heterogeneous domains, for instance those
resulting from the integration of data coming from different sources.

A platform that puts this approach into practice in the context of the Semantic Web
is described in Section 2. There are details about how it faces metadata browsing,
metadata edition, the linking between objects and actions, annotation for metadata
generation and usability and accessibility issues. Then, a scenario where this platform
is been applied is introduced in Section 3, the OMediaDis research project. The
accessibility and usability evaluations of these preliminary results are presented in
Section 4. Finally, conclusions and future plans are presented in Section 5 and Section
6 respectively.

2. The Rhizomer Platform

Rhizomer1 is a platform that facilitates building Web applications that help users
publish, query, browse, edit and interact with semantic data. Concretely, it gives
support to 7 typical tasks of Semantic Web end-users. Here, end-users stand for users
with no or limited knowledge about the Semantic Web. Particularly, we don't include
domain experts, which might neither have knowledge about the Semantic Web but
whose main task is to work with ontologies. The end-user tasks supported by
Rhizomer are:
• Search: pose a semantic query using HTML forms, which are dynamically

generated and user customisable, and obtain resource descriptions rendered as
HTML, as shown in Section 2.2.

• Browse: navigate through the graph of data retrieving fragments of manageable
size and rendering them as interactive HTML. More details are available from
Section 2.3.

• Annotate: provide new semantic metadata describing a resource, or edit existing
one, using HTML forms that assist the user during this process. More details about
how users edit metadata are available from Section 2.4 and details about how
metadata is generated semi-automatically from Section 2.6.

• Mashup: mix two or more pieces of metadata about common resources, or
resources similar in some sense, e.g. they all have geographical coordinates or are
situated in time and can be placed together in a map or timeline respectively. This
simple mashups correspond to two of the interaction services detailed in Section
2.5.

1 Rhizomer, http://rhizomik.net/rhizomer

• Share: upload, update and delete pieces of content (HTML, images, videos,
documents, etc.). This is done also through the REST interface and in order to
make it more usable an online HTML editor and interactive content uploader is
integrated into Rhizomer, concretely FCKEditor2.

• Map: define simple mappings between concepts from different ontologies. This
tasks is performed using the same means that for metadata edition but in this case
what the user edits is the definition of a class or property, instead of an instance
definition.

• Transact: generically, this task includes any user action that changes the state of a
real-world entity or of a resource in a system outside Rhizomer. Rhizomer features
mechanisms that facilitate integrating external web services. More details about the
implementation of actions as Semantic Web services are available from Section
2.5. Though these external services are initially considered a transact task, some of
them might give support to any other of the tasks previously introduces, apart from
being a Transact from the point of view of Rhizomer as a system. As the focus is
placed on tasks from the point of view of the user, Transacts should be analysed on
a case-by-case basis and characterised as one of the previous tasks if it is possible.

2.1. Technologies and Architecture

From the technological and architectural point of view, the objective is to build a
generic web portal, not constrained to a particular application domain or data schema,
inspired by Web 2.0 concepts but based on a Semantic Web data model.

In order to obtain a browser based solution, while maintaining a great range of
interaction possibilities; AJAX [7] is the client side choice. The server counterpart
looks for simplicity and provides a set of really simple services on top of a Resource
Description Framework (RDF) metadata store for query, insertion, update and
deletion operations implemented through REST [8] commands. The Rhizomer server
architecture is shown in Fig. 1.

Queries, based on the semantic query language SPARQL [9], are sent to the server
using a GET command. However, in order to add support for the other operations, a
new range of functionalities have been added to a common SPARQL endpoint: the
HTTP PUT and POST commands are used for insertions and updates; the DEL
command is used for deletions.

The whole user experience is built on top of these operations. In order to increase
usability, RDF is completely hidden. End-users are used to interact through their
browsers with HTML web pages. Consequently, Rhizomer incorporates a generic
transformation from RDF to HTML, based on an Extensible Stylesheet Language
Transformation (XSLT) and detailed in Section 2.2. The browsing steps are based on
a fragmentation of the underlying RDF graph, which is detailed in Section 2.2. The
same fragments are used in order to constraint the range of the update and deletion
operations, as it is detailed in Section 2.4. Updates, and new metadata generation, are
carried out through semantics-enabled HTML forms that also hide the burdens of
RDF metadata from users.

2 http://www.fckeditor.net

Fig. 1 The Rhizomer Server architecture

The previous metadata management operations and HTML rendering facilities
provide a very generic way to deal with the object part of the Object-Action
Interaction Paradigm. RDF metadata is the way to describe objects and this metadata
is structured using ontologies. Moreover, none of these operations or rendering
facilities is specialised in a particular kind of metadata, schema or ontology. This
constitutes the object part of the paradigm.

In order to deal with the action part, Rhizomer incorporates Semantic Web
services. Each action corresponds to a Semantic Web service that incorporates in its
description the constraints an object must satisfy in order to be a valid input for the
service. Consequently, the semantic description of the objects, RDF metadata
describing them, is considered in order to determine which actions can be applied to
them.

The objective of the Rhizomer platform, and the reason why Semantic Web
services have been chosen as the way to implement actions, is to build a generic and
dynamic system, which can directly deal with RDF metadata describing different
kinds of objects while being easily extensible in order to incorporate specialised ways
to view and interact with particular kinds of them. More details about this mechanism
are available from Section 2.5.

2.2. Metadata Search

With Rhizomer, users can perform semantic queries without any knowledge of
semantic query languages. All that they need to know is to fill query forms. These
forms are generated dynamically from the kind of resource they are interested in,
more concretely from the properties specific for that kind of resource. Moreover,
users can add other properties that, without being specific, might also apply to

resources of that kind. Each property corresponds to a form input that the user can fill
in order to retrieve all resources with that property valued with the input filler.

Query results are those resources satisfying the search criteria. However, result
pages show more information than just the identifiers of the retrieved resources. In
order to provide more context to the user, each resource is presented together with its
description. The user does not face these descriptions as raw data, the user is
presented an HTML rendering of the descriptions where all identifiers are substituted
by human-readable labels. Moreover, the HTML rendering allows browsing the
resources related to the retrieved ones, as detailed in the next subsection.

2.3. Metadata Browsing

Browsing is the basic interaction paradigm in the Web. It is based on the successive
visualisation of Web pages following the links that connect them. Pages and links are
the main building blocks upon which the interaction is built. However, this browsing
paradigm should change because Semantic Web makes it very difficult to base the
browsing steps on documents.

In other words, it does not seem appropriate, for each step, to show all the triples in
the corresponding document to the user as it is done in the Web. The amount of
information in a single document can be too large, more than thousands of triplets.
Moreover, the frontiers among documents are very fuzzy in the Semantic Web:
usually, many documents are combined in order to get a coherent graph.

Thus, the problem is where to put the limits of each browsing step when presenting
semantic metadata. In other words, how each browsing piece is built and how new
pieces are created and presented following user needs in order to compose a browsing
experience through the whole graph.

In order to facilitate browsing, the proposed approach is based on the construction
of graph fragments that keep anonymous resources associated with the identified
resources that contextualise them. Following this approach, it is possible to construct
fragments for any graph starting from any non-anonymous node. For instance, for the
metadata that describes a piece of content, the starting point is the node that represents
it and that is the subject for all the triples that describe it. This node has an ID and
consequently is not anonymous.

All the triples that start from this node are part of the fragment. Next, all the triples
that describe objects that are anonymous are also added to this set. This happens for
all nodes that are only identifiable in the context of the starting node. For instance,
Fig. 2 shows how an example graph would be fragmented following this approach. As
it can be seen, there are two fragments, each one corresponding to one identified
resource that is described by at least one triple, for which it is the subject. The first
fragment describes http://rhizomik.net/~rosa and includes an anonymous resource for
the address. The second one, for http://www.udl.cat, can be reached from the first one
through a browsing step. On the contrary to the address, it is shown independently
because it is not anonymous.

