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Overall Response:
We thank the reviewers for their insightful comments and the editor for giving
us the chance to prepare a revision.

There is no major concern raised by the reviewers. Based on the comments
given, we have further improved the manuscript as follows. (i) We improved
the literature review (Section 2) by adding discussions to the group query and
the convoy query. (ii) We improved the presentation of the experiment section
(Section 6) by adding a list of summary of all the algorithms involved in the
experiments and more details of the SS-FR algorithm for Fig. 14.

Below, we respond in detail to the various comments made by the reviewers
(each reviewer’s comment is shown in italics).

Reviewer 1

This paper formulates and studies two interesting problems, namely the
min-dist location selection (MDLS) problem and the min-dist facility replace-
ment (MDFR) problem. By redefining the MDLS problem through the concept
of “nearest facility distance” (NFD), a general framework of solving MDLS as
well as two common approaches (QVC and NFC) is proposed. To tackle the
drawbacks of both the QVC and NFC methods, the authors introduce the MND
method, which avoids physically storing the extra index as used in the NFC
method and preserves efficiency. In extension to the previous ICDE’12 paper,
the MDFR problem is further investigated, where the novel Replacement Influ-
ence Distance (RID) method is proposed, which borrows the key ideas behind
the MND method, and leverages the “second nearest facility circles.” Extensive
experiments on both synthetic and real datasets are conducted. The evaluation
results show the promising advantage of the MND and RID methods against the
competitors.

Overall, this paper is well-written and the proposed methods are techni-
cally sound. In particular, I like Section 5 where the authors give a compre-
hensive analysis and summarization of the proposed methods, in terms of pre-
computation cost, I/O cost and CPU cost. The experiments are quite convinc-
ing.

Response: Thank you very much for the support.

Reviewer 2

This paper addresses two location selection queries, namely min-dist location
selection and facility replacement query. For these two correlated but different
queries, the authors propose a set of algorithmic solutions, analyze the efficiency
of the algorithms, and conduct experiments to evaluate them. The experimental
results show that the most advanced algorithms are efficient in terms of running
time and IO.

The problems studied in this paper are of practical interest in various do-
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mains. The proposed solutions, especially the most carefully designed algorithms,
are solid with those theoretic analysis. They are also appropriately evaluated
through extensive experiments.

The overall structure and writing of this paper is of high quality. With
many concrete examples and reader-friendly illustrations, the paper is very easy
to follow.

I have the following minor comments, which however by no means should
affect the acceptance of this submission.

Response: Thank you very much for the support.

1. It would be nice if a table of summary is provided, e.g., in the beginning
of the experiments section, to cover all the algorithms for both query types (and
perhaps alternatives in comparison as well).

Response: We added a summary of all the algorithms involved in the experi-
ments to Section 6.1 as follows.

We evaluate the performance of four methods for the min-dist location se-
lection query:

• SS, where the potential locations and the clients are sequentially scanned
for dr value computation.

• QVC, where quasi-Voronoi cells are used to reduce the search space for dr
value computation.

• NFC, where nearest facility circles are used to reduce the search space for
dr value computation and the dr values of different potential locations are
computed synchronously.

• MND, where MND regions are used to reduce the search space for dr
value computation and the dr values of different potential locations are
computed synchronously.

We evaluate the performance of three methods for the min-dist facility re-
placement query:

• SS-FR, where the facilities, the potential locations and the clients are
sequentially scanned for dr value computation.

• MSND, where MSND regions are used to reduce the search space for dr
value computation.

• RID, where RID values are used to reduce the number of facility-potential
location pairs required to be checked to find the optimal pair and MSND
regions are used to reduce the search space for dr value computation.

.
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2. In Figure 14, it is not explicitly known what the results are for SS-FR
when the cardinality is from 50K to 1000K.

Response: The results for SS-FR when the cardinality is from 50K to 1000K
were omitted because in these cases, SS-FR took tens of hours to process the
query, which is too slow to generate the query answers in time. To clarify, we
added the following sentences to Section 6.3.1.

... In particular, SS-FR requires 14, 676 seconds (≈ 4 hours) to process a
dataset of 10, 000 clients. Since SS-FR scans every client, its running time in-
creases linearly with the number of clients. It will need 20 hours to produce
a query answer for a dataset of 50, 000 clients. Due to this extremely low effi-
ciency, we omit SS-FR when |C| is larger than 10, 000 as well as in the following
experiments, and focus on the comparison between MSND and RID...

Reviewer 3

This paper presents new solutions for min-dist location selection and and
facility replacement queries. The problem is important in many spatial applica-
tions. The motivation of the problem is clear and the methods are quite novel
with detailed cost analysis. Experimental results are extensive, with real-life
datasets used.

One minor concern is that the literature review is very brief. Group query
and convoy query seem relevant too.

Ke Deng, Hu Xu, Shazia W. Sadiq, Yansheng Lu, Gabriel Pui Cheong
Fung, Heng Tao Shen: Processing Group Nearest Group Query. ICDE 2009:
1144-1147

Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, Heng
Tao Shen: Discovery of convoys in trajectory databases. PVLDB 1(1): 1068-
1080 (2008)

Response: Thank you very much for the support. We added more details to
Relate Work (Section 2). In particular, we discussed the two related studies
suggested by the reviewer in paragraph 2 of Section 2.

... While these approaches work well for a single R(k)NN query, they are
not tailored for computing RNNs for large amount of objects at the same time,
which is a key difficulty in our study. There are studies on processing a large
amount of objects at the same time, e.g., the group NN query [6] and the convoy
query [12], which query the NNs of a group of query objects together and groups
of objects that have traveled together, respectively. However, these studies are
of quite different settings, and their methods do not apply...

6. Deng, K., Xu, H., Sadiq, S., Lu, Y., Fung, G.P.C., Shen, H.T.: Processing
group nearest group query. In: ICDE, pp. 1144-1147 (2009)

12. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of
convoys in trajectory databases. PVLDB 1(1), 1068-1080 (2008)
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Abstract We propose and study a new type of location optimization problem, the min-dist

location selection problem: given a set of clients and a set of existing facilities, we select

a location from a given set of potential locations for establishing a new facility, so that the

average distance between a client and her nearest facility is minimized. The problem has a

wide range of applications in urban development simulation, massively multiplayer online

games, and decision support systems. We also investigate a variant of the problem, where we

consider replacing (instead of adding) a facility while achieving the same optimization goal.

We call this variant the min-dist facility replacement problem. We explore two common ap-

proaches to location optimization problems and present methods based on those approaches

for solving the min-dist location selection problem. However, those methods either need to

maintain an extra index or fall short in efficiency. To address their drawbacks, we propose

a novel method (named MND), which has very close performance to the fastest method but

does not need an extra index. We then utilize the key idea behind MND to approach the

min-dist facility replacement problem, which results in two algorithms names MSND and

RID. We provide a detailed comparative cost analysis and conduct extensive experiments on

the various algorithms. The results show that MND and RID outperform their competitors

by orders of magnitude.

Keywords Spatial database · geographic information system · location optimization ·
min-dist metric

1 Introduction

Location optimization is an important problem for spatial decision support systems. A num-

ber of studies [4,5,25,30] proposed solutions to various instances of such problems. In this
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2 Jianzhong Qi et al.

paper, we consider a new location optimization problem that cannot be efficiently solved by

existing techniques. The problem is motivated by the following applications.

In urban development simulation, urban planners need to consider the influence of public

infrastructure or business centers on the residents. Very often they need to establish a new

facility (e.g., fire hydrant, hospital, bus stop) or replace an existing one. When selecting the

location for the new facility (or the facility to be replaced), a commonly used criterion is to

select the location (or the facility and the location for replacement) that can minimize the

average distance between a resident and her nearest facility so that people can access the

facilities in the shortest time.

In the multi-billion dollar computer game industry, massively multiplayer online games

(MMOGs) like World of Warcraft have many non-player characters (NPCs) like monsters

to fight with the players. Very often the game server needs to generate a new NPC for the

fighting. If the new NPC is placed randomly, there may be no player around it at all and

this will be a waste of the limited computational resource of the game server. A very helpful

utility for the game server is selecting a starting point for the NPC from a set of preset

locations to minimize the average distance between a player and her nearest NPC, so that

the players can find NPCs closer and do not get bored walking around trying to find an NPC

to fight with. As the players keep moving around and/or leaving the game, an existing NPC

may become too far away to be seen by the players. In this case the game server may want

to move the NPC to re-balance the NPCs and the players, i.e., move the NPC to a place to

again minimize the average distance between a player and her nearest NPC.

potential location

2
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c7
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existing facility
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Fig. 1 An example of the studied problems

Fig. 1 gives an example: {c1, c2, ..., c8} is a set of clients (residents or players), {f1, f2}
is a set of existing facilities (public facilities or NPCs) and {p1, p2} is a set of potential

locations (candidate locations for facility establishment or NPC placement). Currently, f1 is

the nearest facility of c1, c2, c3 and c6; f2 is the nearest facility of c4, c5, c7 and c8.

We consider two scenarios. (i) We select one of the potential locations to establish a new

facility. If a new facility is established at p1, it will become the nearest facility for c1, c2
and c3. If it is established at p2, it will become the nearest facility of c4 and c5. As we can

observe, p2 results in a smaller average distance between a client and her nearest facility,

so it is selected as the answer. (ii) We select an existing facility and a potential location for

facility replacement. There are four possible choices, i.e., f1 → p1, f1 → p2, f2 → p1
and f2 → p2, where “→” denotes “to be replaced with”. Here, the choice is not so obvious

because when replacing a facility, some of the clients can get a closer facility while some

others may get a further one. For example, if f1 is replaced with p1, c1, c2 and c3 will get

a closer facility, while c6 will have a further facility. The crux is to efficiently compute the

aggregate effect. In this example, replacing f2 by p2 (f2 → p2) can minimize the average

distance between a client and the nearest facility. Therefore, it is selected as the answer.
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The Min-dist Location Selection and Facility Replacement Queries 3

Besides the above described applications, many organizations and businesses face simi-

lar decision making problems (e.g., a bank needs to add or replace ATMs; a wireless service

provider needs to set up or replace hotspots). This paper studies how to efficiently select a

location for new facility establishment or a pair of facility and location for facility replace-

ment, so that the average distance between a client and her nearest facility is minimized. We

call the two problems the min-dist location selection problem and the min-dist facility re-

placement problem, respectively. In the aforementioned applications, the location selection

or facility replacement may be performed frequently. Thus, we formulate the two problems

as the following queries.

