Skip to main content
Log in

SocialSearch  + : enriching social network with web evidences

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

This paper introduces the problem of searching for social network accounts, e.g., Twitter accounts, with the rich information available on the Web, e.g., people names, attributes, and relationships to other people. For this purpose, we need to map Twitter accounts with Web entities. However, existing solutions building upon naive textual matching inevitably suffer low precision due to false positives (e.g., fake impersonator accounts) and false negatives (e.g., accounts using nicknames). To overcome these limitations, we leverage “relational” evidences extracted from the Web corpus. We consider two types of evidence resources—First, web-scale entity relationship graphs, extracted from name co-occurrences crawled from the Web. This co-occurrence relationship can be interpreted as an “implicit” counterpart of Twitter follower relationships. Second, web-scale relational repositories, such as Freebase with complementary strength. Using both textual and relational features obtained from these resources, we learn a ranking function aggregating these features for the accurate ordering of candidate matches. Another key contribution of this paper is to formulate confidence scoring as a separate problem from relevance ranking. A baseline approach is to use the relevance of the top match itself as the confidence score. In contrast, we train a separate classifier, using not only the top relevance score but also various statistical features extracted from the relevance scores of all candidates, and empirically validate that our approach outperforms the baseline approach. We evaluate our proposed system using real-life internet-scale entity-relationship and social network graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proc. WSDM, pp. 635–644. ACM (2011)

  2. Bekkerman, R., McCallum, A.: Disambiguating web appearances of people in a social network. In: Proc. WWW, pp. 463–470. ACM (2005)

  3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 30(1–7), 107–117 (1998)

    Google Scholar 

  4. Chen, J., Geyer, W., Dugan, C., Muller, M., Guy, I.: Make new friends, but keep the old: recommending people on social networking sites. In: Proc. CHI, pp. 201–210. ACM (2009)

  5. Google: Freebase data dumps. http://download.freebase.com/datadumps/ (2010). Accessed 18 Nov 2010

  6. Guy, I., Zwerdling, N., Carmel, D., Ronen, I., Uziel, E., Yogev, S., Ofek-Koifman, S.: Personalized recommendation of social software items based on social relations. In: RecSys, pp. 53–60. ACM (2009)

  7. Hill, S., Provost, F.: The myth of the double-blind review?: author identification using only citations. SIGKDD Explorations Newsletter 5(2), 179–184 (2003)

    Article  Google Scholar 

  8. Hu, B., Hu, B.: On capturing semantics in ontology mapping. World Wide Web 11(3), 361–385 (2008)

    Article  Google Scholar 

  9. Java, A., Song, X., Finin, T., Tseng, B.: Why we Twitter: understanding microblogging usage and communities. In: Proc. WebKDD/SNA-KDD, pp. 56–65. ACM (2007)

  10. Joachims, T.: Making large-scale support vector machine learning practical. MIT Press (1999)

  11. Joachims, T.: Optimizing search engines using clickthrough data. In: Proc. SIGKDD, pp. 133–142. ACM (2002)

  12. Joachims, T.: Training linear SVMs in linear time. In: Proc. SIGKDD, pp. 217–226. ACM (2006)

  13. Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative recommendation. In: Proc. SIGIR, pp. 195–202. ACM (2009)

  14. Lee, J., Hwang, S.-w., Nie, Z., Wen, J.-R.: Query result clustering for object-level search. In: Proc. SIGKDD, pp. 1205–1214. ACM (2009)

  15. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proc. ICDE, pp. 117–128. IEEE Computer Society (2002)

  16. Musiał, K., Kazienko, P.: Social networks on the internet. World Wide Web 1–42 (2012, in press). doi:10.1007/s11280-011-0155-z

  17. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: Proc. S&P, pp. 111–125. IEEE Computer Society (2008)

  18. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Proc. S&P, pp. 173–187. IEEE Computer Society (2009)

  19. Nie, Z., Wen, J.-R., Ma, W.-Y.: Object-level vertical search. In: Proc. CIDR, pp. 235–246 (2007)

  20. On, B.-W., Lee, D., Kang, J., Mitra, P.: Comparative study of name disambiguation problem using a scalable blocking-based framework. In: Proc. JCDL, pp. 344–353. ACM (2005)

  21. Taneva, B., Kacimi, M., Weikum, G.: Gathering and ranking photos of named entities with high precision, high recall, and diversity. In: Proc. WSDM, pp. 431–440. ACM (2010)

  22. Yin, Z., Gupta, M., Weninger, T., Han, J.: LINKREC: a unified framework for link recommendation with user attributes and graph structure. In: Proc. WWW, pp. 1211–1212. ACM (2010)

  23. You, G.-w., Hwang, S.-w., Nie, Z., Wen, J.-R.: SocialSearch: enhancing entity search with social network matching. In: Proc. EDBT, pp. 515–519. ACM (2011)

  24. Zhu, J., Nie, Z., Liu, X., Zhang, B., Wen, J.-R.: StatSnowball: a statistical approach to extracting entity relationships In: Proc. WWW, pp. 101–110. ACM (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-won Hwang.

Additional information

This work builds on and significantly extends our preliminary work [23].

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, Gw., Park, Jw., Hwang, Sw. et al. SocialSearch  + : enriching social network with web evidences. World Wide Web 16, 701–727 (2013). https://doi.org/10.1007/s11280-012-0165-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-012-0165-5

Keywords

Navigation