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Abstract. In this paper, we address the problem of scientific-social net-
work integration to find a matching relationship between members of
these networks (i.e. The DBLP publication network and the Twitter so-
cial network). This task is a crucial step toward building a multi environ-
ment expert finding system that has recently attracted much attention
in Information Retrieval community. In this paper, the problem of so-
cial and scientific network integration is divided into two sub problems.
The first problem concerns finding those profiles in one network, which
presumably have a corresponding profile in the other network and the
second problem concerns the name disambiguation to find true match-
ing profiles among some candidate profiles for matching. Utilizing several
name similarity patterns and contextual properties of these networks, we
design a focused crawler to find high probable matching pairs, then the
problem of name disambiguation is reduced to predict the label of each
candidate pair as either true or false matching. Because the labels of
these candidate pairs are not independent, state-of-the-art classification
methods such as logistic regression and decision tree, which classify each
instance separately, are unsuitable for this task. By defining matching
dependency graph, we propose a joint label prediction model to deter-
mine the label of all candidate pairs simultaneously. Two main types
of dependencies among candidate pairs are considered for designing the
joint label prediction model which are quite intuitive and general. Us-
ing the discriminative approaches, we utilize various feature sets to train
our proposed classifiers. An extensive set of experiments have been con-
ducted on six test collection collected from the DBLP and the Twitter
networks to show the effectiveness of the proposed joint label prediction
model.

1 Introduction

As the large portion of the web provides information for various kinds of real-
world objects (i.e. entities), more search engines provide object level search re-
sult. Typical objects are products, people, papers, organizations, and the like.



If these objects and their attributes can be extracted from the web, powerful
object-level search engines can be built to more precisely meet users’ informa-
tion needs. Well-known examples of object level search engines include scientific
expert search [1], book search [2] and product search [3].

People search is one of the most interesting and challenging types of object
level search. In the information retrieval community, people search is also known
as expert search (i.e. expert finding). Expert finding addresses the problem of
identifying individuals who are knowledgeable in a given topic. State-of-the-art
algorithms for expert finding rank persons based on the content of their asso-
ciated documents and relations. Although most of the proposed algorithms for
expert finding restrict their analysis to the documents and relations exist in a
single environment[4–6], recent studies [7, ?] suggest that analysis of personal
expertise should not be necessarily undertaken only using the date of one single
environment. For example, while [4–6], simply use the information collected from
the interant of an organization to rank people, recent approaches [7, ?] also con-
sider information extracted from web pages (i.e. homepage) and social networks
(i.e. personal weblogs) to rank them. In fact, besides the degree of expertise,
there are some other important factors, which should be taken into account for
ranking of experts. These factors such as contextual factors [8], the availability
of an expert [9] and the authority of experts in their specialization area [10]
are generally independent of the content of the documents and can be extracted
from multiple sources of information.

Recently, user generated data is growing rapidly and becoming one of the
most important sources of information on the web. This data contains a lot of
information such as opinion, experience, etc., which can be useful for expert find-
ing. Microblogs are one of the such valuable and reliable sources of information
since they usually contain up-to-date and relatively well-formatted data as well
as meaningful relationships between people. Expert’s microblogs can be used to
estimate the effective factors for ranking (e.g. temporal, geographical and con-
textual factors) and this makes automatic discovery of expert’s microblogs an
important step toward building a multi environment expert finding system.

In this paper, we address the problem of scientific-social network integration
towards building such multi environment expert finding system. We propose an
automatic method to integrate two networks of experts. One of them is an official
academic network (i.e. the DBLP4 publication database) that indexes the name
of experts and their publications, and the other one is the network (i.e. the
Twitter5 social network) of expert’s microblogs.

There are some services, which can map people’s name with its social entity
(e.g. its Twitter profile)[11]. Those services are built on an assumption that
full names uniquely identify social entities, and therefore, they focus on textual
name matching. However, this assumption is not valid for many cases. In general,
integration of scientific and social networks is a challenging task because of the
following reasons:

4 http://www.informatik.uni-trier.de/̃ley/db/
5 https://twitter.com



– Nicknaming: According to a recent research study [?], about 11% of people
use nicknames in microblogs, which cannot be reached by the naive name
matching. In these cases, slightly different names in multiple networks refer
to the same person. This problem is known as the identification problem in
the name disambiguation literature [12].

– Name ambiguity: The second main challenge in social network integration
is distinguishing those entities that have very similar and sometimes exactly
the same name and yet refer to different people. This problem is known as
the disambiguation problem in name disambiguation literature [12].

– Multiple reference: Although the majority of people have only one profile
in the social and scientific networks, in some cases, more than one profile
may exist for an individual in a network.

– Local access to profiles: In many cases, it is impossible to access the whole
profiles in a network simultaneously, therefore we need a crawling method
to access the profiles in a network.