1.1 Problem Formulation

All data objects (clients, facilities and potential locations) are represented by points in a

Euclidean space. We may refer to the data objects as data points or simply as points. Let

dist(o1, o2) denote the distance between two points o1 and o2, and nc be the number of

clients. The min-dist location selection query is defined as follows.

Definition 1 Min-dist location selection query.

Given a set of points C as clients, a set of points F as existing facilities and a set

of points P as potential locations, the min-dist location selection query finds a potential

location p ∈ P for a new facility to be established at, so that ∀p′ ∈ P ,

∑
c∈C{min {dist(c, o)|o ∈ F ∪ {p}}}

nc

≤

∑
c∈C{min{dist(c, o)|o ∈ F ∪ {p′}}}

nc

.

Similarly, the min-dist facility replacement query is defined as follows.

Definition 2 Min-dist facility replacement query.

Given a set of points C as clients, a set of points F as existing facilities and a set

of points P as potential locations, the min-dist facility replacement query finds a pair of

existing facility and potential location, denoted by f and p respectively, so that ∀〈f ′, p′〉 ∈
F × P,

∑
c∈C{min{dist(c, o)|o ∈ F \ {f} ∪ {p}}}

nc

≤

∑
c∈C{min{dist(c, o)|o ∈ F \ {f ′} ∪ {p′}}}

nc

.

Since the denominator is the same on both sides of the inequalities, the problems are

equivalent to minimizing the sum (instead of the average) of the distances between the

clients and their respective nearest facilities.

Although an existing commercial software [1] can solve several simpler location opti-

mization problems, none can solve the min-dist location selection or facility replacement

problems (see Section 2 for more discussion).
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4 Jianzhong Qi et al.

1.2 Contributions and Organization of the Paper

In this article, we examine solutions to the min-dist location selection query and the min-dist

facility replacement query, and make the following contributions.

– We formulate the min-dist location selection problem and the min-dist facility replace-

ment problem.

– We explore two common approaches to location optimization problems and propose

methods based on them for solving the location selection problem.

– As methods based on the common approaches either need to maintain an extra index

or fall short in efficiency, we propose a method called MND for the location selection

problem, which uses a single value to describe a region that encloses the nearest existing

facilities of a group of clients, so that the search of influenced clients for a potential loca-

tion can be done groupwise. This results in an algorithm that has very close performance

to the fastest of the previous algorithms without the need for an extra index.

– We extend the idea of MND further and propose two algorithms named MSND and RID

to solve the facility replacement problem.

– We provide a thorough cost analysis of all methods.

– We conduct extensive experiments to evaluate the empirical performance of all methods.

The results validate the superiority of MND and RID over the other methods.

This article is an extended version of our earlier paper [18]. There we proposed the min-

dist location selection problem and studied algorithms to solve the problem. In this article,

we extend our work by investigating an important problem variant, the min-dist facility

replacement problem. We propose two algorithms to solve the problem. The challenge here

is a search space cubically proportional to the size of the datasets to be accessed to find the

optimal facility-location pair for the replacement. To address the challenge, we transform

the expensive search into two operations: a lightweight cubical search plus two lightweight

quadratic search. We extend our cost analysis to the newly proposed algorithms and perform

additional experiments on them. The results show that the algorithms can solve the min-dist

facility replacement problem efficiently.

The rest of the article is organized as follows. Section 2 reviews related work. Section 3

studies the min-dist location selection problem and describes algorithms to solve the prob-

lem. Section 4 investigates solutions to the min-dist facility replacement problem. Section 5

analyzes the cost of the proposed algorithms. Section 6 presents the experimental results and

Section 7 concludes the article.

2 Related Work

Location optimization problems are mostly characterized by optimization functions, based

on which they can be classified into two categories: max-inf problems and min-dist prob-

lems. Both categories are closely related to nearest neighbor (NN) search and reverse nearest

neighbor (RNN) search. Therefore, we first review studies of NN search and RNN search,

and then review studies of max-inf problems and min-dist problems.

NN Search and RNN search: Given a set of objects S and a query object q, the

NN search returns q’s nearest objects in S. Two popular NN search algorithms are depth-

first [19] and best-first [10]. The best-first algorithm can retrieve the nearest neighbors incre-

mentally in order of their distances to the query point. Various studies have been conducted

on variants of the NN search, such as visible NN queries [15], kNN joins [29], moving kNN

queries [16,17] and predictive kNN queries [31].

As one of the major variants, Korn and Muthukrishnan [13] first propose the RNN query

and define the RNNs of an object o to be the objects whose respective NN is o. They propose
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The Min-dist Location Selection and Facility Replacement Queries 5

to use an R-tree variant, named the RNN-tree, in addition to the original R-tree that main-

tains the data points to answer RNN queries. In an RNN-tree, the data entries are stored in

the form of NN circles. An NN circle of a point o is a circle centered at o with the distance

between o and its NN as the radius. The bounding boxes of these NN circles are indexed in

the RNN-tree. An RNN query is answered with the data points whose NN circles enclose

the query point. To avoid maintaining the RNN-tree, Yang and Lin [27] propose the RdNN-

tree, which effectively combines the original R-tree and the RNN-tree. While these methods

require the precomputation of the distance between an object and its NN, Stanoi et al. [21]

propose a method without precomputation. For a query point q, their method dynamically

constructs a Voronoi cell that encloses q and contains all its possible RNNs. Only nodes in-

tersecting the Voronoi cell have to be accessed to check for q’s RNNs. While these methods

work well for a single RNN query, they are not for computing RNNs of large amount of ob-

jects at the same time, which is a key difficulty in our study. There are studies on RNN query

variants under different settings. For example, the reverse k nearest neighbor (RkNN) query

finds objects whose k nearest neighbors include the query object. Wu et al. [24] study the

RkNN query on continuously moving objects, which correlates two sets of moving objects

according to their closeness. The continuous join query on extended moving objects [32,

33] also correlates multiple sets, but it focuses on intersecting objects with a time-constraint

technique rather than closeness. While these approaches work well for a single R(k)NN

query, they are not tailored for computing RNNs for a large amount of objects at the same

time, which is a key difficulty in our study. There are studies on processing a large amount

of objects at the same time, e.g., the group NN query [6] and the convoy query [12], which

query the NNs of a group of query objects together and groups of objects that have trav-

eled together, respectively. However, these studies are of quite different settings, and their

methods do not apply.

Max-inf problems: Max-inf problems maximize the “influence” of a facility, where

influence is typically defined as the number of clients who are the RNNs of the facility.

Cabello et al. [4] find regions for a new facility to maximize its influence. They introduce

c

4c

6c
1c

2c

3c 1
f

2
fc7

8c

5

Fig. 2 Example of a max-inf problem [4]

the nearest location circle (NLC) to solve the problem, where the NLC of a client c is a circle

centered at c with its radius being the distance between c and the nearest existing facility of

c. Since only a facility established within the NLC of c can be a new nearest facility of c,

to find the problem solution is to find the regions that are enclosed by the largest number of

NLCs. In Fig. 2, the gray regions are the problem solution because each of them is covered

by four NLCs while no region is covered by more than four NLCs. Cabello et al.’s study
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6 Jianzhong Qi et al.

only gave a theoretical analysis for the problem. Wong et al. [23] study this problem further

and propose a method to reduce the complexity of finding regions overlapped by the largest

number of NLCs. Xia et al. [25] use a branch and bound method to find top-t facilities in

F with the largest influence within a continuous spatial region Q, where the influence of a

facility is defined as the total weight of its RNNs. Du et al. [7] find a location in a region Q
for a new facility to maximize its influence. Gao et al. [8] find a location p outside a region

Q (instead of inside a region) for a new facility so that its “optimality” is maximized. Here,

the optimality of p is defined as a function of the number of clients in Q whose distance

to p is within a certain threshold dc (attracted by p). Intuitively, the more clients p attracts,

the greater its optimality. A more recent study [11] selects top-k candidate locations with

the largest influence values for a new facility. These studies differ from ours in optimization

functions and other settings. Their solutions do not apply.

Min-dist problems: Zhang et al. [30] propose the min-dist optimal-location problem.

Given a client set C , an existing facility set F and a region Q, it finds points within Q so that

if a new facility is established at any one of these points, the average distance of the clients

to their respective nearest facilities is minimized. Fig. 3 gives an example, where pt may

Q

c

5c

2
p8c

7c
2
f

c6

1
f1

p

1c

3c

2c

pt

4

Fig. 3 Example of a min-dist problem [30]

be one of the points in the answer set and it is not the solution p2 to our location selection

problem. To solve the problem, Zhang et al. [30] propose a method that first identifies a set L
of candidate locations from Q and then divides L progressively until the answer set is found.

Xiao et al. [26] study the min-dist problem in road networks. They have a candidate edge

set E for the new facility to be established at. Their key insight is that the optimal location

on a candidate edge must be one of the endpoints of the edge. Thus, only the endpoints of

the edges in E need to be checked for the problem solution.

These two studies [30,26] have the same min-dist optimization function as ours, but our

study has a set P , the potential locations given as candidates for selection or replacement.

In many real applications, we can only choose from some candidate locations, e.g., a bank

may only set up a new ATM at or relocate an existing ATM to a place for rent or sale rather

than anywhere in a region or on a road. The main idea of Zhang et al.’s solution is the

fast identification of a small set L of candidate locations from Q. However, the candidate

locations in L could be any point from Q, which may not even contain a potential location

from our potential location set P . Similarly, the endpoints of the edges inE [26] are different

from the points in P . This means that in general their approaches cannot provide a correct

answer to our problems, and thus are not applicable.

Related commercial software: As mentioned in Section 1, an existing commercial soft-

ware [1] can solve several kinds of simpler location optimization problems. The most related

problem this software can solve is called the minimize impedance query, which finds loca-
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The Min-dist Location Selection and Facility Replacement Queries 7

tions for a set of new facilities to minimize the sum of distances between clients and their

respective nearest facilities. However, this problem does not consider existing facilities. If

we use this software to find a set of locations Sl for new facilities, there is no guarantee that

Sl will contain all points in the set of existing facilities F . Therefore, this software does not

solve the problems we study.