Fig. 2 Fragmentation of an example RDF graph

The resulting fragments are similar to the ones obtained by the Minimum Self
Contained Graph (MSG) approach [10]. However, MSGs are not intended for graph
browsing but for fragmenting the graph in order to facilitate metadata digital
signatures and graph comparison in an incremental way for synchronisation.

The main difference is that MSGs are built from a given triple, not from a resource,
so they do not keep all the metadata about a resource in the same fragment. This
makes it very difficult to browse a graph using MSGs in a coherent way. Moreover, in
order to make the results more usable, Rhizomer fragments include all the labels for
the involved resources so, when they are rendered to the user, all the URIs are
replaced by labels if they are available.

In order to show fragments to users, they are rendered using HTML that can be
viewed using a web browser, a tool users feel comfortable with. In order to generate
HTML from RDF, fragments are serialised as RDF/XML that is transformed using an
XSL. The XSL transformation, which is part of the Rhizomer platform, guarantees
consistent results whenever the input RDF/XML has been generated from fragments
based on the Rhizomer approach.

The fragmentation makes it possible that the resulting RDF/XML maintains all
related triples together, even those for the anonymous resources included in each
fragment. Consequently, it is possible to show them like a series of HTML tables, one
for each fragment corresponding to the description of an identified resource, that
contain nested tables for the descriptions for the anonymous resources contained in
the fragment. The RDF to HTML transformation can be tested at the ReDeFer3
project web site.

Finally, the identified resources and properties, for which just the available labels
have been included in the fragment, are shown as HTML links that allow continuing
the browsing experience. If the user is interested in any of them, by clicking on them
the fragment for the corresponding identified resource is retrieved and rendered as
HTML. More details about semantic metadata browsing with Rhizomer are available
from [11].

3 ReDeFer, http://rhizomik.net/redefer

2.4. Editing Metadata

The previous fragment-based approach, besides being the foundation for browsing,
allows constraining, to a limited set of triples, the metadata editing and deletion
actions. This way, it is possible to implement editing actions as the replacement of a
given fragment, the one being browsed when the user clicks the edit link, with the one
resulting from the editing process. The same applies for the deletion action. In this
case, all the triples for the fragment being browsed are removed from the metadata
store.

On the other hand, there is also an option that facilitates metadata creation based
on a “create from example” approach. It makes possible to create a new description
based on the one being browsed. The user should provide a new URI for the resource
being described and edit the values generated automatically from the example in order
to adjust them to the resource being described.

All these operations (editing, deletion and creation) are also carried out through an
HTML interface. In addition to the RDF to HTML transformation, the Rhizomer
platform also includes an XSL transformation from RDF to HTML forms. These
forms are generated automatically from the RDF/XML corresponding to a fragment.

 The same approach as in the RDF to HTML transformation is followed but,
instead of generating text values and links for literals and resource, this
transformation generates input fields for each triple. The field is named using the
corresponding property URI its value corresponds to the triple value. The fields can
be used in order to edit the property value, either a resource URIs or a literal.

Moreover, properties and values can be removed or added. Currently, the user
enjoys little assistance during the editing process. Basically, when the user chooses to
add a new property, a SPARQL query is used in order to retrieve all the available
properties for the resource being edited. These are the properties that are not
constrained to a particular resource type plus all the properties constrained to the
types of the resource being edited. The future plan is to improve this support in order
to assist users during the whole editing process, as it is detailed in future work
presented in Section 5.

Finally, an algorithm has been developed in order to reverse the mapping from
RDF to HTML forms. In other words, this algorithm is responsible for generating the
RDF that results from the editing process by mapping the form input fields to the
corresponding triples. This algorithm implements the reverse transformation, in this
case from HTML Forms to the RDF metadata they represent as a result from the
previous RDF to HTML Form transformation and the form filling carried out by the
user before submitting it.

The algorithm generates the RDF triples for the form. Each form field corresponds
to a property, whose URI is captured by the field name, and whose valued is the field
filler. All properties refer to the URI of the resource being edited except for
anonymous resources that are marked with a hidden form field. This completes the
roundtrip for RDF metadata editing from RDF to HTML forms and back to RDF.
More details about semantic metadata edition with Rhizomer are available from [11].

2.5. Actions as Semantic Web Services

The metadata browsing and editing components presented in the previous sections
give users access to resources and their descriptions: the static object part of the
Object-Action paradigm. The user can pose queries to access the descriptions of the
resources managed by the system and browse through the semantic metadata that
describe them.

 Once the object (or objects) of interest is located, the actions that the user can do
upon it are shown to the user following the Object-Action paradigm. In the Rhizomer
platform, this part is implemented by means of semantic web services. This allows a
completely dynamic integration of the actions because they are not predefined for the
different types of objects, i.e. they can be seen as independent entities.

 Actions in Rhizomer are implemented as web services based on REST. That is to
say: simple HTTP requests to the services that get HTTP responses with the result.
For instance, Yahoo! Maps provides a REST interface to a service that, given the
geographical coordinates to show, returns its location in a map.

 REST simplifies the invocation of web services and it is only concerned with this
aspect. Therefore, for the localization and automatic invocation of REST-based web
services, formal descriptions of these services are needed. We believe that the
initiatives of semantic web services are the answer to this problems and that is why
we have considered the modelling mechanisms they provide.

 It has been considered that the ontologies provided by OWL-S 1.1 [12] are the
most appropriate for describing our web services due to their modularity. It has been
easier to detect the classes and properties more appropriate to the kind of descriptions
we require and use them in isolation without any concern about the rest of the
framework. Only the Service Profile provided by OWL-S is used for a high-level
description of the service. Neither Service Grounding nor Service Model are
considered because the simplicity of the REST services considered do not make them
necessary.

 In fact, in the current state of the system, only the class Process and the properties
hasInput and hasOutput (defined in OWL-S) are used. Process allows identifying the
resources that correspond to web services that can be invoked from Rhizomer. Their
URIs correspond to the service's access point, so it must be an URL. Input parameters
for the service are not used but data is sent in the body of a POST message and
corresponds to the RDF/XML serialisation of the description of the resource (or
resources) that the service accepts as input.

The hasInput property is associated to Process resources and identifies the class of
things that serves as input for the service. Consequently, for a service to appear as
available when a concrete resource is shown, this resource must belong to the class
defined as the input of the service. It is not necessary to make an a priori
classification of the resource. To get the desired dynamism, classes in OWL can be
specified to be used in hasInput that represent the necessary and sufficient conditions
to classify resources automatically. This is possible with a Description Logic (DL)
reasoner.

For instance, as it is shown in Table 1, it is possible to define GeolocatedEntity as
the class of all the resources with properties lat and long and use it as the hasInput
class for a service named “map”. There is no need to explicitly classify all the

geolocated entities into this class. The reasoner is responsible for classifying into it all
the resources that satisfy these restrictions.

