Skip to main content
Log in

A mobile environment for sketching-based skeleton generation

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Articulated character animation is typically performed by manually creating and rigging a skeleton into an unfolded 3D object. However, such tasks are not trivial, as they require a substantial amount of training and practices. Although automatic skeleton extraction methods have been proposed, they generally may not guarantee that the resulting skeleton can help produce desired animations according to user intention. In this paper, we present a sketching-based skeleton generation method suitable for use in the mobile environment. This method takes user sketching as an input, and based on the mesh segmentation result of a 3D object, it estimates a skeleton for articulated character animation. In addition, we are currently developing a Web-based mobile platform to support mesh editing by a group of collaborative users and we depict the system architecture of such a platform. Results show that our method can produce better skeletons in terms of joint positions and topological structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Au, O., Tai, C., Chu, H., Cohen-Or, D., Lee, T.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27(3), Aug (2008)

  2. Aujay, G., Hétroy, F., Lazarus, F., Depraz, C.: Harmonic skeleton for realistic character animation. Proc. EG/ACM Symp. on Computer Animation, pp. 151–160, Aug (2007)

  3. Benford, S., et al.: Designing storytelling technologies to encouraging collaboration between young children. Proc. ACM CHI., pp. 556–563, Apr (2000)

  4. Blair, P.: Cartoon Animation. Walter Foster Publishing (1994)

  5. Chan, A., Lau, R., Ng, B.: A hybrid motion prediction method for caching and prefetching in distributed virtual environments. Proc. ACM VRST. pp. 135–142, Nov (2001)

  6. Chan, A., Lau, R., Ng, B.: Motion prediction for caching and prefetching in mouse-driven DVE navigation. ACM Trans Internet Technol 5(1), 70–91 (2005)

    Article  Google Scholar 

  7. Chang, E., Jenkins, O.: Sketching articulation and pose for facial animation. Proc. EG/ACM Symp. on Computer Animation. pp. 271–280, Sep (2006)

  8. Chim, J., Green, M., Lau, R., Leong, H.V., Si, A.: On caching and prefetching of virtual objects in distributed virtual environments. Proc. ACM Multimedia. pp. 171–180, Sept (1998)

  9. Chim, J., Lau, R., Leong, H.V., Si, A.: CyberWalk: a web-based distributed virtual walkthrough environment. IEEE Trans Multimedia 5(4), 503–580 (2003)

    Google Scholar 

  10. Cornea, N., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis Comput 21(11), 945–955 (2005)

    Article  Google Scholar 

  11. Davis, J., Agrawala, M., Chuang, E., Popović, Z., Salesin, D.: A sketching interface for articulated figure animation. Proc. EG/ACM Symp. on Computer Animation. pp. 320–328, Jul (2003)

  12. Dey, T., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. Proc. EG Symp. on Geometry Processing. pp. 143–152, Jun (2006)

  13. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)

    Google Scholar 

  14. Fogel, E., Cohen-Or, D., Ironi, R., Zvi, T.: A web architecture for progressive delivery of 3D content. Proc 3D Web Technology. pp. 35–41, Feb (2001)

  15. Garland, M., Willmott, A.A., Heckbert, P.: “Hierarchical face clustering on polygonal surfaces. Proc. ACM Symp. on Interactive 3D Graphics. pp. 49–58, Mar (2001)

  16. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. Proc. ACM SIGGRAPH. pp. 203–212, Aug (2001)

  17. Hoffman, D., Singh, M.: Salience of visual parts. Cognition 63(1), 29–78 (1997)

    Article  Google Scholar 

  18. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching interface for 3D freeform design. Proc. ACM SIGGRAPH, pp. 409–416, Jul (1999)

  19. Komura, T., Ho, E., Lau, R.: Animating reactive motion using momentum-based inverse kinematics. Comput Animat Virtual Worlds (special issue CASA’05) 16(3-4), 213–223 (2005)

    Article  Google Scholar 

  20. Lavoué, G., Dupont, F., Baskurt, A.: A new CAD mesh segmentation method, based on curvature tensor analysis. Comput-Aided Des 37(10), 975–987 (2005)

    Article  Google Scholar 

  21. Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. Proc. ACM SIGGRAPH. pp. 362–371, Jul (2002)

  22. Li, F., Lau, R., Ng, F.: VSculpt: a distributed virtual sculpting environment for collaborative design. IEEE Trans Multimedia 5(4), 570–580 (2003)