In computational geometry, given a set C of objects (e.g., clients), the k-medoid query [14]

finds a set of medoids C ′ ⊆ C with cardinality k that minimizes the average distance from

each object c ∈ C to its closest medoid in C ′. The k-median query is a variant, where we

find k locations called the medians, not necessarily in C , to minimize the average distance

(from each object c ∈ C to its closest median). These two types of queries are actually using

the min-dist metric. However, our problem is different from both of them. A fundamental

difference is that these problems do not assume a set F or a set P , but we do.

Table 1 The Location Optimization Problems

Problem Optim. Solution Distance Datasets

Function Space Function

[4] Max-inf Continuous L2 C, F
[23] Max-inf Continuous L2 C, F , P
[25] Max-inf Discrete L2 C, F
[7] Max-inf Continuous L1 C, F
[8] Max-inf Discrete L2 C, P
[11] Max-inf Discrete L2 C, F , P
[30] Min-dist Continuous L1 C, F
[26] Min-dist Continuous Network C, F , E
[14] Min-dist Discrete L2 C
[1] Min-dist Discrete L2 C, P
Proposed Min-dist Discrete L2 C, F , P

Summary: Table 1 summarizes the differences between our problems and previously

studied location optimization problems. Most previous problems are max-inf problems and

differ from our problems in optimization functions. For the min-dist problems, they have the

same optimization function as ours, but their problem settings are different. As discussed in

the second paragraph of the related min-dist problems, they do not choose from a set of

given candidate locations, which does not apply to the requirements of our applications.

3 The Min-dist Location Selection Query

In this section we present algorithms to process the min-dist location selection query. Straight-

forwardly, the query can be processed as follows. We sequentially check all potential loca-

tions and for every new potential location p, we compute the sum of the distances of all

clients to their respective nearest facilities. The potential location with the smallest sum is

the answer. We call this algorithm the sequential scan (SS) algorithm.

In SS, repeatedly finding the nearest facility to each client for every potential location is

too expensive. Therefore, we precompute the distances of all clients to their respective near-

est facilities and store the distances. This precomputation involves a nested loop iterating

through every client and for every client iterating through every facility. KNN-join algo-

rithms (e.g., [29]) can do this more efficiently and maintain the results dynamically when

clients and facilities are updated. The SS algorithm with precomputation is shown in Al-
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8 Jianzhong Qi et al.

Algorithm 1: SS(C , P )

1 optLoc← NULL; // optLoc is the optimal location;

2 for p ∈ P do

3 p.distSum← 0;

4 for c ∈ C do

5 if dist(p, c) < c.dnn(c, F ) then

6 p.distSum← p.distSum+ dist(p, c);

7 else

8 p.distSum← p.distSum+ c.dnn(c, F );

9 if optLoc = NULL or p.distSum < optLoc.distSum then

10 optLoc← p;

11 return optLoc;

gorithm 1, where c.dnn(c, F ) denotes the precomputed distance between c and her closest

existing facility. The distance is stored with the record of c.

We see that even with precomputation SS is still very costly as it has to access the whole

client dataset
np

Cp
times, where np is the cardinality of P and Cp is the capacity of a block

for P (assuming we read P in disk blocks). Therefore, the need for an efficient algorithm is

obvious.

We observe that the min-dist location selection query can be redefined in a form that

reduces the search space and thus accelerates query processing. Next, we provide the redef-

inition and a solution framework based on it. Then we present algorithms under the solution

framework to process the query.

3.1 Problem Redefinition and a Solution Framework

We start with some basic properties of the problem needed for the redefinition. Table 2

summarizes frequently used symbols.

3.1.1 Problem Redefinition

We call the distance between a client c and her nearest facility the nearest facility distance

(NFD) of c. Let dnn(o, S) denote the distance between a point o and its nearest point in a

set S. Then dnn(c, F ) and dnn(c, F ∪ {p}) denote the NFD of c before and after a new

facility is established on a potential location p, respectively. The min-dist location selection

query is actually minimizing the sum of all clients’ NFD.

If o is a point not in the set F and dist(c, o) < dnn(c, F ), then establishing a new

facility at o will reduce the NFD of c. In this case, we say that c can get an NFD reduction

from o. We define the influence set of o, denoted by IS(o), as the set of clients that can

get NFD reduction from o. Formally, IS(o) = {c|c ∈ C, dist(c, o) < dnn(c, F )}. The

influence set of a potential location p includes all clients that will reduce their NFD if a new

facility is established at p. For example, in Fig. 1, IS(p1) = {c1, c2, c3}, and IS(p2) =
{c4, c5}.

If IS(p) 6= ∅ for a potential location p, then establishing a new facility at p will reduce

the sum of the clients’ NFD. We call the sum of the clients’ NFD reduced by p the distance

reduction of p, denoted by dr(p). Formally, dr(p) =
∑

c∈IS(p)(dnn(c, F ) − dnn(c, F ∪
p)). Minimizing the sum of the clients’ NFD when adding a facility on p is equivalent

to maximizing dr(p). Therefore, the min-dist location selection query can be redefined as

follows.
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The Min-dist Location Selection and Facility Replacement Queries 9

Table 2 Frequently Used Symbols

Symbols Explanation

o A point in the data space

dist(o1, o2) The distance between two points o1 and o2
C, F , P The set of clients, existing facilities

and potential locations, respectively

nc, nf , np Cardinality of C, F , and P , respectively

c, f, p A client in C, an existing facility in F
and a potential location in P , respectively

RC , RP , RF R-trees on C, P , and F , respectively

NC , NP , NF A node of RC , RP , and RF , respectively

ec, ep, ef An entry of RC , RP , and RF , respectively

dnn(c, F ) The nearest facility distance of c
IS(f), IS(p), IS(〈f, p〉) The influence sets of f , p, and 〈f, p〉, respectively

dr(f), dr(p), dr(〈f, p〉) The distance reduction of f , p, and 〈f, p〉, respectively

dr(〈f, p〉, c) The distance reduction achieved for c by 〈f, p〉
NFC(c) The nearest facility circle of c
MND(c) The maximum NFC distance of c
SNFC(c) The second nearest facility circle of c
MND(c) The maximum second NFC distance of c
RID(c) The replacement influence distance of c

Definition 3 Given a set of points C as clients, a set of points F as existing facilities and a

set of points P as potential locations, the min-dist location selection query finds a location

p ∈ P , so that ∀p′ ∈ P : dr(p) ≥ dr(p′).

3.1.2 A Solution Framework

Definition 3 provides a framework for solving the min-dist location selection problem with

the following two steps:

1. Identify IS(p);
2. Compute dr(p) and find the potential location with the largest dr(p).

Since the cardinality of IS(p) is usually much smaller than that of C , we do not have to

access the whole client dataset for every potential location p. Thus, the above framework has

a great potential to improve performance. All methods presented in this section will follow

this framework. The key issues are: (i) how to efficiently identify IS(p) and (ii) how to prune

more potential locations from consideration. We will see that in all methods dnn(c, F ) of

every client is used many times in both steps of the framework. Computing dnn(c, F ) on-

the-fly will repeatedly access the datasets of the clients and the existing facilities, which will

incur significant costs. Therefore, we precompute dnn(c, F ) for every client and store it

with the client’s record for all methods (including the SS method).

In the next subsection, we explore two common approaches to location optimization

problems and propose methods based on those approaches for solving the min-dist location

selection problem under the above framework. When a spatial index is used, we assume an

R-tree [9], although any hierarchical spatial index could be used.

3.2 Quasi-Voronoi Cell Method

In this subsection, we propose a so-called “quasi-Voronoi cell” (QVC) method. For any

potential location p, the Voronoi cell of p on the set F ∪ {p} is a region V that satisfies that

for any point p′ ∈ F ∪ {p}, p′ 6= p, and for any point o ∈ V , dist(p, o) ≤ dist(p′, o) [2].
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Fig. 4 Examples of the QVC method

It is guaranteed that the Voronoi cell of p encloses all and only the clients in IS(p). We

can use the Voronoi cell to quickly identify IS(p). However, computing the Voronoi cell

of p is an expensive operation. Stanoi et al. [21] show a relatively straightforward way to

compute a region that encloses the Voronoi cell and this region is a good approximation of

the Voronoi cell. We call this region the quasi-Voronoi cell (QVC). First, we find a superset

of IS(p) through the QVC of p. Then, we can use the precomputed NFD to quickly identify

the exact IS(p). Finally, we compute dr(p) and compare it for all potential locations. Next,

we give details of constructing QVC and the algorithms.

Algorithm 2: QVC(RC , RF , FP )

1 optLoc← NULL;

2 while not EndOfFile( FP ) do

3 BP ← ReadBlock( FP );

4 Sp ← ∅;
5 for p ∈ BP do

6 Contruct QV C(p) from RF ;

7 Contruct AIR(p), stores it as p.mbr;

8 if p.mbr intersects RC .rootnode.mbr then

9 Sp ← Sp ∪ p;

10 WQ( RC .rootnode, Sp, optLoc );

11 output optLoc;

In the coordinate system with the origin at p and the two axes parallel to the original

axes, we find the nearest facility to p in each of the four quadrants and let these nearest

facilities be f1, f2, f3 and f4 as shown in Fig. 4(a). We draw the bisector between each fi
(i = 1, 2, 3, 4) and p, and the four bisectors form a polygon. This polygon is the QVC of p,

denoted as QV C(p). To find the NN in each quadrant, we use the best-first algorithm [10]

to retrieve the NNs until each quadrant has one. Since this algorithm is based on a spatial

index, we use an R-tree to index the facilities, denoted as RF . Once we have QV C(p), we

perform a window query on an R-tree named RC that indexes the clients with the query

range being the minimum bounding rectangle (MBR) of QV C(p) (Fig. 4(b)). Then we can

further compute dr(p) and determine the optimal potential location. The QVC method is

summarized in Algorithms 2 and 3.
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The Min-dist Location Selection and Facility Replacement Queries 11

Algorithm 3: WQ(NC , Sp, optLoc)

1 if NC is a leaf node then

2 for p ∈ Sp do

3 for ec ∈ NC , dist(p, ec) < ec.dnn(c, F ) do

4 p.dr ← p.dr + ec.dnn(c,F )− dist(p, ec);

5 if optLoc = NULL or p.dr > optLoc.dr then

6 optLoc← p;

7 else

8 for ec ∈ NC do

9 S′
p ← ∅;

10 for p ∈ Sp, p.mbr intersects ec.mbr do

11 S′
p ← S′

p ∪ p;

12 WQ(ec.childnode, S′
p, optLoc);

3.3 Nearest Facility Circle Method

In this subsection, we propose a method that exploits the nearest facility circle (NFC), and

we call it the NFC method. The nearest facility circle of a client c, denoted by NFC(c), is a

circle centered at c with the radius being dnn(c, F ). For a potential location p, c ∈ IS(p) if

and only if p is inside NFC(c). As shown in Fig. 5, p1 is in the NFCs of c1, c2 and c3, and

8

7c f
2

f
1c3

c1

c6

c4

c5

p
1

p
2

c

2c

Fig. 5 Example of NFCs

p2 is in the NFCs of c4 and c5. Thus, IS(p1) = {c1, c2, c3} and IS(p2) = {c4, c5}. We

only need to check which NFCs enclose p to identify the clients in IS(p). Motivated by this

observation, we build an RNN-tree [13], denoted as Rn
C , to index the NFCs of all clients.