Table 1 Description of a geographical information visualization service (Left: Rhizomer
rendering. Right: RDF/XML source)

<rdf:RDF ...
 xmlns:process="…/services/owl-s/1.1/Process.owl#"
 xmlns:pos="…w3.org/2003/01/geo/wgs84_pos#">
<process:Process

 rdf:about="…/services/map">
 <rdfs:label>map</rdfs:label>
 <process:hasInput>
 <owl:Class rdf:ID="GeolocatedEntity">
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Restriction>
 <owl:onProperty rdf:resource="&pos;lat"/>
 <owl:minCardinality>1</owl:minCardinality>
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&pos;long"/>
 <owl:minCardinality>1</owl:minCardinality>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
 </process:hasInput>
 <process:hasOutput>text/html</process:hasOutput>
</process:Process></rdf:RDF>

Then, when the user is browsing resource descriptions, it is checked whether they

correspond with the input class of any of the available services. For instance, when a
resource has both latitude and longitude, the reasoner classifies it as an instance of
GeolocatedEntity, so it is detected as being accepted by the “map” service.
Consequently, this service can be invoked passing a description of the corresponding
resource as its input. The user can invoke the service using a link, automatically
associated to the resource using the mechanism described before, and get a
visualization of the position of the resource in a map.
 Direct invocation of web services passing them the RDF metadata of the resource
that must be used as input is not usually allowed. Therefore, in many cases, the URL
associated with a service is actually pointing to a wrapper that receives the RDF,
extracts the data needed by the service, and makes the “real” invocation of the
service. This additional layer between Rhizomer and the services, though it
complicates the implementation, allows using visualisation services such as
GoogleMaps or SIMILE Timeline4 that are only available as JavaScript libraries. In
this case the wrapper is implemented as a servlet that generates the web page that uses
the JavaScript library and provides the final result.

Finally, the hasOutput property specifies the output type of the service. For
visualization services a literal representing the MIME type of the output is used. The
output is shown in a new HTML layer within the Rhizomer interface and the MIME
type is used to correctly interpreting the result. In the next section, a specialised web
service for the visualisation of multimedia resources is shown in the context of a
business application using Rhizomer.

4 Simile Timeline, http://simile.mit.edu/timeline

2.6. Annotation

As it has been shown, all the interaction is based on the semantic metadata describing
the resources managed by the platform. Consequently, when content is uploaded into
the platform it is also semantically enriched with annotations. These annotations
constitute metadata that describe the content and that is necessary in order to drive
user’s interaction with the platform.

These enrichment processes, implemented as different plug-ins, can use
information that already exists in the platform and external services to generate the
metadata, e.g. OpenCalais5. For instance when uploading a news article: first, its
content can be analysed in order to detect proper names referring to places; then,
those places can be searched for in a geolocation service to get their coordinates;
finally, the original article can be annotated as referring to places in those coordinates.
The reasoner can use these annotations to detect that the article as referring to some
GeolocatedEntities, allowing for a map-view to be available for them.

These processes are semiautomatic: sometimes, human intervention is needed
mainly to disambiguate different interpretations of an entity. For instance, if there
exist different places with the same name, the platform presents all the possible
referents and asks the user to choose for the right place the article is referring to. In
the domain of news websites due to its implicit structure there have been defined
metadata extraction algorithms [13] that exploit such structure.

For other types of media such as audio content corresponding to hourly news
flashes, it is possible to extract metadata from the text transcript. This transcript can
either be automatically generated from the audio or be based on the notes given to the
narrator. The former case also requires a manual validation of the transcript and was
developed in a previous research project, S5T [14].

Additionally, metadata can already be present in the uploaded content. For
instance, without abandoning the geolocation context, some digital cameras include a
GPS that can associate to each photograph the coordinates of the place it was taken. If
this photograph is uploaded as part of an article, those coordinates can be associated
with it.

Some enrichment plug-ins can exploit content already present in the platform, even
information provided by the users of the platform. For instance, the same entities that
have been detected in the content can be used to find content that refers to the same
places, people, etc. Moreover, if some users have tagged those related news, those
tags can be suggested as possible ones for the news that is being uploaded. These
suggestions contribute to the network effect of social tagging making it easier to
evolve a common folksonomy. In order to reduce the number of synonymous tags,
some measure of semantic similarity will be needed [15]. More detail about
annotation are available from [16].

5 Thomson Reuters Calais service, http://www.opencalais.com

2.7. Usability and Accessibility

The Human Computer Interaction (HCI) discipline proposes a methodology specially
focused on the usability issue: the User Centred Design (UCD) [3]. According to this
discipline, user needs are taken into account from the beginning and throughout the
whole development process, with the aim of obtaining usable products. In order to put
UCD into practice, different prototypes and models are constantly developed and
evaluated, both by usability experts and final users, in terms of guaranteeing usability.

Usability evaluation is a major aspect in any UCD methodology. So, it is clear that
to ensure that the Rhizomer platform is usable is essential to assess its level of
usability. In the literature, it is possible to find several usability evaluation techniques
and among them there is the heuristic evaluation, which has been applied in order to
evaluate the Rhizomer usability.

Regarding accessibility, it is remarkable its demographic importance. For instance,
according to Eurostat [17], from a total population of 362 million people in Europe in
1996, a 14,8% of the population between 6 and 64 years old had physical,
psychological or sensorial disabilities. Also, there are also powerful legal reasons in
order to develop accessible web user interfaces. In any case, just for ethical and moral
reasons, it is important for a web platform such as Rhizomer to take accessibility into
account.

Apart from overall web content accessibility, the content generated by the “action”
plug-ins included in the platform (such as map or timeline) should also be analysed.
Although they are included in the platform, these plug-ins are independent
components that are reused in the platform. The accessibility of uploaded contents is
also a factor to be taken into account, which is for instance addressed in the case of
the semantically annotated transcript for audio content. Finally, there is also concern
about the accessibility of the AJAX technology used in the platform, as existing
accessibility guidelines [18] establish that web pages should be usable for users with
disabilities without the necessity of having Javascript activated in their web browsers.

A usability evaluation and a deep analysis of the accessibility of the platform have
been carried out. A detailed description of the methods used and the results are
presented in the Evaluation Section.

2.8. Related Work

There are very few tools that provide the range of functionalities and interaction
services presented in this section in a flexible way. One of the tools that provide
similar functionality is the extensible Semantic Web browser Haystack [19].
However, this is not a Web application; it is a desktop application build on top of the
Eclipse6 framework.

A similar but Web-based solution that has been recently announced is Paggr7. It is
a framework for semantic dashboards development based on Semantic Web
technologies and PHP. However, Paggr is still under development so it has not been

6 Eclipse, http://www.eclipse.org
7 Paggr - Dashboards for a Web of Data, http://paggr.com/about

possible to evaluate it with detail. In any case, it seems to concentrate on semantic
web browsing and querying and currently does not feature other interaction services.

Other related tools are ODESeW [20], a Semantic Web application development
platform, or semantic wikis like the semantic extension for Media Wiki [21], which
mix wiki mark-up and semantic annotations. Even more specific in functionality are
RDF Browsers like Tabulator [22] or Disco [23], which just provide browsing
capabilities and in some cases metadata edition.

Moreover, many Semantic Web browsers show all the triples from a Semantic
Web document at once, in the case of Tabulator as an unfoldable tree. As preliminary
user tests show, this approach causes many usability problems because, as the tree
grows, it rapidly becomes difficult to manage. As it has been said, documents contain
many triples and, additionally, each navigation step adds more triples from the new
document to the current set.

Another approach is faceted browsing, as in /facet [24]. However, our objective is
a simpler and more polyvalent browsing mechanism that, though it might lack the
guidance provided by facets, it can deal better with heterogeneous information spaces.

Moreover, faceted and other Semantic Web browser tend to make it difficult to
navigate through metadata structures that feature many anonymous resources, as it is
the case for the semantic metadata managed in the OMediaDis project that is
described in Section 3. Usually, they show anonymous resources and their associated
metadata in isolation with the consequent loose of context for the user. This is due to
the fact that anonymous resources commonly lack labels or other clues that help
identifying them.