We design a focused crawler to collect high probable matching profile pairs in
scientific and social networks. Using a bootstrapping method, the crawler starts
to collect people’ profiles form common profiles of the two networks and in each
step, it collects those social profiles6 which follow (directly or indirectly) these
common profiles (i.e. seed profiles). Using several name matching patterns, each
social profile can be potentially matched to a limited number of corresponding
profiles in the scientific network. The social-scientific network integration prob-
lem is then reduced to finding true matching pairs among the collected candidate
pairs.

Using discriminative features extracted from the candidate profiles of match-
ing, we can utilize state-of-the-art classification methods (e.g. logistic regression,
SVM, decision tree, etc.) to classify candidate pairs and find true matching pro-
files in the two networks. These methods basically assume that the label of
each instance is independent of other instances and do not use the relations
between them. However, in scientific-social integration problem, the profiles in
each network are related to each other, and the label (either true or false) of
each matching candidate pair is not independent of the label of other pairs.

We consider two main types of dependencies between candidate pairs:

– Common friend dependency: People are related to each other in scientific
and social networks. An individual can have co-author relationship with
other people in a scientific network and also be a friend of others in social
networks. In many cases, scientific collaborators are also social friends. So,
if for a matching candidate pair, a common friend exists in both networks,
it will be more likely to be a true match, but finding a common friend in
both networks is not possible until we resolve all matching pairs. It means
that we should jointly predict the label of all candidate pairs.

6 In this paper, each social profile is equivalent to a Twitter user page and each
scientific profile is equivalent to a DBLP user page.



– One-to-One matching dependency: Scientific networks (e.g. digital li-
braries) use sophisticated algorithms [12, 13] and manual effort [14] to iden-
tify and disambiguate people with similar names. So, if one specific social
profile is a candidate for matching with two or more scientific profiles, it
is less likely to be a true match for more than one of them. On the other
hand, the majority of people have at most one profile in a social network.
Therefore, if a scientific profile is already determined as a true match for a
specific social profile, the probability of matching other social profiles (for
the same scientific profile) should be reduced.

To utilize the above-mentioned dependencies in network integration problem,
we transform the initial view of each network as well as their relationships into
a new graph structure called Matching Dependency Graph. In this graph, nodes
indicate matching candidate pairs and edges represent their label dependencies.
Following the idea of conditional random fields [15], we use a discriminative
graphical model to determine the label of all candidate pairs simultaneously in
order to integrate the scientific and social networks. To learn the parameters
of the model, we optimize the conditional likelihood of the assigned labels for
all candidate pairs given several discriminative features extracted from scientific
and social profiles. Since it is impossible to use exact inference algorithms for
the dependent variables in the matching dependency graph, approximate belief
propagation is used to find the most probable label assignment for all candidate
pairs simultaneously.

We apply our proposed algorithm to integrate DBLP and Twitter networks.
To measure the performance of our matching algorithm, we build an automat-
ically generated test collection and five manually annotated topical test collec-
tions. We conduct extensive sets of experiments to compare the performance
of the proposed collective classification model with independent classification
models as well as the algorithm proposed in[?].

The main contribution of this paper includes:

– Building a multi-environmental expert finding system to integrate the social
and scientific activities of experts.

– Proposing a relational learning method that jointly integrates profiles of the
two networks of people.

– Testing our algorithm on an automatic generated test collection. In addi-
tion, we build five test collections to test social-scientific network integration
algorithms.

2 Related work

As a retrieval task, expert finding has attracted much attention, mostly due to
the launching of the Enterprise track of TREC [16]. The previously proposed
approaches for expert finding obtain their estimator of personal expertise by
aggregating the relevance scores of the documents related to a person[4][6]. Most
of these methods estimate the expertise score of each person according to the
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Fig. 1. Modeling the common friend property in [?]

relations and documents existing in a single environment. For example, [4, 6] and
[17] estimate the expertise score of each person based on his related documents
collected from the intranet of an organization and the intranet of a university
respectively. However, recently proposed models such as [9] and [10] consider
heterogeneous sources of information to improve the quality of expert finding
results. Smirnova and Balog [9] considered geographical location of experts to
rank them based on their accessibility, and Deng et al. [10] suggested to rank
each expert based on his authority in the research communities. The usefulness
of heterogeneous sources of information for expert finding is also reported in
[?] and [18]. Similar to the idea of heterogeneous information sources for expert
finding, our goal is to build a multi environment (i.e. social and scientific) expert
finding system.

In a similar approach to our approach, You et al.[?], proposed a method to
integrate two networks of people namely, EntityCube [19] and Twitter networks.
They addressed the problem of finding Twitter pages (i.e. social profile) of a
group of related celebrities. Entity Cube is a virtual network of celebrities in
which each node corresponds to the name of a celebrity, and each edge represents
co-occurrence of names in web pages.