The tree Rn
C is basically an R-tree that indexes the MBRs of the NFCs of the clients. It can

be built based on RC and maintained in accordance to the updates of RC .

Besides having an RNN-tree to index the NFCs, this method also uses an R-tree to

index the potential location set P , denoted as RP . Then for every potential location p, we

can use Rn
C to quickly identify all NFCs that enclose p, which is essentially a point query

on an R-tree. We need to do this for all the potential locations indexed in RP , which makes

the process a spatial join between P and all NFCs. The spatial join operation finds out all

intersected pairs between two sets of objects. In our case, when P is a set of points, the

spatial join returns for every p, the set of NFCs that enclose p. Then we can identify IS(p)
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using the clients corresponding to the NFCs that enclose p and compute dr(p). We use

a standard R-tree based join algorithm [3] to join RP and Rn
C , which results in the NFC

algorithm. The pseudo-code of the algorithm has been listed in [18] and is omitted here to

keep the paper concise.

3.4 Maximum NFC Distance Method

We have presented two methods based on common approaches to location optimization

problems. However, those methods both have some drawbacks. The QVC method needs to

perform a KNN search to find a nearest facility in each quadrant for every potential location,

which is expensive. The NFC method is simple and efficient, but needs to maintain an ex-

tra index, Rn
C . In dynamic environments, insertions and deletions on data occur frequently.

Maintaining two indexes on the dataset C makes database management such as concurrency

control more complicated and brings significant overheads. Therefore, having the extra in-

dex has been considered as a serious drawback in the solutions to other types of location

optimization problems [21,27,22,28]. We also view the extra index for the NFC method as

a serious drawback.

In this subsection, we propose a novel method that is simple and efficient, but requires

no extra index, so it overcomes the drawbacks of the QVC and NFC methods. This method

still exploits the idea of NFCs. However, unlike the NFC method, which uses an MBR to

bound the NFCs of all clients in a node of RC and physically stores all these MBRs in a

separate tree (Rn
C ), this method uses just one value to describe a rounded rectangular region

around a node NC that encloses the NFCs of all clients in NC , and stores that value in the

parent entry of NC in RC . Therefore, this method avoids using another tree but achieves the

same purpose. A challenge in this method is to define a value for delimiting a region that

can enclose the NFCs of all clients in a node NC of RC as tight as possible.

3.4.1 The Maximum NFC Distance

We propose to use a value with respect to a node called the maximum NFC distance (MND),

denoted as MND(NC) for a node NC . The intuition is that given the NFCs of the clients

indexed by a node NC , we find a point from these NFCs whose distance to the MBR of NC

is the largest. This largest distance defines MND(NC). If the minimum distance between

NC and a node NP in RP (the R-tree on the set of potential locations) is larger than or equal

to MND(NC) (i.e., minDist(NC , NP ) ≥ MND(NC)), then for any potential location

p in NP , no client in IS(p) is from sub(NC) since no point in the MBR of NP will be

enclosed by the NFC of any client in sub(NC), where sub(NC) denotes the set of clients

contained in the subtree rooted at NC . In what follows, we first formally define MND and

then explain it in detail.

Given a leaf node NC in RC and the clients indexed in NC , we find a client ci in-

dexed in NC and a point oi on the boundary of NFC(ci), so that for any other point

oj on the NFC of any client indexed in NC , minDist(oi, NC) ≥ minDist(oj , NC),
where minDist(o,N) denotes the minimum distance between two objects (either points or

MBRs). Then we define MND(NC) as minDist(oi, NC). The metric MND(NC) de-

limits a rounded rectangular region such that for any point o on its boundary, minDist(o,NC) =
MND(NC) (cf. Fig. 6(a)). We call this region the MND region of NC .

For non-leaf nodes, MND is defined recursively in a bottom-up manner. Given a non-

leaf node NC in RC and the child nodes of NC , we find a point oi on the boundary of

the MND region of a child node Ni, so that for any other point oj on the boundary of the

MND region of a child node Nj , minDist(oi, NC) ≥ minDist(oj , NC). Then we define
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Fig. 6 Examples of MND regions

MND(NC) as minDist(oi, NC), and it delimits the MND region of NC , the rounded

rectangular region in Fig. 6(b).

3.4.2 The Algorithm

The definition of the MND region of NC guarantees that this region must be intersected by

a node NP in RP if sub(NC) ∩ IS(p) 6= ∅, where p is a potential location in the subtree

rooted at NP . If this region is not intersected by NP , then sub(NC) ∩ IS(p) = ∅ and we

can discard the whole subtree of NC when identifying IS(p). This observation, formalized

in Theorem 1, is the pruning strategy of the MND method.

Theorem 1 Let p be a potential location indexed in the subtree rooted at NP , and let

minDist(NC , NP ) be the minimum distance between the MBRs of two nodes NC and

NP . Then, sub(NC) ∩ IS(p) = ∅ if minDist(NC , NP ) ≥ MND(NC).

Proof See reference [18].

Theorem 1 suggests that we only need to check whether the distance between NC and

NP is less than MND(NC) to determine whether any client c ∈ sub(NC) is in IS(p) for

any potential location p enclosed by NP . Like the other methods, we use an R-tree to index

the clients, but in addition, we store the MND value of a node Nm
C in its parent entry emc ,

denoted as emc .mnd. To distinguish this R-tree from the normal R-tree on C , we denote it as

Rm
C . The algorithm for processing the query mimics a spatial join on the two R-trees, Rm

C

and RP . We traverse the two trees simultaneously and compare every node from Rm
C with

every node from RP , starting from the roots. As we traverse down the tree, we compare

a node pair (NP , N
m
C ) only if minDist(NP , N

m
C ) < MND(Nm

C ); this condition can

be checked before retrieving Nm
C since MND(Nm

C ) is stored in the parent entry of Nm
C .

When the traversal of the two trees finishes, all nodes that may contain points in IS(p) are

checked and hence we obtain IS(p). Algorithm 4 details the steps.

3.4.3 Efficient Computation of the Maximum NFC Distance

The definition of MND does not give an efficient way for its computation. According to the

definition, MND can be computed straightforwardly as follows. Suppose Nm
C is a leaf (or

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14 Jianzhong Qi et al.

Algorithm 4: MND(NP , Nm
C , optLoc)

1 if NP and Nm
C

are non-leaf nodes then

2 for (ep, emc ) ∈ NP ×Nm
C

, minDist(emc , ep) < emc .mnd do

3 MND(ep.childnode, emc .childnode, optLoc);

4 else if NP is a leaf node and Nm
C is a non-leaf node then

5 for emc ∈ Nm
C

, minDist(emc , NP ) < emc .mnd do

6 MND(NP , emc .childnode, optLoc);

7 else if NP is a non-leaf node and Nm
C

is a leaf node then

8 for ep ∈ NP , minDist(Nm
C , ep) < Nm

C .mnd do

9 MND(ep.childnode, Nm
C , optLoc);

10 else

11 for (ep, emc ) ∈ NP ×Nm
C

, minDist(emc , ep) < emc .mnd do

12 ep.dr ← ep.dr + emc .dnn(c, F )− dist(emc , ep);

13 if ep.dr > optLoc.dr or optLoc = NULL then

14 optLoc← ep;

non-leaf) node. We compute for every client c (or child node N ) indexed by Nm
C the largest

minDist(o,Nm
C ) value for a point o on the boundary of NFC(c) (or MND region of N ),

denoted as maxMinDist(c,Nm
C ) (or maxMinDist(N,Nm

C )). Since the MND region

of Nm
C should enclose the NFCs (or MND regions) of all children of Nm

C , MND(Nm
C )

is computed as the largest maxMinDist value among all these children’s maxMinDist
values. However, minDist(o,Nm

C ) is a piecewise function based on the relative position

of a point o and the MBR of Nm
C . The computation of the maxMinDist values requires

computing the maxima of a piecewise function with two variables. This is typically obtained

by numerical methods, which are iterative methods and there is no guarantee on the number

of iterations needed to find the solution. Therefore, the computation cost is very high and

unpredictable.

Next, we propose a much more efficient method to compute the MND. The key observa-

tion is that the MND can be derived from those points on the boundary of NFC(c) (MND

region of a child node N ) that are the “farthest” to Nm
C , and we can limit our search for the

“farthest” point within a set of four candidate farthest points (CFPs) described as follows.

Fig. 7(a) illustrates the CFPs for a client c indexed in a leaf node Nm
C . In the figure, M

denotes the MBR of Nm
C ; R denotes NFC(c); the center point O of R is located at c and

the radius r denotes the NFD of c. A horizontal line Lh and a vertical line Lv intersect each

other at O, and they intersect R at Ih1, Ih2, Iv1 and Iv2, respectively. The four points Ih1,

Ih2, Iv1 and Iv2 are the CFPs of c. Similarly, Fig. 7(b) illustrates the CFPs for a child node

N of a non-leaf node Nm
C . In the figure, M1 denotes the MBR of N ; R denotes the MND

region of N ; r denotes MND(N) and O is the center point of R.

