Skip to main content
Log in

Modeling and navigation of social information networks in metric spaces

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

We are living in a world of various kinds of social information networks with small-world and scale-free characteristics. It is still an intriguing problem for researchers to explain how and why so many obviously different networks emerge and share common intrinsic characteristics such as short diameter, higher cluster and power-law degree distribution. Most previous works studied the topology formation and information navigation of complex networks in separated models. In this paper, we propose a metric based range intersection model to explore the topology evolution and information navigation in a synthetic way. We model the network as a set of nodes in a distance metric space where each node has an ID and a range of neighbor information around its ID in the metric space. The range of a node can be seen as the local knowledge or information that the node has around its position in the metric space. The topology is formed by setting up a link between two nodes that have intersected ranges. Information navigation over the network is modeled as a greedy routing process using neighbor links and the distance metric. Different from previous models, we do not assume that nodes join the network one by one and set up link according to the degree distribution of existing nodes or distances between nodes. Range of node is the key factor determining the topology and navigation properties of a network. Moreover, as the ranges of nodes grow, the network evolves from a set of totally isolated nodes to a connected network. Thus, we can easily model the network evolutions in terms of the network size and the individual node information range using the range intersection model. A set of experiments shows that networks constructed using the range intersection model have the scale-free degree distribution, high cluster, short diameter, and high navigability properties that are owned by the real networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. Phys Rev E 64(4), 046135 (2001)

    Article  Google Scholar 

  2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev Mod Phys 74(1), 47 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Albert, R., Jeong, H., Barabasi, A.L.: Diameter of the World Wide Web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  4. Angeles, M., Krioukov, D., Boguna, M.: Self-similarity of complex networks and hidden metric spaces. Phys Rev Lett 100(7), 078701 (2008)

    Article  Google Scholar 

  5. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Barabasi, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the World Wide Web, Physica (Amsterdam). Physica A 281, 69–77 (2000)

    Article  Google Scholar 

  7. Bodine, E., Hassibi, B., Wierman, A.: Generalizing kronecker graphs to model searchable networks, in Proceedings of the 47th Annual Conference on Communication, Control, and Computing, 2009. Allerton 2009

  8. Boguna, M., Krioukov, D., Claffy, K.C.: Navigability of complex networks. Nat Phys 5, 74–80 (2009)

    Article  Google Scholar 

  9. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the Web. Comput Netw 33(1–6), 309–321 (2000)

    Article  Google Scholar 

  10. Fabrikant, A., Koutsoupias, E., Papadimitriou, C. H.: Heuristically optimized tradeoffs: a new paradigm for power laws in the Internet. In: Proc. the 29th International Colloquium on Automata, Languages, and Programming, LNCS 2380, pp. 110-122, 2002

  11. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-Law Relationships of the Internet Topology. In: Proceedings of the ACM SIGCOMM 1999 Conference, pp. 251-261, 1999

  12. Kleinberg, J.: Small-world phenomena and the dynamics of information, In: Proc. Neural Info. Proce. Sys. (NIPS), 2001

  13. Lattanzi, S., Panconesi, A. Sivakumar, D.: Milgram-routing in social networks. In: Proc. the 20th international conference on World wide web (WWW ’11), pp.725-734, 2011

  14. Lattanzi, S., Sivakumar, D.: Affiliation networks. In: Proc. the 41st annual ACM symposium on Theory of computing (STOC ’09). pp.427-434. 2009

  15. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J Mach Learn Res 11, 985–1042 (2010)

    MATH  MathSciNet  Google Scholar 

  16. Leskovec, J., Kleinberg, J., and Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proc. the Eleventh ACM SIGKDD. pp.177, 2005

  17. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social networks. Proc Natl Acad Sci 102(33), 11623–11628 (2005)

    Article  Google Scholar 

  18. Limpert, E., Stahel, W.A., Abbt, M.: Log-normal distributions across the sciences: keys and clues. BioScience 51(5), 341–352 (2001)

    Article  Google Scholar 

  19. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Math 1(2), 226–251 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Musiał, K., Kazienko, P.: Social networks on the Internet. J World Wide Web (2012). doi:10.1007/s11280-011-0155-z

  21. Newman, M.E.J.: The structure and function of complex networks, available at http://arxiv.org/abs/cond-mat/0303516v1, 2003

  22. Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys. Rev. E 67(2), 026112 (2003)

    Article  Google Scholar 

  23. Rosvall, M., Trusina, A., Minnhagen, P., Sneppen, K.: Networks and cities: an information perspective. Phys Rev Lett 94(2), 028701 (2005)

    Article  Google Scholar 

  24. Rozenfeld, A.F., Cohen, R., Avraham, D., Havlin, S.: Scale-free networks on lattices. Phys Rev Lett 89, 218701 (2002)

    Article  Google Scholar 

  25. Simkin, M.V., Roychowdhury, V.P.: Copied citations create renowned papers? Annals Improb. Res 11(1), 24–27 (2005). available at: arXiv:cond-mat/0305150v1

    Article  Google Scholar 

  26. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32, 425 (1969)

    Article  Google Scholar 

  27. Vazquez, A.: Knowing a network by walking on it: emergence of scaling, available at http://arxiv.org/abs/cond-mat/0006132, (2000)

  28. Watts, D.J., Dodds, P.S., Newman, M.E.J.: Identity and search in social networks. Science 296(5571), 1302–1305 (2002)

    Article  Google Scholar 

  29. Watts, D., Strogatz, S.: Collective dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  30. You, G., Park, J., Hwang, S., Nie, Z., Wen, J.: SocialSearch+ : enriching social network with web evidences, J. World Wide Web, available at: http://www.springerlink.com/index/10.1007/s11280-012-0165-5, (2012)

  31. Zhuge, H.: Semantic linking through spaces for cyber-physical-socio intelligence: a methodology. Artif Intell 175, 988–1019 (2011)

    Article  Google Scholar 

  32. Zhuge H.: The knowledge grid -toward cyber-physical society, World Scientific, 2004(1st edition), 2012 (2nd edition), Chapter 2: The Semantic Link Network, 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Zhuge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Zhuge, H. Modeling and navigation of social information networks in metric spaces. World Wide Web 17, 649–670 (2014). https://doi.org/10.1007/s11280-012-0199-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-012-0199-8

Keywords

Navigation