From the point of view of the additional interaction services beyond search and
browse, there are some tools that already provide these specialised views on different
kinds of semantically described resources, such as Tabulator [22] or Exhibit [25].
However, the range of alternative views is fixed a priori and new views are
incorporated in an ad-hoc way to the underlying RDF metadata browsing facilities.

In the Rhizomer case, this flexibility is attained through semantic descriptions of
the available interaction services based on OWL-S. However, different semantic web
services platforms have been evaluated, mainly WSMO [26] and SAWSDL [27]. All
of them are too complex for the simple requirements of the platform.

The complexity does not lie in the semantic model that these platforms provide, but
in the fact that all of them are based on web services standards such as WSDL/SOAP
[28]. This kind of semantic web services is more appropriate in business
environments but it is over-complex for the Rhizomer platform in which the actions
will mainly be used to implement data visualization services.

 Besides, many of the publicly available web services, e.g. Google Maps, are not
available as WSDL/SOAP. In fact, it seems that services based on WSDL/SOAP are
being displaced by REST ones [29]. For instance, big web services providers (like
Google, eBay or Yahoo!) are basing their services on REST and export them by APIs
in JavaScript or other languages. This approach is appropriate when strong
requirements of security do not exist and a simple development model is an objective.
In any case, it is also possible to implement security mechanisms over REST [8].

3. OMediaDis Application Scenario

OMediaDis [30] is a research project whose aim is to build an open platform for
content distribution management. On the one hand, it is intended for small content
providers and professionals. For them it provides services like content publishing,
semantic indexing, assisted metadata edition, copyright management and use
monitoring. Most of this services are provided by the Rhizomer platform, which is
complemented with a semantic copyright management module [31] and a
watermarking service in order to provide the two last services.
On the other hand, the platform is also intended for a full range of content consumers
and distributors, which might be individual users but also small to medium media
groups like Segre8, which participates in the project. For them, the services are
content search and navigation, annotation, recommendation and content negotiation.
All these services are based on Rhizomer except for the last one, which is provided by
the copyright management module.

This paper does not get into detail about those services that are not provided by
Rhizomer. In the next subsections, some of the Rhizomer functionalities in the
context of the OMediaDis project are presented. First of all, it is shown how content
metadata can be browsed. Then, there is an action specific for this project that allows
interaction with the semantically annotated transcript of audio content. This action is
dynamically associated to all audio objects that have a transcript. Finally, it also
shown how the same generic interface can be used in order to browse additional
metadata and ontologies that capture the application domain knowledge.

3.1. Content Search and Browsing

The users can start by building a query for the particular kind of object they are
interested in, e.g. audio. They do not need to know the semantic query language
syntax, the underlying ontologies are used in order to build an HTML form. In order
to do that, a similar process to that followed for metadata edition is carried out, c.f.
Section 2.4. Initially, the form has one input field for each of the properties specific
for that kind of object or its superclasses, e.g. transcript, as defined in the underlying
ontologies.

Moreover, the user can interactively add other properties that also apply to that
kind of object, but are not specific to them, for instance title. Each added property
corresponds to a new input field in the form. The user fills the input fields in order to
constraint the values for the corresponding properties, which implicitly defines the
query that will be generated automatically when the user submits the form.

Once a query is executed, metadata associated with the selected resources is shown
by means of the HTML interface for metadata browsing, as it is shown in the left part
of Fig. 3. In the case of the OMediaDis project, multimedia metadata is based on the
Dublin Core9 for editorial metadata, i.e. title, date, author, etc. and on an ontology for

8 Diari Segre Media Group, http://www.diarisegre.com
9 Dublin Core, http://dublincore.org

the standard IPTC News Subjects10 for genres. For content-based metadata,
particularly content decomposition based on audio transcripts, a MPEG-7 Ontology is
used [32].

All the resources and properties that appear in the metadata HTML view are links
that allow the user to retrieve additional metadata about the clicked resource. For
instance, the contents described in Fig. 3 refer to the "agriculture" genre. If the
corresponding link is followed, the metadata for the corresponding resource is
retrieved from the IPTC news topics ontology and shown. Consequently, it is possible
to browse the descriptions for the news items managed by the OMediaDis application
and the descriptions for the terms used in these descriptions.

3.2. Transcript-based Interaction Service

In addition to the metadata browsing facility, which provides a way to interact with
the objects by means of the object-action paradigm, there are some web services, such
as the ones described in Section 2.5, that provide some customized actions.
Additionally, there is a specific action for the OMediaDis scenario that is enabled for
audiovisual resources, i.e. resource of type mpeg7:AudioType, with an associated
transcript property. The corresponding web service provides a view, shown in the
right part of Fig. 3, which allows additional interaction possibilities through the
transcript semantic annotations automatically generated [14]. Moreover, this view
also improves the accessibility of the managed content.

...audio/20081123 a AudioType

title Mobilització en co…
date 2008-11-23
genre agriculture
transcript http://...1123.xml

play

...audio/20090120 a AudioType

title Agricultura
Ecològ…

date 2009-01-20
genre agriculture
transcript http://...0120.xml

play

http://www.segre.com/audio/20081123.mp3

La mobilització en contra dels transgènics i en favor de
Josep Pàmies també ha servit per introduir altres
reclamacions. En aquest cas, alguns dels col·lectius de la
lluita contra aquests cultius demanen que la Universitat
de Lleida rebi una especialització en Agricultura
Ecològica. Asseguren que serien uns estudis pioners que
servirien al centre per recuperar prestigi.

Fig. 3 Metadata view (left) and transcript view (right) available through the "play" service

This view allows rendering audio and video content and interacting with it through
a clickable version of the audio transcript. Two kinds of interactions are possible from
the transcript. First, it is possible to click on any word in the transcript that has been

10 Semantic Newspaper, http://rhizomik.net/semanticnewspaper

Search Keyword
Browse Term

indexed in order to perform a keyword-based query for all the pieces of content
whose transcript contains that keyword.

 Second, the transcript is enriched with links to the ontology used for semantic
annotation. Each word in the transcript whose meaning is represented by an ontology
concept is linked to a description of that concept. Then, that description is presented
as it is detailed in the next subsection.

For instance, the transcript includes the name of a place that has been indexed and
modeled in the ontology. Consequently, it can be clicked in order to get all the
audiovisual items where that place appears or, alternatively, to browse all the
knowledge about that place encoded in the corresponding domain ontologies.

3.3. Domain Knowledge Browsing

When the user chooses to browse concepts in the annotated transcript, the interaction
gets back to the generic metadata browsing view. Then, the user can browse the
ontologies used to annotate the transcripts. Each browsing step gets the user through
these ontologies.

Consequently, continuing with the example in the previous subsection, when the
user looks for the available knowledge about that place, an interactive view of the
RDF data about it is shown. Currently, we are using concepts from DBPedia [33] in
order to semantically annotate content whenever possible.

This way, the user can benefit from the modelling effort already made in
Wikipedia and formalised into DBPedia and, for instance, be aware of the coordinates
of the place in order to situate it into a map or the regions that place belongs to. The
subsequent browsing steps, e.g. following the links to the containing regions or
related places, will show additional domain knowledge from the annotation
ontologies, in this case DBPedia.

In addition to this interactive navigation of all the domain knowledge, at any
browsing step, it is also possible to get all the content annotated using the concept
currently being browsed. This action might bring the user back to the transcript-based
view. Thanks to this dual browsing experience, the user can navigate through
audiovisual content and the underlying domain knowledge in a complementary an
interwoven way.

4. Evaluation

In order to assess the usability and accessibility of the Rhizomer platform and of its
application in the context of the OMediaDis project, an accessibility and an usability
evaluation have been conducted. Both are detailed in the next subsections.