We denote the largest minDist(Ii, N
m
C ) value for the CFPs as maxMinDist(I,M),

where Ii denotes a CFP. Theorems 2 and 3 below states that one of the CFPs must be the “far-

thest” point from the boundary of NFC(c) (or the MND region of a child node N ) to Nm
C ,

i.e., maxMinDist(I,M) = maxMinDist(c,Nm
C ) (or maxMinDist(N,Nm

C )) if Nm
C

is a leaf node (or a non-leaf node). The intuition here is that we can divide the boundary of

NFC(c) (or the MND region of a child node N ) into a set of arc segments, and for each seg-

ment, there must be a CFP Ii such that for any point o on the segment, minDist(Ii, N
m
C ) ≥

minDist(o,Nm
C ). We find the CFP with the largest minDist(Ii, N

m
C ) value and it is the

“farthest” point from NFC(c) (or the MND region of N ) to Nm
C .
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O

Q

r

minDist(   ,    )I

minDist(   ,    )Q

h1

L h

vL

R
M

I v1

M

h2I

v2I

I

M

(a) CFPs for a client
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M

(b) CFP for a node

Fig. 7 Candidate farthest points

Theorem 2 Given an MBR M , a circle R = (O, r) and a set I of four candidate far-

thest points, the largest minDist value from a point Q on the boundary of R to M ,

maxMinDist(R,M), equals to maxMinDist(I,M).

Proof See reference [18].

Theorem 3 Given two MBRs M and M1, the MND region R of M1 centered at O and a

set I of four candidate farthest points, the largest minDist value from a point Q on the

boundary of R to M , maxMinDist(R,M), equals to maxMinDist(I,M).

Proof See reference [18].

Theorems 2 and 3 provide an efficient way to compute the MND, which requires the

computation of the minDist values for the four CFPs. The specific steps are as follow.

We denote the coordinates of O as (Ox, Oy), and the coordinates of Ih1, Ih2, Iv1 and

Iv2 as (Ox − r,Oy), (Ox + r,Oy), (Ox, Oy + r) and (Ox, Oy − r), respectively. Let

M be (Mx−, Mx+, My−, My+) (“−” and “+” stand for lower bound and upper bound,

respectively). Then, minDist(Ih1,M) = Mx−− (Ox− r), minDist(Ih2,M) = (Ox+
r) − Mx+, minDist(Iv1,M) = (Oy + r) − My+ and minDist(Ih2,M) = My− −
(Oy − r). As a result, according to Theorem 2, we have:

maxMinDist(R,M) = max {Mx− − (Ox − r),
(Ox + r)−Mx+, My− − (Oy − r), (Oy + r)−My+}

(1)

Now we can compute maxMinDist(c,Nm
C ) with Equation (1) for a client c indexed

in a leaf node Nm
C and further compute MND(Nm

C ) as follows since it is defined as

max{maxMinDist(c,Nm
C )|c is a client indexed by Nm

C }.

MND(Nm
C ) = max {d1, d2, d3, d4}, where

d1 = max {cy + dnn(c, F )|c ∈ Nm
C } −max {cy|c ∈ Nm

C },
d2 = max {cx + dnn(c, F )|c ∈ Nm

C } −max {cx|c ∈ Nm
C },

d3 = min{cy|c ∈ Nm
C } −min {cy − dnn(c, F )|c ∈ Nm

C },
d4 = min{cx|c ∈ Nm

C } −min {cx − dnn(c, F )|c ∈ Nm
C }.
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16 Jianzhong Qi et al.

According to Theorem 3, we can replace c by N and replace dnn by MND in the above

equation to obtain an equation for computing the MND value of a non-leaf node Nm
C , where

N denotes a child node of Nm
C and MND denotes its MND.

Compared with the straightforward MND computation approach, which requires an ex-

pensive iterative method for computing maxima, the above proposed method requires only

several arithmetic operations, which has a constant low cost. As the MND computation is

performed recursively in a bottom up manner, it resembles the procedure of MBR compu-

tation for R-tree construction and maintenance. Therefore, the MND computation can be

integrated straightforwardly into the standard R-tree procedures with negligible overhead.

Discussion. We notice that the RdNN-tree [27] has a similar structure to the tree we use

in the MND method to index the clients. In the RdNN-tree, a node N is associated with the

largest dnn value of all objects indexed in sub(N), while in the MND method, a node N is

associated with the MND value, which by definition is guaranteed to be in general smaller

than and at worst the same as the largest dnn value. Therefore, the pruning capability and

efficiency of the MND method is guaranteed to be better than a method using the RdNN-tree.

4 The Min-dist Facility Replacement Query

In this section we present algorithms to process the min-dist facility replacement query. We

first redefine the query to a similar form to the min-dist location selection query, so that

some of the the pruning techniques can be reused.

Definition 4 Given a set of points C as clients, a set of points F as existing facilities and a

set of points P as potential locations, the min-dist facility replacement query finds a pair of

existing facility and potential location, denoted by f and p respectively, so that ∀〈f ′, p′〉 ∈
F × P : dr(〈f, p〉) ≥ dr(〈f ′, p′〉).

Here dr(〈f, p〉) denotes the distance reduction if f and p are selected for the replace-

ment. Formally, dr(〈f, p〉) =
∑

c∈IS(〈f,p〉)(dnn(c,F )− dnn(c, F \ {f} ∪ {p})), where

IS(〈f, p〉) is a subset of clients whose nearest facilities change when f is replaced by p.

4.1 Sequential Scan Method

The redefined query can be processed with a sequential scan (SS-FR) algorithm. It scans

the set of clients to compute dr(〈f, p〉) for every pair of existing facility f and potential

location p and returns the pair with the largest dr.

For dr computation, we also want to reuse the precomputed dnn of the clients to avoid

repetitive client facility distance computation. However, dnn alone are not enough to pro-

duce accurate dr values. This is because, when f is replaced with p, the nearest facility of

a client c can change to a place that is not p, and thus, the distance reduction achieved for c
is not dnn(c, F ) - dist(c, p) any more. Fig. 8 gives an example. If we replace f2 with p1,

then the nearest facility of c2 changes to f3 instead of p1. The distance reduction of 〈f2, p1〉
gained for c2 is dnn(c2, F )− dist(c2, f3).

We observe that, when f is replaced by p, the nearest facility of c may stay unchanged, or

become either p or the existing second nearest facility (SNF) of c, depending on the relative

position of f , p, c and the SNF of c. We analyze the different cases and summarize the

computation of the distance reduction of 〈f, p〉 gained for c, dr(〈f, p〉, c), in the following
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c1

f1

f2

f3

c2
p1

p2

dr(〈f2,p2〉,c2) SNFC(c2)

dr(〈f1,p1〉,c1) dr(〈f2,p1〉,c2)

SNFC(c1)

Fig. 8 Computation of dr(〈f, p〉)

equation. Here, d2nn(c, F ) denotes the distance between c and its SNF.

dr(〈f, p〉, c) =






dnn(c, F )− dist(c, p), dist(c, p) ≤ dnn(c, F ) or (i)

(dist(c, F ) = dnn(c, F ) and dist(c, p) ≤ d2nn(c, F ))
dnn(c, F )− d2nn(c, F ), dist(c, F ) = dnn(c, F ) and (ii)

dist(c, p) > d2nn(c, F )
0, otherwise. (iii)

(2)

Here, case (i) says that, if p is closer to c than the existing nearest facility of c (cf. Fig. 8,

dr(〈f1, p1〉, c1)), or p is closer to c than the existing second nearest facility of c while f
is the existing nearest facility of c, (cf. Fig. 8, dr(〈f2, p2〉, c2)), then p will become the

new nearest facility of c after the replacement. Therefore, dr(〈f, p〉, c) = dnn(c, F ) −
dist(c, p). Cases (ii) and case (iii) say that, if p is not closer to c than even the existing

second nearest facility of c, then dr(〈f, p〉, c) is solely determined by f and c. If f is the

existing nearest facility of c (case (ii)), then dr(〈f, p〉, c) = dnn(c, F ) − d2nn(c,F ) (cf.

dr(〈f2, p1〉, c2), Fig. 8). Otherwise (case (iii)), then 〈f, p〉 will not affect c at all. Thus,

dr(〈f, p〉, c) = 0 (e.g., 〈f3, p2〉 and c1 in Fig. 8).

Based on Equation 2, we can precompute dnn and d2nn at the same time, and then

use them in the sequential scan method for dr computation. This will result in an algorithm

with a three layered nested loop, where the outer two layers iterate the facility-location pairs

while the inner most layer iterates the clients to compute dr values. The algorithm suffers

from low efficiency and poor scalability. In the following subsections, we explore pruning

techniques to reduce the search space and accelerate query processing.

4.2 Maximum SNFC Distance Method

We investigate techniques to restrict the search space for dr computation. The technique

we found mimics that of the MND method but also involves clients’ second nearest facility

circles (SNFC), which are circles on clients’ second nearest facilities (cf. Fig. 8). We call

the resultant method the Maximum SNFC Distance (MSND) method.

The MSND method is based on that, in Equation 2, only the clients satisfying cases (i)

and (ii) can contribute to dr(〈f, p〉). Thus, we can index the clients in an R-tree and then for

each facility-location pair, we perform a range query using the conditions in Equation 2 as

the predicate to retrieve the relevant clients for dr computation.

The range query will require the clients’ dnn and d2nn for predicate computation. Thus,

we need to store them in the R-tree and define distance metrics for the tree nodes to enable
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18 Jianzhong Qi et al.

predicate computation. We apply the technique used in the MND method to build an R-tree

variant, Rs
C , to index the clients and bounding regions for their NFCs as well as SNFCs.

In Rs
C , the leaf nodes’ entries (the client points) store not only the dnn values (radii of the

NFCs) but also the d2nn values (radii of the SNFCs). The non-leaf nodes’ entries store the

MND values as well as the maximum SNFC distance (MSND) values for their child nodes.

Here, MSND is defined similarly to MND, but bounds the SNFCs instead of NFCs (cf.