    Article  Google Scholar 

  23. Li, F., Lau, R., Kilis, D., Li, L.,: Game-on-demand: an online game engine based on geometry streaming. ACM Trans. on Multimedia Computing, Communications and Applications (To appear)

  24. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rossl, C., Seidel, H.-P.: Differential coordinates for interactive mesh editing. Proc. Shape Modeling International. pp. 181–190, Jun (2004)

  25. Liu, P., Wu, F., Ma, W., Liang, R., Ouhyoung, M.: Automatic animation skeleton construction using repulsive force field. Proc. Pacific Graphics. pp. 409–413, Oct (2003)

  26. Ma, C., Wan, S., Lee, J.: Three-dimensional topology preserving reduction on the 4-subfields. IEEE Trans Pattern Anal Mach Intell 24(12), 1594–1605 (2002)

    Article  Google Scholar 

  27. Ma, W., Wu, F., Ouhyoung, M.: Skeleton extraction of 3D objects with radial basis functions. Proc. Shape Modeling International. pp. 207–215, May (2003)

  28. Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for detail-preserving mesh editing. Proc. ACM SIGGRAPH. pp. 1142–1147, Jul (2005)

  29. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: FiberMesh: designing freeform surfaces with 3D curves. ACM Trans. Graph. 26(3), Aug (2007)

  30. Ng, B., Si, A., Lau, R., Li, F.: A multi-server architecture for distributed virtual walkthrough. Proc. ACM VRST. pp. 163–170, Nov (2002)

  31. Nishino, H., Shihara, K., Kagawa, T., Utsumiya, K.: A ubiquitous 3D graphics modeler for mobile devices. Procs. IEEE Symposium on Parallel and Distributed Processing with Applications. pp. 502–509, Dec (2008)

  32. Parent, R.: Computer Animation: Algorithms and Techniques. Morgan Kaufmann (2002)

  33. Pascucci, V., Scorzelli, G., Bremer, P., Mascarenhas, A.: Robust on-line computation of reeb graphs: simplicity and speed. ACM Trans. Graph, 26(3), Aug (2007)

  34. Pottmann, H., Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The isophotic metric and its application to feature-Sensitive morphology on surfaces. Procs. European Conf. on Computer Vision, Part IV. pp. 560–572, May (2004)

  35. Sander, P., Wood, Z., Gortler, S., Snyder, J., Hoppe, H.: Multi-chart geometry images. Proc. EG Symp. on Geometry Processing. pp. 146–155, (2003)

  36. Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. Comput Graphics Forum 21(3), 219–228 (2002)

    Article  Google Scholar 

  37. Tam, G., Lau, R.: Deformable model retrieval based on topological and geometric signatures. IEEE Trans Vis Comput Graph 13(3), 470–482 (2007)

    Article  MathSciNet  Google Scholar 

  38. To, D., Lau, R., Green, M.: A method for progressive and selective transmission of multi-resolution models. Proc. ACM VRST. pp. 88–95, Dec (1999)

  39. To, D., Lau, R., Green, M.: An adaptive multi-resolution method for progressive model transmission. Presence: Teleoperators Virtual Environ 10(1), 62–74 (2001)

    Article  Google Scholar 

  40. Waller, V., Johnston, R.B.: Making ubiquitous computing available. Commun ACM 52(10), 127–130 (2009)

    Article  Google Scholar 

  41. Wang, Y., Lee, T.: Curve-skeleton extraction using iterative least squares optimization. IEEE Trans Vis Comput Graph 14(4), 196–209 (2008)

    MathSciNet  Google Scholar 

  42. Wu, F., Ma, W., Liang, R., Chen, B., Ouhyoung, M.: Domain connected graph: the skeleton of a closed 3D shape for animation. Vis Comput 22(2), 117–135 (2006)

    Article  Google Scholar 

  43. Yang, B., Li, F., Pan, Z., Wang, X.: An effective error resilient packetization scheme for progressive mesh transmission over unreliable networks. J Comput Sci Technol 23(6), 1015–1025 (2008)

    Article  Google Scholar 

  44. Zhang, E., Mischaikow, K., Turk, G.: Feature based surface parameterization and texture mapping. ACM Trans Graph 24(1), 1–27 (2005)

    Article  Google Scholar 

  45. Zhou, Y., Toga, A.: Efficient skeletonization of volumetric objects. IEEE Trans Vis Comput Graph 5(3), 196–209 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick W. B. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Q., Li, F.W.B. A mobile environment for sketching-based skeleton generation. World Wide Web 14, 261–279 (2011). https://doi.org/10.1007/s11280-010-0104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-010-0104-2

Keyword

Navigation