4.1. Accessibility Evaluation

Although different web accessibility evaluation methodologies exist [34], the most
accepted one is the one provided by the W3C [35]. Moreover, accessibility evaluation

has been traditionally based on revising the fulfilment of the Web Content
Accessibility Guidelines (WCAG) proposed by the W3C [18]. Thereby, this
accessibility evaluation methodology has been used to evaluate the accessibility of the
Rhizomer platform. It must be noted that the accessibility evaluation was performed
in late February 2009, so future changes performed on the Rhizomer platform should
have influence on its accessibility. This W3C methodology defines a series of steps in
order to evaluate web accessibility.

4.1.1. Determine the scope of the evaluation
Web pages from the core Rhizomer platform and related to different elements such as
maps and multimedia were selected as a representative sample of pages in the
platform. All analyzed web pages were in the public part of the platform, so they can
be freely accessed by any user.

4.1.2. Use web accessibility evaluation tools
The correctness of (X)HTML content and CSS style sheet standards linked to each
web page were analysed using the validation services provided by the W3C. Then
automatic accessibility evaluation tools [36] were used, which show a revision of
automatically detectable accessibility problems. According to the W3C [18], it is
recommended to use at least two different automatic accessibility evaluation tools.
This recommendation is based on the fact that, being the accessibility guidelines
expressed using natural language, the results provided by different automatic
evaluators can differ. In this particular case, TAW11, Evalaccess12 and
TotalValidator13 were used as automatic accessibility evaluation tools.

Results for (X)HTML evaluation show that web pages on the platform are correct.
However, CSS evaluation indicates that there are several issues regarding the use of
no standard elements in the style sheets. This situation is mainly due to the use of
external components such as the GoogleMaps API, SIMILE Timelines and Yahoo!
User Interface components.

4.1.3. Manually evaluate representative page sample
Automatic accessibility evaluation tools also point out several possible problems that
cannot be automatically revised and require manual revision by accessibility
evaluators. In this sense, the accessibility checklist was applied on every web page.
Use of assistive technology such as screen readers or text browsers is also advocated.

Lynx as a text browser and JAWS as a voice browser were used with this aim.
Different existing web browsers were used to check if the web pages were correctly
visualized. During the manual evaluation, no major accessibility problems have been
found in the core Rhizomer web pages, thus automatic accessibility evaluation results
can be considered as a good indicator for overall core Rhizomer platform
accessibility.

11 TAW, http://www.tawdis.net/taw3/cms/en
12 Evakaccess 2, http://sipt07.si.ehu.es/evalaccess2
13 TotalValidator, http://www.totalvalidator.com

Table 3 shows the different accessibility errors found for the representative sample
of core Rhizomer platform web pages. The first column displays the core Rhizomer
web pages analysed. Next three are related to the WCAG errors found. Each of these
columns represents the amount of errors found for the different levels of priority
defined in the WCAG, based on the checkpoint’s impact of accessibility. Priority 1
checkpoints represent the checkpoints that a Web content developer must satisfy,
priority 2 the ones that should be satisfied and priority 3 are the ones that a web
developer may address to enhance accessibility.

Table 3. Errors found during the automatic analysis of a representative sample of the core
Rhizomer platform web pages

Web Page Priority 1 Priority 2 Priority 3
http://rhizomik.net/ 0 0 0
http://rhizomik.net/login/login.jsp 0 5 0
http://rhizomik.net/copyright 3 4 0
http://rhizomik.net/?edit 0 0 0
http://rhizomik.net/rhizome 0 0 0
http://rhizomik.net/rhizomer 0 4 0
http://rhizomik.net/copyright?edit 3 3 0
http://rhizomik.net/rhizome?edit 0 0 0
http://rhizomik.net/rhizomer?edit 0 4 0
http://rhizomik.net/s5t 0 5 5
http://rhizomik.net/s5t/login/login.jsp 0 5 0
http://rhizomik.net/s5t/copyright 0 2 1
http://rhizomik.net/s5t/?edit 0 4 5

There are other considerations to be taken into account, such as the accessibility of

documents uploaded by users. In this case, no accessibility evaluation has been
performed on the documents currently on the platform, mainly PDF format
documents, as it would be out of the scope of evaluating the accessibility of the
platform itself.

Regarding the accessibility of multimedia elements, it is remarkable the fact that
multimedia elements are integrated in the platform in a way that makes them easy to
be located. Fig. 4 shows how multimedia content can be accessed using a text
browser. Anyhow, options to stop or pause the audio content cannot by performed by
text browsers as they are performed using a Flash components. In this case, these
options would only be available for a user with disabilities by downloading the file
and playing it in his/her own media player.

There is also external content which is not accessible using textual browser and
that can be considered as a handicap for people with disabilities. This situation is due
to the presence external components such as information from the DBPedia, SIMILE
Timetables and Google maps. These components are integrated by means of
Javascript based libraries so accessibility compliance fails in all web pages that make
use of them. WCAG 6.3 checkpoint establishes that web pages must be usable if
programmable objects such as scripts are turned off or not supported. It is remarkable
that transcripts for audio content do not show any lack of accessibility when accessed

by text or voice browsers as they are linked from a HTML page without any
Javascript.

Fig. 4. Downloadable audio content in Rhizomer using Lynx text browser

4.1.4. Comparison with other semantic web environments
This subsection is aimed at providing a comparison among accessibility results from
different semantic web platforms. The platforms considered for this study have been
DBPedia14, Multimedian15 and Mspace16. The last version of Tabulator17 was also
intended to be analysed, but its Javascript based navigation has made the crawling
process impossible to apply, as the navigation in Tabulator did not point out to
different web pages that could be crawled. It must be noted that this kind of
navigation implies an accessibility problem by itself, as Tabulator can not be
navigated using specialized navigators such as textual browsers.

Rhizomer was also included in the analysis in order to be compared with the other
platforms. Anyway, it must be taken into account that results provided in previous
subsections are more reliable for Rhizomer, as they also include manual accessibility
evaluation.

In order to provide a valid comparison, a preliminary review of accessibility was
performed according to the methodology provided by the W3C [37]. Due to the
relatively small number of web pages on each platform analysed, all selected
platforms were crawled to extract the web pages that constituted each platform. A
limit of 250 web pages was established to perform the crawling in the unique case
where analysed web sites was larger than established limits, in this case the DBPedia.

All crawled web pages constituted the sample of representative web pages. These
web pages were then examined with graphical and specialized browsers. Finally, two

14 http://dbpedia.org/
15 http://e-culture.multimedian.nl/demo/session/search
16 http://demo.mspace.fm/
17 http://dig.csail.mit.edu/2005/ajar/release/tabulator/0.8/tab.html

automatic accessibility evaluation tools were used to check the accessibility of each
web page, in this case TAW and TotalValidator.

It must be noted that even if no manual accessibility evaluation is performed, the
preliminary review of accessibility provides a landscape about the state. In this sense,
references can be found in the literature about accessibility measurement metrics
based on the WCAG that show small error rates when compared with manual
accessibility evaluations [38, 39, 40].

Table 4 summarizes the results from the performed analysis. In this case, the mean
and variance of the different priorities of accessibility errors was calculated for each
web site. The number of analysed pages for each platform has also been included. It
must be noted that changes performed on all platforms since the evaluation was
performed may have had influence on the accessibility of them.