Fig. 9).

f

C

NCMSND region of

ci

oi is a pointNCoi

on SNFC(  ), i=1,2,3}
max{minDist(   ,     )| 

2o
3
f

2c
c1

NCo2minDist(   ,     )

f

1

N
c3 2

Fig. 9 Example of MSND

We need to do a range query for every pair of facility and location. We batch process

the range queries to accelerate query processing. Specifically, we read in the facilities and

potential locations in blocks. For each block, we compute a minimum bounding rectangle.

Then, for every pair of facility and potential location blocks, we use their bounding rectan-

gles in the range query on Rs
C to find all the relevant clients and therefore reduce the number

of tree accesses.

4.3 Replacement Influence Distance Method

The MSND method uses range queries to reduce the search space from F × P × C to

F ×P × C̃, where C̃ denotes a subset of C that are accessed by the range queries. This is a

search cubically proportional to the size of the datasets, which is large. Therefore, MSND is

better than Sequential Scan but still expensive. In this subsection, we propose to replace such

a cubical search with two lightweight quadratic search plus a lightweight cubical search, so

that we can obtain better query processing efficiency. The key is to examine only a small

number of promising facility-location pairs. To achieve this, we first compute the dr values

for the facilities and potential locations separately (two quadratic search), and then only

aggregate the dr values for the facility-location pairs where necessary (a lightweight cubical

search) to determine the optimal pair. We use a concept called the Replacement Influence

Distance (RID) to help identify the facility-location pairs that require dr value aggregation.

Therefore, we named the method based on RID the Replacement Influence Distance (RID)

method.

The motivation behind the RID method is that, instead of considering a pair of facility

and potential location 〈f, p〉 as a unit, we consider it as two independent parts and compute

dr(f) and dr(p) separately. This way, we can apply the MND method to efficiently com-

pute dr(f) and dr(p), and only pair up the promising facilities and potential locations to
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The Min-dist Location Selection and Facility Replacement Queries 19

find the optimal pair. Here dr(f) denotes the distance reduction incurred by removing f ,

i.e., dr(f) =
∑

c∈IS(f)(dnn(c, F ) − d2nn(c, F )), where IS(f) is the subset of clients

attracted by f (note that dr(f) ≤ 0). Now the problem is to determine which are the promis-

ing facilities and potential locations. A pair of facility and potential location 〈f, p〉 with

large dr(f) and dr(p) values might be promising, but this is not always the case because

dr(〈f, p〉) is not always simply the sum of dr(f) and dr(p). We need to determine which

pairs satisfy dr(〈f, p〉) = dr(f) + dr(p) and which pairs do not, and perform range queries

to compute the dr values for the latter case. RID supports this determination process.

c2

c1

c3f1

f2

f3
p1

p2

RIC(f1)

f1.rid

d2nn(c2,F )

dnn(c2,F )

Fig. 10 Example of replacement influence circle

The RID of a facility f is defined as the the largest dnn and d2nn sum of the clients

attracted by f . Formally, f.rid = max{dnn(c, F ) + d2nn(c, F )|c ∈ IS(f)}. The RID

of f defines the Replacement Influence Circle (RIC) of f , denoted by RIC(f), which is a

circle centered at f with its radius being f.rid (cf. Fig. 10). If a potential location p is not

enclosed by RIC(f), then dr(〈f, p〉) = dr(f) + dr(p), as guaranteed by the following

Theorem 4.

Theorem 4 Given a pair of facility and potential location 〈f, p〉, dr(〈f, p〉) = dr(f) +
dr(p) if dist(f, p) > f.rid.

Proof The proof is straightforward. The RIC of f divides the data space into two parts.

Inside RIC(f), the clients’ new facilities after removing f are irrelevant to any object

outside RIC(f), and vice versa. If dist(f, p) > f.rid, then p is outside RIC(f). We can

then use dr(f) to compute the distance reduction grained for the clients inside RIC(f), and

dr(p) to compute the distance reduction grained for the clients outside RIC(f), separately.

Formally,

dr(〈f, p〉) =
∑

c∈IS(〈f,p〉)(dnn(c, F )− dnn(c, F \ {f} ∪ {p}))

=
∑

c∈IS(〈f,p〉)∩RIC(f)(dnn(c, F )− dnn(c, F \ {f} ∪ {p}))

+
∑

c∈IS(〈f,p〉)\RIC(f)(dnn(c, F )− dnn(c, F \ {f} ∪ {p}))

=
∑

c∈IS(f)(dnn(c, F )− d2nn(c, F ))

+
∑

c∈IS(p)(dnn(c, F )− dist(c, p))

= dr(f) + dr(p)

Now we can use an R-tree variant Rr
F to index the facilities and the bounding regions

of their RICs as what we have done to index the clients and the bounding regions of the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 Jianzhong Qi et al.

NFCs. We use another R-tree variant Rr
P to index the potential locations, and then perform

a synchronous traversal on the two trees to quickly identify all the facility-location pairs that

require dr aggregation.

We further enhance the efficiency of the algorithm by storing dr(f) in Rr
F and dr(p) in

Rr
P . For the leaf nodes, the entries store the facilities (or potential locations) as well as their

respective dr values. For the non-leaf nodes, we store with an entry the largest dr value

of the facilities (or potential locations) indexed in the child node of the entry, denoted by

maxdr. Then we can perform the synchronous traversal on Rr
F and Rr

P in a branch and

bound fashion. We start the traversal at the root nodes. For every pair of nodes accessed, we

estimate an upper bound dru of the dr value for each pair of the entries 〈erf , e
r
p〉 using the

following equation.

dru(〈e
r
f , e

r
p〉) =

{
maxdr(erp),mindist(erf , e

r
p) ≤ erf .rid (i)

maxdr(erf ) +maxdr(erp), otherwise (ii)

In this equation, case (i) says, if the minDist of erf and erp is less than or equal to erf .rid,

then according to Theorem 4, dr(〈f, p〉) of two objects f and p indexed in the subtrees of

erf and erp does not equal to dr(f)+dr(p). In this case, the best situation is that the removal

of f does not incur an increase of the dnn value of any client, and thus dr(〈f, p〉) is solely

determined by dr(p), i.e., dr(〈f, p〉) = dr(p). Therefore, an upper bound of the dr value

for erf and erp is computed as maxdr(erp). In case (ii), the minDist of erf and erp is larger

than erf .rid. By Theorem 4 we have an upper bound of the dr value for erf and erp computed

as maxdr(erf ) +maxdr(erp).

Algorithm 5: RID(Nr
F , N

r
P , R

s
C , optPair)

1 if Nr
F

and Nr
P

are non-leaf nodes then

2 for (er
f
, erp) ∈ Nr

F
×Nr

P
, dru(〈erf , e

r
p〉) > optPair.dr do

3 RID(er
f
.childnode, erp.childnode, Rs

C , optPair);

4 else if Nr
F

is a leaf node and Nr
P

is a non-leaf node then

5 for erp ∈ Nr
P

, dru(〈Nr
F
, erp〉) > optPair.dr do

6 RID(Nr
F

, erp.childnode, Rs
C

, optPair);

7 else if Nr
F

is a non-leaf node and Nr
P

is a leaf node then

8 for er
f
∈ Nr

F
, dru(〈erf , N

r
P
〉) > optPair.dr do

9 RID(er
f
.childnode, Nr

P , Rs
C , optPair);

10 else

11 for (er
f
, erp) ∈ Nr

F ×Nr
P , dru(〈erf , e

r
p〉) > optPair.dr do

12 if mindist(er
f
, erp) > er

f
.rid then

13 dr = dru(〈erf , e
r
p〉);

14 else

15 dr = PointQuery(er
f
, erp, R

s
C );

16 if dr > optPair.dr then

17 optPair ← 〈er
f
, erp, dr〉;

We only need to visit the child nodes of the entry pairs whose dru values are larger than

the optimal dr value found so far, optPair.dr. When the traversal reaches the leaf nodes,

we issue range queries on Rs
C for the unpruned facility-location pairs to compute the actual
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dr values, and update optPair.dr. We perform the traversal in a depth-first order so that

optPair.dr can be early updated and thus enhance the pruning capability of the algorithm,

as summarized in Algorithm 5.

The only problem left is how to efficiently initialize the R-tree variants, Rr
F Rr

P and

Rs
C . The R-tree variants are first built with the extra distance metric fields left uninitialized.

This is a standard R-tree construction process. Then the extra distance metric fields are

initialized as follows. First, an R-tree join like operation is performed on Rr
F and Rs

C to

precompute dnn and d2nn for the clients, as well as dr(f) and RID for the facilities all

together. The distance metric fields in the non-leaf nodes are initialized during the same

process in a bottom up fashion using the technique proposed for the efficient computation of

MND. The MND algorithm is then applied to precompute dr(p) for the potential locations

in Rr
P and initialize the distance metric fields in the non-leaf nodes in Rr

P , also in a bottom

up fashion. The extra cost of the precomputation is very limited as shown in the experiments

that verify the efficiency of the MND algorithm (≤ 1 second for 1,000,000 data points, cf.

Section 6.2). Once the R-tree variants are set up, they can be maintained incrementally with

data updates.

5 Cost Analysis

In this section, we analytically compare for all described methods (SS, QVC, NFC, MND,

SS-FR, MSND and RID) the precomputation cost, I/O cost, and CPU cost. Table 3 summa-

rizes the results, but omits CPU cost as it is just the product of I/O cost and processing cost

per node (block).

We first introduce the notation and equations used in the analysis. Let Cm be the maxi-

mum number of entries in a disk block (i.e., Cm = block size / size of a data entry). Let Ce

be the effective capacity of an R-tree, i.e., the average number of entries in an R-tree node.

The average height of an R-tree is h =
⌈
logCe

n
⌉

where n is the cardinality of the dataset;

the cardinalities of C , F and P are denoted by nc, nf and np, respectively. The expected

number of nodes in an R-tree is the total number of nodes in all tree levels (leaf nodes being

level 1 and the root node being level h), which is
∑h

i=1
n
Ci

e

= n
(

1
Ce

+ 1
C2

e

+ · · ·+ 1
Ch

e

)
=

n
Ce−1(1−

1
Ch

e

) ≈ n
Ce−1 . We assume an R-tree node has the size of a disk block.

Table 3 Summary of Costs

Method Precomp Indexes I/O Cost

SS dnn N/A
npnc

C2
m

QVC dnn RC , RF
np

Cm
+ k

npnf

Ce−1
+

np(1− wq)
logCe

nc

Cm

NFC dnn RC , Rn
C , RP (1− wn)

ncnp

(Ce−1)2

MND dnn Rm
C

, RP (1− wm)
ncnp

(Ce−1)2

SS-FR dnn, d2nn N/A
nfnpnc

C3
m

MSND dnn, d2nn Rs
C

(1− ws)
nfnpnc

C2
m(Ce−1)

RID dnn, d2nn Rs
C , Rr

F , Rr
P (1− wr)

nfnpnc

(Ce−1)3

dr, RID
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5.1 Precomputation and Index Cost

We precompute dnn(c, F ) for all location selection methods. Computing dnn(c, F ) for

all clients has the cost of O(ncnf ) since dist(c, f) for each pair of client c and existing

facility f needs to be computed. The result of dnn(c, F ) may be incrementally maintained

and therefore the cost is amortized. We precompute dnn(c, F ) and d2nn(c, F ) for the

facility replacement methods SS-FR and MSND. Since it is done at the same time, the cost

is very similar to that of precomputing dnn(c, F ) only. The RID method precomputes more

distance metrics (i.e., dr(f), dr(p) and RID), but uses a different computation algorithm,

which on average have much lower cost than the nested loop based dnn (d2nn) computation

used by the other methods. Meanwhile, these values are incrementally maintained. Thus, the

cost is amortized.

QVC uses RC and RF . NFC and MND all use RP . In addition, NFC uses RC and

the RNN-tree Rn
C , while MND uses the R-tree variant Rm

C . MSND and RID both use an

R-tree variant Rs
C , while RID also indexes F and P with two R-tree variants Rr

F and Rr
P ,

respectively. The cost of maintaining any of the R-tree variants is very similar to the cost of

maintaining a traditional R-tree. For example, Rn
C has the same Cm and Ce as RC , so it

has almost the same maintenance cost as RC . Rm
C has an additional attribute in each entry,

which reduce Ce a little bit. However, the effect on the height of the tree is very small. For

example, in our experiments, where every entry of RC stores only its MBR and a child node

pointer, the height of Rm
C is less than 10% larger than that of RC . The difference in height

will be even smaller in practical databases where an entry is much larger than just an MBR.

Therefore, we do not distinguish Cm (Ce) of different R-tree variants.

In summary, for the location selection query, except for the costs of building indexes,

all methods have the same precomputation cost. QVC and MND have similar R-tree main-

tenance costs and the NFC method maintains one more R-tree. For the facility replacement

query, MSND maintains an R-tree variant while RID maintains three. SS-FR and MSND

have the same distance metric precomputation costs. RID computes more distance metrics,

but the computation is more efficient due to the use of the R-tree variants.

5.2 I/O Cost

For SS, the data points are retrieved in blocks from the disk; the I/O costs is IOs =
np

Cm

nc

Cm
=

npnc

C2

m

. For the other location selection methods, they involve R-tree (and variant)

traversals. In NFC and MND, RP is traversed in a depth-first order and for every node NP

of RP , we need to retrieve the nodes in the client R-tree (Rn
C or Rm

C ) that satisfy certain

conditions with NP . In the worst case, all nodes are paired up and traversed. Therefore,

the worst-case I/O costs for these two methods are the same: nc

Ce−1
np

Ce−1 =
ncnp

(Ce−1)2 . In

average case, some of the nodes are pruned from traversal. We quantify the percentage of

pruned nodes as the pruning power, denoted by w; the number of nodes accessed is then

(1 − w)
ncnp

(Ce−1)2 , where w should be replaced by wn and wm for NFC and MND, respec-

tively. The cost difference among the two methods lies in the different pruning powers of the

two algorithms, which is associated with the metrics used in the determination of the influ-

ence sets, i.e., dnn(c, F ) and MND, respectively. Since MND is defined to approximate

dnn(c, F ) closely, the pruning power quantifiers have similar values, i.e., wm ≈ wn and

hence IOm ≈ IOn. This relationship is also observed in our experiments.

QVC involves the following I/O costs. (i) Fetch P from the disk in blocks, IOq1 =
np

Cm
.

(ii) For each potential location p, perform a best-first NN query to construct QV C(p): the

I/O cost is IOq2 = np · k
nf

Ce−1 where k indicates the average percentage of RF nodes

accessed in the NN query. (iii) For every QV C(p), perform a window query on RC : the
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I/O cost is IOq3 =
np

Cm
· (1 − wq) logCe

nc. Therefore, the I/O cost of QVC is IOq =

IOq1 + IOq2 + IOq3 =
np

Cm
+ k

npnf

Ce−1 +
np

Cm
(1− wq) logCe

nc.

The I/O cost of SS is much larger than that of NFC or MND due to its lack of pruning

capability. The I/O cost of QVC depends on Cm and can be larger than SS under certain

circumstances as follows. Let IOnn = k
nf

Ce−1 (i.e., the I/O cost of the NN query discussed

above). Based on the I/O costs of SS and QVC, if C2
mIOnn > nc, we obtain CmIOnn >

nc

Cm
. Hence,

np

Cm

(
1 + Cmk

nf

Ce−1 + (1− wq) logCe
nc

)
>

npnc

C2

m

and thus, IOq > IOs.

For example, in our experiments, when nc = 10K and Cm = 204, IOq > IOs whenever

IOnn > 2.4. This is a situation where NN query only accesses 2.4 nodes in RF . In general,

IOs > IOq when nc is huge or nf is small.

For the facility replacement methods, SS-FR retrieves all data points in blocks and its I/O

cost IOsf =
nf

Cm

np

Cm

nc

Cm
=

nfnpnc

C3

m

. MSND examines every pair of facility and potential

location. Thus, its I/O cost IOms =
nf

Cm

np

Cm
IOq

ms =
nfnp

C2

m

IOq
sf , where IOq

ms denotes the

I/O cost of the range query required for dr computation. For the range query, we need to

retrieve the nodes in the client R-tree Rs
C that satisfy certain conditions with the bounding

rectangles of a facility block and a potential location block. In the worst case, every node

of Rs
C is traversed. The I/O cost is

nfnp

C2

m

nc

Ce−1 =
nfnpnc

C2

m
(Ce−1) . This worst-case I/O cost is

slightly worse than the I/O cost of SS-FR. Meanwhile, some of the nodes may be pruned

during the range query. We quantify the percentage of the pruned nodes as the pruning

power, denoted by ws. The number of nodes accessed is then (1 − ws)
nc

Ce−1 , and the I/O

cost becomes (1 − ws)
nfnpnc

C2

m
(Ce−1) . This I/O cost can be very close to the worst-case I/O

cost because the bounding rectangles are usually large, since they bound randomly grouped

facilities and potential locations.

RID method further reduces the number of facility and potential locations accessed by

performing a branch and bound based traversal on Rr
F and Rr

P . Its I/O cost IOr is denoted

as (1−wr)
nf

Ce−1
np

Ce−1
nc

Ce−1 = (1−wr)
nfnpnc

(Ce−1)3 , where wr quantifies the pruning power of

the branch and bound traversal as well as the range query on Rs
C . Note that even though the

range queries of the RID method are on facility-location pairs instead of block pairs, which

means there may be more I/Os for the range query part, the advantage of RID over MSND is

still explicit because of the high pruning capability of the branch and bound traversal. Thus,

we have IOr < IOms ≈ IOsf .

5.3 CPU Cost

The CPU cost can be considered as the product of the CPU cost per block (node) multiplied

by the number of blocks (nodes) accessed. The I/O cost analysis provides the number of

nodes accessed. The CPU cost per block, denoted by t, involves MBR intersection check

and/or metric computation.

The NFC method requires the intersection examination of the MBRs, and MND requires

only the computation of minDist and the comparison of minDist and MND. Therefore

tm ≈ tn. For QVC, recall that IOq = IOq1+IOq2+IOq3. The first part only involves disk

block retrieval. There is very little CPU cost; The CPU cost of QVC is mainly tq2IOq2 +
tq3IOq3 where tq2 corresponds to the CPU cost per pair of RC and RF nodes during the

construction of QV C(p) and tq3 indicates the CPU cost per pair of QV C(p) block and

RC node. The third part, tq3IOq3, is comparable with the CPU costs of NFC and MND.

In fact tq3 ≈ tn because both methods perform a window query with the query window

being either the MBR of QV C(p) or NP .mbr, respectively. Due to the additional QVC

construction stage, QVC has higher CPU cost in general compared with NFC and MND.
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While the other methods only compute the values of several metrics for each pair of

accessed nodes, SS computes dist(c, p) for every pair of client c and potential location p
for each pair of blocks of the client set and the potential location set. Hence, the CPU cost

per pair of blocks of SS, ts, is much higher than that of any other method. Also, IOs is

not smaller than other I/O costs. Thus, SS has the highest CPU cost. The same conclusion

applies to the SS-FR and the MSND methods, while MSND method has comparatively

smaller CPU cost per pair of facility and potential location because the range query used

help prune many clients from distance comparison for dr computation. Therefore, MSND

has smaller overall CPU cost (i.e., CPUms < CPUsf ).

For RID, the distance metrics computed include (i) minDist, for determining which

equation to use for dr upper bound computation and further which pair of nodes to be

accessed next; (ii) dist(c, f) and dist(c, p), for actual dr value computation. The first part

is similar to the computations in the MND method, which is small because it is for per pair

of blocks. The second part is similar to the range query of the MSND method. Meanwhile,

IOr is much smaller. Therefore, the CPU cost of RID (CPUr) is small compared to the

other facility replacement methods.

In summary, we have CPUs > CPUq > CPUm ≈ CPUn and CPUsf > CPUms >
CPUr . These inequalities will be validated by experiments in the next section.

6 Experimental Results

This section reports our experimental results. We start with the experimental settings in Sec-

tion 6.1. Then we present experiments on the algorithms proposed for the location selection

and facility replacement queries in Sections 6.2 and 6.3, respectively.

6.1 Experimental Setup

All experiments were conducted on a desktop PC with 3GB RAM and 2.66GHz Intel R©

Core(TM)2 Quad CPU. The disk page size is 4K bytes. We measure the running time, the

number of I/Os and the index size.

We conduct experiments on synthetic and real datasets. Synthetic datasets are generated

with a space domain of 1000×1000. The dataset cardinalities range from 100 to 1,000,000.