Table 4. Automatic accessibility evaluation results for the different analysed platforms

Platform Mean
prior. 1

Variance
prior. 1

Mean
prior. 2

Variance
prior. 2

Mean
prior. 3

Variance
prior. 3 #pages

Rhizomer 0,180 0,013 7,500 0,190 1,060 0,037 50
DBPedia 0,016 0,001 4,020 0,001 0,996 0,000 250
Multimedian 1,400 0,072 9,636 0,175 2,309 0,023 55
Mspace 6,286 0,270 11,750 0,332 1,821 0,155 28

Results of performed analysis show DBPedia as the platform with the best

accessibility results overall. It shows the best results for all priority accessibility
errors. Furthermore, it also shows the lowest variance for all the different priorities. It
shows that most analysed pages share a similar number of accessibility errors. In this
sense, solving most common accessibility errors found for a single web page could
result in an improvement for the whole website, as web pages throughout the website
share similar accessibility errors.

Anyhow, it must be pointed out that, as a semantic version of the Wikipedia,
DBPedia shows little web pages where multimedia content such as videos is handled
and shows little use of Javascript and AJAX. In this sense, the structure and
requirements for the website makes it less prone to have accessibility errors compared
to the rest of analysed websites. In the case of DBPedia, accessibility errors found
relied on the use of deprecated and the lack of summary in tables.

Rhizomer is the second with best accessibility overall. Results in this evaluation
are quite similar to the ones shown in previous subsection. In this sense, most
accessibility errors found relied on the use of external data by means of Javascript.
Low values shown in the variance for the three kinds of accessibility errors imply that
errors found are quite similar for all the web pages in the platform. It can be noted
that, regarding Rhizomer platform, there are differences between current accessibility
analysis and the one depicted on table 3 from previous subsection. This fact can be
considered as normal, as web pages out of the scope of a representative sample can
influence the accessibility of the overall website.

Regarding Multimedian, accessibility errors found increase notably regarding
previously mentioned platforms. The fact that it includes multimedia content managed
by means of Javascript has supposed notable accessibility problems. Main
accessibility problems found include ensuring that equivalents of dynamic content are

updated and available as often as the dynamic content, providing text equivalents for
non-text elements and using absolute units instead of relative ones in markup
language attribute and style sheet property values.

Finally, Mspace shows the most accessibility errors per page among all compared
platforms. Main problems found are related with ensuring that web pages are usable
when scripts are turned off, providing text equivalents for every non-text element and
avoiding deprecated attributes of W3C technologies.

4.2. Usability Evaluation

In order to make the system easier for users to reach platform functionality (final
consumers as much as other actors in the value chain), a heuristic evaluation was
carried out to detect possible usability problems. In the rest of the section, we present
the methodology that has been applied, the procedure that has been followed and the
results that have been obtained.

4.2.1. Description of the method
Usability evaluation is a major aspect in any UCD methodology. So, it is clear that to
ensure that the Rhizomer platform is usable is essential to assess their level of
usability. In the literature is possible to find several usability evaluation techniques,
among them there is the heuristic evaluation.

Jakob Nielsen [41] developed heuristic evaluation on the basis of several years of
experience in teaching and consulting about usability engineering. It involves the
participation of a small set of evaluators, which have to examine the interface in order
to judge its compliance with recognized usability principles (the known heuristic
principles, or simply "heuristics") following a process of inspection of the user
interface. Consequently, this method belongs to the category of usability evaluation
methods known as inspection methods.

As afore pointed out, this method does not require recruiting users, which can be
burdensome due to the need for arranging an appointment, a place to test them and a
payment for their time. On the contrary, it only requires a small set of evaluators
(between three and five experts), reducing the complexity, the expended time and thus
the cost for evaluation. Furthermore, there is neither especial software nor equipment
required. This is why it is popularly considered as a discount usability engineering
method.

The time required varies with the size of the artifact and its complexity. However,
we have to take into account that this method does not evaluate a real use of the
system, and thus it does not provide the same feedback than an evaluation with users.
This is the reason why it is recommended to combine this method with some user
testing. In particular, using heuristic evaluation prior to user testing will reduce the
number and severity of design errors discovered by users. Another problem related
with this method is that the results are liable to certain subjectivity by the evaluators.
This inconvenience can be partially overcome involving a greater number of
evaluators.

Today, in the context of usability evaluation of interactive systems, the heuristic
evaluation technique is very popular. Independent research [42] has confirmed that

heuristic evaluation is a very efficient usability engineering method. Jeffries et al.
found that heuristic reviews identified more usability issues than the other methods
used in their study.

The output from using the heuristic evaluation method consists of: (1) a list of
usability problems in the interface, particularly those that are difficult to detect by
users, so that they can be attended to as part of an iterative design process [43]. This
list should include references to those usability principles to which they violate; (2)
some suggestions and recommendations about their possible solution.

4.2.2. Followed Procedure
In this case, four evaluators were recruited, which were in charge of examining and
judging the interface. Initially a first contact was made with the portal to become
familiar with the interface and then the evaluation and rating was conducted based on
the heuristics specifically chosen for the portal to evaluate.

In particular, the heuristics adopted are fourteen rules that extend the Nielsen and
Molish’s ten heuristic rules [44]: H1. Clarity of objectives; H2. Visibility of system
status; H3. Match between system and the real world/logic of information; H4. User
control and freedom; H5. Consistency and standards; H6. Error prevention; H7.
Recognition rather than recall; H8. Flexibility and efficiency of use; H9. Aesthetic
and minimalist design; H10. Help and documentation; H11. Search; H12. News; H13.
Various; H14. Architecture information.

These heuristics were divided into subheuristics (a set of questions intended to
facilitate the exploration of the main heuristic), in such a way that it is possible to
form related concept groups and subgroups. A detailed description of each heuristic
and subheuristics can be found in [45]. Apart from that, to determine the severity
level, two parameters were used: Impact and Frequency. Impact of the problem was
used to estimate in which level users are affected when the problem happens.
Frequency shows the frequency with which problems occur. Each parameter can be
scored on a scale that ranges from 0 (not a usability problem) to 4 (catastrophe: it is
compulsory to fix it) [46]. To facilitate the data collection a template adjusted to these
parameters and heuristics was specifically made and delivered to each evaluator.
Comments from evaluators were also collected.

The method was performed by having each evaluator inspect the interface alone.
This individual revision is accompanied with annotations and punctuations about the
severity of each problem detected, in the terms aforementioned. Only after all
evaluations were completed individually it was allowed to communicate the different
opinions. For that, a meeting was arranged so that the evaluators could analyze the
collected data, put together their findings and discuss their points of view, with the
aim of drawing some final conclusions. This procedure is important in order to ensure
independent and unbiased evaluations from each evaluator.

Conclusions and some recommendations related to the usability problems detected
were gathered in a report, which have been ordered and categorized according to their
severity level and priority for their solution. The most important ones are presented in
the next section.

4.2.3. Results obtained
As a consequence of the review of the qualitative results, evaluators made some
improvement proposals:
• Differentiating types of links: browsing the Rhizomer platform is based on several

types of links. It is used a kind of link for browsing among contents and another for
browsing metadata. Although the standard link representation is used in the
platform, other types of representation are needed to distinguish which is the kind
of destination, and also to identify which part of text is a link. Currently, content
links are underlined and metadata links are not. This problem does not fulfil the
heuristics H2 (Visibility of system status) and H5 (Consistency and standards).

• Highlight access to the services offered: the actions that the user can do upon an
object, which are showed to the user following the Object-Action paradigm, must
to be highlighted in order to not pass unnoticed for the user. This could be achieved
using small icons showing appropriate metaphors or other methods. The heuristics
violated are the H2 (Visibility of system status), H4 (User control and freedom)
and H7 (Recognition rather than recall).