Three types of datasets are used: (i) Uniform datasets, where data points are distributed

randomly; (ii) Gaussian datasets, where data points follow the Gaussian distribution; (iii)

Zipfian datasets, where data points follow the Zipfian distribution. The parameters of the

synthetic data experiments are summarized in Table 4, where values in bold denote default

values.

Table 4 Parameters and Their Settings

Parameter Setting

Data distribution Uniform, Gaussian, Zipfian

Client set size 10K, 50K, 100K, 500K, 1000K

Existing facility set size 0.1K, 0.5K, 1K, 5K, 10K

Potential location set size 1K, 5K, 10K, 50K, 100K

µ (Gaussian distribution) 0

σ2 (Gaussian distribution) 0.125, 0.25, 0,5, 1, 2

N (Zipfian distribution) 1000

α (Zipfian distribution) 0.1, 0.3, 0.6, 0.9, 1.2
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We use two groups of real datasets provided by Digital Chart of the World [20], which

contain the points of populated places and cultural landmarks in the US and in North Amer-

ica. We name them as the US group and the NA group, respectively. For each group of

datasets, the populated places are used as the client set C . The cultural landmark dataset is

divided into two datasets. Half of the cultural landmarks are chosen randomly to form the

existing facility set F , and the remaining are used as the potential location set P . For the US

group, the cardinalities of C , F , P are 15206, 3008 and 3009, respectively, while those for

the NA group are 24493, 4601 and 4602.

We use the R-tree [9] (or its variants as proposed in this paper) as the underlying access

methods.

We evaluate the performance of four methods for the min-dist location selection query:

– SS, where the potential locations and the clients are sequentially scanned for dr value

computation.

– QVC, where quasi-Voronoi cells are used to reduce the search space for dr value com-

putation.

– NFC, where nearest facility circles are used to reduce the search space for dr value com-

putation and the dr values of different potential locations are computed synchronously.

– MND, where MND regions are used to reduce the search space for dr value computation

and the dr values of different potential locations are computed synchronously.

We evaluate the performance of three methods for the min-dist facility replacement

query:

– SS-FR, where the facilities, the potential locations and the clients are sequentially scanned

for dr value computation.

– MSND, where MSND regions are used to reduce the search space for dr value compu-

tation.

– RID, where RID values are used to reduce the number of facility-potential location pairs

required to be checked to find the optimal pair and MSND regions are used to reduce

the search space for dr value computation.

6.2 The Min-dist Location Selection Query

In this subsection, we show that, for the min-dist location selection query, MND is the only

method that performs as good as NFC in terms of the running time and the number of I/Os,

while MND has a much smaller index size.

6.2.1 Varying Dataset Cardinality

The results for the experiments that vary the number of clients are shown in Fig. 11. From

this figure, we can see that the NFC method and the MND method perform best in terms

of the running time and the number of I/Os (cf. Fig. 11(a) and (b)). Meanwhile, the MND

method has a much smaller index size compared to the NFC method (cf. Fig. 11(c)). Fig. 11(d)

gives a different representation of the index size requirements using the measure relative to

the index size of the NFC method. For example, for the 10K datasets the index size of the

MND method is about 70% of that of the NFC method, and for the 100K datasets, the index

size of the MND method drops to about 60% of that of the NFC method.

From Fig. 11, we also observe that, compared with other methods, the SS and QVC

methods have significantly higher running time and larger numbers of I/Os, although the

QVC method requires slightly less index size than the MND method does and the SS method

does not require any index. When the cardinality of the client set is large enough (e.g. 500K),

the number of I/Os of SS exceeds that of QVC. The observations above are in accordance
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Fig. 11 The effect of client set size

with the cost analysis. QVC traverses RF for each potential location, while either NFC or

MND only traverses the R-trees once on average for the entire potential location set. Thus,

QVC has larger number of I/Os and higher running time. For SS, IOs > IOq whenever nc

is large. It is slow because it does not have any pruning strategy.

We have also conducted experiments that vary the number of facilities and potential

locations. The results are similar to the above and thus omitted. See reference [18] for more

details.

6.2.2 Varying Dataset Distribution

In the following experiments, we vary the distribution of the datasets. We focus on perfor-

mance of the algorithms in terms of the running time and the I/O cost rather than the index

size because the influence of detail data distribution on the index size requirement is not the

major concern of this paper.
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Fig. 12 The effect of σ2 in Gaussian distribution
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Fig. 12 shows the results of experiments on Gaussian datasets varying the value of σ2.

For the Gaussian datasets, varying σ2 means varying the degree of the inclination for the

data points to cluster at the central area of the distribution. Increasing σ2 leads to less dense

data points at the center. We see that, compared with varying dataset cardinalities, varying

σ2 does not affect much of the algorithm performance. NFC and MND are still the two most

efficient methods. These results follow our cost analysis.

Experimental results on datasets of Zipfian distribution have similar behavior to the

above results and are omitted.

6.2.3 Experiments on Real Datasets

The experimental results on real datasets are shown in Fig. 13. The comparative performance

of the methods is similar to that of experiments conducted for the synthetic datasets. QVC

shows the worst performance in terms of the number of I/Os. While the number of I/Os

of SS is close to that of QVC, it has the largest running time due to the lack of pruning

capability. NFC and MND outperform other methods in terms of both the number of I/Os

and the running time.

Overall, the MND method outperforms other methods.
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Fig. 13 Performance comparison on real datasets

6.3 The Min-dist Facility Replacement Query
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In this subsection, we compare the performance of the facility replacement methods,

i.e., SS-FR, MSND and RID. We show that RID constantly outperforms SS-FR and MSND

under various settings by up to five orders of magnitude.

6.3.1 Varying Dataset Cardinality

We first vary the size of the client dataset. As Fig. 14 shows, when the number of clients

increases, the running time and I/O for all methods increase. The advantage of RID is clear,

and the superiority is up to five orders of magnitude. It can process the query within 0.1

seconds for very large datasets (e.g., |C| = 1, 000,000), while neither SS-FR nor MSND

can process the query within 100 seconds for much smaller datasets (e.g., |C| = 10, 000).

In particular, SS-FR requires 14, 676 seconds (≈ 4 hours) to process a dataset of 10, 000
clients. Since SS-FR scans every client, its running time increases linearly with the number

of clients. It will need 20 hours to produce a query answer for a dataset of 50, 000 clients.

Due to this extremely low efficiency, we omit SS-FR when |C| is larger than 10, 000 as well

as in the following experiments, and focus on the comparison between MSND and RID. We

also observe that the performance difference on I/O is relatively small compared with that

on running time. When |C| = 10, 000, MSND even has slightly higher I/O cost than SS-FR

does. This confirms our cost analysis in Section 5.

We also perform experiments where the facility set size and the potential location set

size are varied. From Fig. 15 we can see that RID outperforms MSND constantly in terms

of both running time and I/O when the facility set size is varied. An interesting observation

is that, while the costs of MSND increase with the dataset sizes because MSND accesses

every pair of facility and potential location, the costs of RID decrease. This is because when

the number of facilities increases, the dnn and d2nn values of the clients decrease and as a

result, the facilities have smaller RID regions, which enhances the pruning capability of the

method and hence the algorithm performance.

We omit the result of varying potential location set size because it is very similar to that

of varying client set size.

10-2

10-1

100

101

102

103

104

10k 50k 100k 500k 1000k

R
un

ni
ng

 T
im

e 
(s

)

Existing Faclity Set Cardinality

MSND
RID

(a) Running time

102

103

104

105

106

107

10k 50k 100k 500k 1000k

N
um

be
r 

of
 I/

O
s

Existing Facility Set Cardinality
(b) Number of I/Os

Fig. 15 The effect of existing facility set size

6.3.2 Varying Dataset Distributions

Next, we vary the data distribution by varying the values of σ2 and α in the Gaussian and

Zipfian datasets, respectively. From Figs. 16 and 17 we can see that RID again outperforms

MSND in datasets with different distributions by several orders of magnitude. While data

distribution does not affect much of the performance of MSND, the performance of RID

varies when data distribution changes. This is explained as follows. Altering the values of
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σ2 and α effectively alters the skewness of the data distribution, which has a two-fold effect

on the algorithm performance. On one hand, more skewed data results in lower selectivity

of the range queries needed by MSND and RID. On the other hand, more skewed data

also means smaller dnn and d2nn values as well as RID regions, which results in higher

selectivity of the range queries. The combined effect depends on whether the former or

the latter is the dominating factor. As the figures show, the combined effect on the MSND

method is more balanced while it is varying on the RID method.
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Fig. 16 The effect of σ2 in Gaussian distribution

10-2

10-1

100

101

102

103

104

0.1 0.3 0.6 0.9 1.2

R
un

ni
ng

 T
im

e 
(s

)

α

MSND
RID

(a) Running time

102

103

104

105

106

0.1 0.3 0.6 0.9 1.2

N
um

be
r 

of
 I/

O
s

α
(b) Number of I/Os

Fig. 17 The effect of α in Zipfian distribution
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Fig. 18 Performance comparison on real datasets

6.3.3 Experiments on Real Datasets

We also evaluate the performance of MSND and RID on real datasets. The result in Fig. 18

again confirms the superiority of the RID method over the MSND method in terms of both
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running time and I/O. The comparative performance of the two method is similar to that of

the experiments on synthetic datasets.

7 Conclusions

We formulated the min-dist location selection problem and an important variant, the min-dist

facility replacement problem. For the location selection problem, we proposed two methods,

QVC and NFC, based on common approaches to location optimization problems. Our exper-

iments show that they significantly outperform the sequential scan algorithm. However, they

both have some drawbacks. NFC performs the best but requires maintaining an additional

index. QVC requires fewer indexes, but is not as efficient as NFC. We further proposed the

MND method, which has very close efficiency to NFC without the need of maintaining an

additional index. For the facility replacement problem, we first apply the MND method to

achieve an effective solution called the MSND method. To obtain even better efficiency,

we transform the facility replacement operation into a two-stage operation, and thus signif-

icantly reduce the search space, which results in a highly efficient method called RID. We

provided a detailed comparative cost analysis for all methods and performed extensive ex-

periments to evaluate the empirical performance of them. The results agree with our analysis

and validate the advantages of the MND method and the RID method.
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