• Lack of feedback about current user location in the site: the Rhizome platform
interface is divided into two main areas. The left one is the metadata browsing area
and the central-right one is the place where content is shown. In many cases, like
when browsing metadata, changes are limited to the right area, less prominent than
the central part, so they might get unnoticed by the user. This might cause user
disorientation. Currently, this issue has been minimised by loading into the central
part, whenever the user browses the available resources of a particular type, the
query form dynamically generated for that type, c.f. Section 3.1. In any case, in
order to improve user feedback, we are currently considering implementing some
sort of breadcrumbs [47] from the user metadata graph traversal. This problem is
related with the heuristic H2 (Visibility of system status).

5. Conclusions

The Rhizomer platform provides an interaction environment based on the object-
action paradigm that is better suited for heterogeneous information spaces than the
traditional action-object paradigm. The platform is based on Web 2.0 technologies on
top of Semantic Web metadata and ontologies.

The platform offers a generic RDF to HTML transformation that makes it possible
to navigate through semantic metadata and the associated ontologies. Resources and
their descriptions constitute the object part of the paradigm while the actions that the
users can carry out on these resources are implemented by means of a Semantic Web
services based on a REST approach. Actions are associated to objects in a completely
dynamic way computed by a Semantic Web reasoner on the basis of the semantic
descriptions of resources and services.

This platform is being applied in the context of the OMediaDis research project in
order to develop its user interface and many of its services. In this scenario, besides
semantic search, metadata browsing and some generic actions such as showing
geolocated entities in a map, there is a specialised action for audiovisual content with

a transcript for the audio voice. This service allows to reproduce the content and to
see the transcript enriched with semantic annotations for keywords. The annotations
can be used in order to retrieve other pieces of content featuring the same keyword or
in order to browse the semantic annotations metadata.

From the point of view of the usability of the Rhizomer platform, and of the web
applications based on it, it has been possible to take into account the results of the
usability evaluation carried out. The first change has been to clarify the explanation of
the purpose of the sites as it appears in the home page. The home page has been also
improved by the addition of a news mechanism, as also recommended.

Other important changes implemented in the last version of Rhizomer are that now
visited links are marked with a different colour and that there is a distinction between
links to HTML content (underlined) and links to metadata queries (not underlined but
with the link colour and constrained to a very specific region of the page). Finally, the
links to the services available for each resource have been highlighted by using a
different colour than for the rest of the links. In order to guarantee they are noticed the
link colour chosen is the complementary colour to the one chosen for the rest of the
links.

Regarding accessibility, it is clear that it is a key aspect to be taken into account for
providing support for a human-centred approach in Rhizomer platform. In this sense,
the use of semantic data and data integration can be a good chance to improve
accessibility. Results for performed accessibility evaluation show that the use of
semantic data can be helpful for accessibility, as core Rhizomer web pages show little
accessibility problems.

Moreover, the use of automatic transcripts for media content as an external source
provides a significant accessibility betterment as the transcription of the media is
made automatically without any effort for media content uploaders. Anyhow, external
data integration in Rhizomer platform also shows significant accessibility related
problems. These problems are hard to be resolved as they are caused mainly by the
APIs of such external data that external information providers supply.

Currently, they make necessary the inclusion of not accessible web code in
Rhizomer so the external data can be integrated in the platform. Although data
integration is always a desirable target for providing better services for users, there is
a clear risk of leaving an important amount of users out of it by the lack of
accessibility of available technologies.

The cause for the lack of accessibility in the APIs for integrating external data can
be located in the difficulties that making web 2.0 technologies (such as AJAX)
accessible presumes. In this sense, the recent approval of a second version for WCAG
[48] is expected to be helpful as it provides a mean to validate several web 2.0 related
accessibility issues. Moreover, W3C is unrolling a new recommendation to develop
accessible rich internet applications [49] that is expected to solve some of the
difficulties associated with the data integration technologies used in this work.

6. Future Work

The future work focuses on metadata edition features and user testing. In addition to
the current assistance when a user tries to add a new property to the current
description, the idea is also to assist users when they add property values. Properties
ranges and restrictions on them that apply to the kind of resource being edited will be
considered in order to propose resources that constitute a proper value for the
property.

Moreover, up to now we have focused the use of the annotations to offer different
views of the data. In the OMediaDis project we plan to use these metadata to offer
recommendation services of content to the users of the platform. These metadata can
be used to better characterise both the profiles of the users and the description of the
content allowing for a better recommendation system.

The other main objective is to continue with usability and accessibility testing in
order to quantify the usability improvements that this approach can produce.
Currently, we have the first usability results coming from the heuristic evaluations
carried out by usability experts. They have pointed out many usability issues and
some improvements have been already implemented as described in Section 5.

However, there are still some remaining issues. Some of them are simple and will
require just some development effort. For instance, to integrate a search box in the
home page and also the inclusion of dynamic search forms generated from the kind of
resource the user is interested in. These automatically generated forms are currently
work in progress and benefit from the underlying ontologies and the mechanisms for
assisted metadata edition currently available.

There are other issues that require further research and development, which are
related to the fact that Rhizomer is based on Semantic Web technologies and this
introduces a more complex information architecture. Consequently, we should
explore these issues with more detail, for instance in order to determine if it is
possible to adapt “classical” information architecture component like breadcrumbs to
the Semantic Web. The current work line is that they might be generated from the
navigation history that Rhizomer keeps track of in order to provide support to back
and forward browser buttons.

Acknowledgements

The work described in this paper has been partially supported by Spanish Ministry of
Science and Innovation through the Open Platform for Multichannel Content
Distribution Management (OMediaDis) research project (TIN2008-06228).

References

 1. Shadbolt, N., Hall, W. and Berners-Lee, T.: "The Semantic Web revisited". Intelligent

Systems, Vol. 21, No. 3, pp. 96-101, 2006
 2. Heath, T., Domingue J. and Shabajee P.: User interaction and uptake challenges to

successfully deploying Semantic Web technologies". In Proc. 3rd International Semantic
Web User Interaction Workshop, Athens, Georgia, USA, 2006

 3. Granollers, T.: "User Centred Design Process Model: Integration of Usability Engineering
and Software Engineering". Doctoral Consortium, INTERACT’03, Zurich, 2003

 4. ISO 9241-11. (1998). ISO 9241-11. Ergonomic Req. Part 11: Guidance on Usability. ISO
9241-11

 5. Bruner, J.: "Action, Thought and Language". Alliance Psychology, 1989
 6. Raskin, J. : "The Human Interface". Addison Wesley, 2000
 7. Crane, D., Pascarello, E., James, D.: "Ajax in Action". Manning Publications, 2005
 8. Richardson, L. and Ruby, S.: "Restful Web Services". O'Reilly, 2007
 9. Prud'hommeaux, E., Seaborne, A.: "SPARQL Query Language for RDF". W3C

Recommendation, World Wide Web Consortium, 2008. Available from
http://www.w3.org/TR/rdf-sparql-query

 10. Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F. : "Signing individual fragments of an
RDF graph". Proceedings of the WWW 2005 Conference, pp. 1020 - 1021, 2005

 11. García, R., Gimeno, J.M., Perdrix, F., Gil, R., Oliva, M.: "A Platform for Object-Action
Semantic Web Interaction". In: 16th International Conference on Knowledge Engineering
and Knowledge Management Knowledge Patterns, EKAW'08. Lecture Notes in Computer
Science, Vol. 5268, pp. 404-418, Springer, 2008

 12. Martin, D. (ed.) OWL-S: "Semantic Markup for Web Services". W3C Member Submission,
2004. http://www.w3.org/Submission/OWL-S

 13. Mukherjee, S., Ramakrishnan, I.V.: "Automated Semantic Analysis of Schematic Data".
World Wide Web, Vol. 11, No. 4, pp. 427-464, 2008

 14. Tejedor, J., García, R., Fernández, M., López, F., Perdrix, F., Macías, J.A., Gil, R., Oliva,
M., Moya, D., Colás, J., Castells, P.: "Ontology-Based Retrieval of Human Speech". In:
Proc. of the 6th International Workshop on Web Semantics, WebS'07. IEEE Computer
Society Press, 2007

 15. Maguitman, A.G., Menczer, F., Erdinc, F., Roinestad, H., Vespignani, A.: "Algorithmic
Computation and Approximation of Semantic Similarity". World Wide Web, Vol. 9, No. 4,
pp. 431-456, 2006

 16. García, R., Gimeno, J. M., Perdrix, F., Gil, R., Oliva, M.: "The Rhizomer Semantic Content
Management System". In : 1st World Summit on the Knowledge Society (WSKS 2008).
Lecture Notes in Artificial Intelligence, Vol. 5288, pp. 385-394, Springer, 2008

 17. Eurostat: "Health Stadistics". Office for Oficial Publications of the European Communities,
2002. Retrieved from: http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-08-02-
002/EN/KS-08-02-002-EN.PDF

 18. World Wide Web Consortium (W3C): "Web Content Acessibility Guidelines 1.0", 1999.
Retrieved on June 2009 from: http://www.w3.org/TR/WCAG10/

 19. Quan, D., Huynh, D., Karger, D.: "Haystack: A Platform for Authoring End User Semantic
Web Applications". In : The SemanticWeb - ISWC 2003. Lecture Notices in Computer
Science, Vol. 2870, pp. 738-753, Springer, 2003

 20. Corcho, O., López-Cima, A., Gómez-Pérez, A.: "The ODESeW 2.0 semantic web
application framework". In : Proceedings of the 15th International Conference on World
Wide Web, WWW '06, pp. 1049-1050, ACM Press, 2006

 21. Krötzsch, M., Vrandečić, D., Völkel, M.: "Semantic MediaWiki". In : Proceedings of the
Int. Semantic Web Conference, ISWC’06. LNCS vol. 4273, pp. 935-942, Springer (2006)

 22. Berners-Lee et. al: "Exploring and Analyzing linked dates on the Semantic Web". Proc. of
the 3rd International Semantic Web User Interaction Workshop, 2006

 23. Bojars, U., Passant, A., Giasson, F., Breslin, J. G.: An Architecture to Discover and Query

Decentralized RDF Data. In : Proceedings of the ESWC'07 Workshop on Scripting for the
Semantic Web, SFSW 2007. CEUR Workshop Proceedings, vol. 248 (2007)

 24. Hildebrand, M., Ossenbruggen, J., Hardman, L.: "/facet: A Browser for Heterogeneous
Semantic Web Repositories". In Proc. of the International Semantic Web Conference 2006.
Lecture Notices in Computer Science, Vol. 4273, pp. 272-285, Springer 2006

 25. Huynh, D. F., Karger, D. R., & Miller, R. C. "Exhibit: lightweight structured data
publishing". In : Proceedings of the 16th international conference on World Wide Web, pp.
737-746, Banff, Alberta, Canada, ACM, 2007

26 . Roman, D., Keller, O., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., et al.: "Web
Service Modeling Ontology". Applied Ontology, Vol. 1, No. 1, pp. 77-106, 2005

27 . Farrell, J. and Lausen, H. (eds.): "Semantic Annotations for WSDL and XML Schema".
W3C Working Draft, 2007. http://www.w3.org/TR/sawsdl

28 . Weerawarana, S., Curbera, F., Leymann, F., Storey, T. and Ferguson, D.F.: "Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More". Prentice Hall, 2005

29 . Forrest, B.: "Google Deprecates Their SOAP Search API". O'Reilly Radar, December 18,
2006. http: //radar.oreilly.com/archives/2006/12/google_depreciates_SOAP_API.html

 30. García, R., Gimeno, J.M.: "Open Platform for Multichannel Media Distribution
Management HTML". Position paper, W3C Workshop on the Future of Social Networking,
15-16 January, Barcelona, Spain, 2009

 31. García, R., Gil, R.: "A Web Ontology for Copyright Contracts Management". International
Journal of Electronic Commerce, Vol. 12, No. 4, pp. 103-117, 2008

 32. García, R., Tsinaraki, C., Celma, O., Christodoulakis, S.: "Multimedia Content Description
using Semantic Web Languages". In Y. Kompatsiaris & P. Hobson (Eds.): Semantic
Multimedia and Ontologies: Theory and Applications. Springer, pp. 17-54, 2008

 33. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z. DBpedia: "A
Nucleus for a Web of Open Data". In: The Semantic Web, ISWC/ASCW'07, LNCS, Vol.
4825, pp. 722-735. Springer, 2008

 34. Velleman, E., Velasco, C., Snaprud, M., Burger, D. (Eds.) (2006) Unified Web Evaluation
Methodology (UWEM 1.0). Retrieved on November 2008 from:
http://www.wabcluster.org/uwem1/ UWEM_1_0.pdf

 35. Evaluating Web Sites for Accessibility: Overview. Retrieved on June 2009 from:
http://www.w3.org/WAI/eval/conformance.html

 36. Web Accessibility Evaluation Tools, Complete List. Retrieved on June 2009 from:
http://www.w3.org/WAI/ER/tools/complete

 37. Preliminary Review of Web Sites for Accessibility. Retrieved on June 2009 from:
http://www.w3.org/WAI/eval/preliminary.html

 38. Sullivan, T., Matson, R.: "Barriers to use: usability and content accessibility on the web’s
most popular sites". In: Proc. of ACM Conference on Universal Usability, pages 139–144,
2000

 39. Arrue, M., Vigo, M., Abascal J.: "Quantitative metrics for web accessibility evaluation". In:
Proceedings of the 1st Workshop on Web Metrics and Measurement (WMM05), Sydney,
Australia, 2005

 40. Brajnik, G.: "Automatic testing, page sampling and measuring web accessibility". In:
Proceedings of the 23rd Annual Int. Technology and Persons with Disabilities Conference,
CSUN’08, Los Angeles, CA, 2008

41. Nielsen, J.: "Usability Engineering". AP Professional. Boston, MA, 1993
42. Jeffries, R., Miller, J.R., Wharton, C., Uyeda, K.M.: "User interface evaluation in the real

world: A comparison of four techniques". In: Proceedings ACM CHI'91 Conference, pp.
119-124. New Orleans, LA, 1991

43. Nielsen J, Mack RL.: "Usability inspection methods". John Wiley and Sons, New York,

1994
 44. Nielsen, J., Molich, R.: "Heuristic evaluation of user interfaces". In: Proc. of the SIGCHI

conference on human factors in computing systems. ACM Press, 1990
45. González, M., Masip, L., Granollers, T., Oliva, M.: " Quantitative analysis in a heuristic

evaluation experiment". Advances in Engineering Software, in press. 2009
46. Nielsen J.: "Severity ratings for usability problems". useit.com: usable information

technology, 1995. Available from:
http://www.useit.com/papers/heuristic/severityrating.html

 47. Tidwell, J.: "Designing Interfaces: Patterns for Effective Interaction Design". O'Reilly,
2005

 48. Caldwell, B., Cooper, M., Guarino, L., Vanderheiden, G.: "Web Content Accessibility
Guidelines (WCAG) 2.0 Recommendation". Retrieved on June 2009 from:
http://www.w3.org/TR/WCAG20/

 49. Craig, J., Cooper, M., Pappas, L., Schwerdtfeger, R., Seeman, L.: "Accessible Rich Internet
Applications (WAI-ARIA) 1.0 Working draft". Retrieved on June 2009 from:
http://www.w3.org/TR/wai-aria/