You, et al. [?] used several name similarity patterns to find matching Twit-
ter profile for each name in EntityCube. Using a couple of indicative features,
they used a discriminative approach to rank Twitter candidate profiles for each
name in EntityCube. They considered the common friend property (introduced
in section 1) to improve the accuracy of integration. However, they used inde-
pendent learning approach to model this property. Specifically, for a candidate
pair of matching nodes in Twitter and EntityCube, as indicated in Figure 1, they
used the number of neighborhood nodes with similar names as a discriminative
feature.

Some previous research [12, 20], reported significant accuracy improvement
of relational learning methods (e.g. collective learning) in comparison with in-
dependent learning methods in interdependent decision making problems. Our
proposed algorithm of matching, models the common friend property using re-



lational learning method. The main benefit of our proposed relational learning
model is its flexibility that can help us to consider various types of dependencies
between candidate matching profiles (e.g. one-to-one matching property).

Record deduplication (also known as entity matching [21]) is a related re-
search problem which concerns recognizing and discriminating ambiguous records/references
in a database referring to a same underlying entity. These ambiguous references
occur in databases due to the lack of unique identifier attributes. People name
disambiguation is an important and well investigated type of such problems.
Similar to this problem, our proposed algorithm can find matching profiles in
social-scientific networks despite the lack of unique identifier attributes. Previ-
ously proposed methods for name disambiguation is generally based on learning
a pair wise similarity function for ambiguous name/references. A couple of super-
vised [22, 23] and unsupervised [12, 24] methods are used to learn such similarity
functions while each method uses a different set of textual and relational (i.e. co-
occurrence based) features. For example, [12] and [25], used several features to
measure co-occurrence and textual similarity of two ambiguous names/references
respectively. Pursuing the same goal, specific properties of our problem impose
some constraints on reference/name disambiguation, which is not considered in
previous proposed methods for name disambiguation. Specifically, one to one
matching property (introduced in 1) is a natural constraint in our problem,
which is not considered in previous research.

Another related line of research is the problem of finding related web pages
for a given query. It has attracted increasing attention within the IR research
community since its first run as part of TREC-10 Web track. Craswell et al. [26]
suggest the importance of anchor text in comparison with full-text search and
Xi et al. [27] indicate the importance of query independent features in the home-
page finding task. Recently, Fang et al. [28] proposed a discriminative graphical
model to find the homepage of faculty members. Even though this problem is
closely related to ours, homepage finding is more general in scope and does not
consider the name disambiguation problem directly. Bekkerman and McCallum
[29] proposed a more related task in which the aim is categorizing the web pages
related to a set of ambiguous names. However, in their work, each person can
have an arbitrary number of related webpages that contradicts the assumption
of one-to-one matching in the network integration problem.

3 Integration of Social-Scientific Networks

The goal of social-scientific network integration is to find a matching relationship
between members of these networks. Membership of people in these networks
happens for different reasons and usages. So, for a large number of members
of a network, the corresponding profile may not exist in the other network. In
other words, the matching relation between members of these two networks is
neither surjective nor injective. On the other hand, due to name ambiguities,
for people who have profiles in both networks, finding matching profiles is not
a trivial task. The problem of social and scientific network integration can be



divided into two sub problems. The first problem concerns finding those profiles
in one network, which presumably have a corresponding profile in the other
network and the second problem concerns the name disambiguation to find true
matching profiles among some candidate profiles for matching. We refer to the
first problem as the selection problem and the second as the matching problem.

3.1 Selection Problem

A simple solution to the selection problem is to search the social (or scientific)
network with the name of all people in the other network and collect retrieved
profiles as selected profiles for matching. However, this method has two main
drawbacks. Firstly, in general, it is impossible to access the whole list of names
in the social (or scientific) network. Secondly, this method only relies on exact
name matching, and therefore, it is not able to collect profiles with slightly
different names, that refer to the same person. To overcome these problems,
we use a focused crawler to collect those social profiles that presumably have a
corresponding scientific profile.

To find the social profiles appropriate for matching, we try to find the profiles
of those people who have common scientific interests. There are some profiles
in social networks, which correspond to scientific events (e.g. workshops, confer-
ences, etc.). People with common interests are members of these events and share
their news and opinions about them. Those individuals who follow these social
events (directly or indirectly) are more likely to have a corresponding profile in
the scientific network. Table 1 shows example mappings of social and scientific
events in DBLP and Twitter networks.

Table 1. Twitter and DBLP common events

Topic of event DBLP event Twitter event

Information Retrieval
SIGIR 2011 @sigir2011
ECIR 2011 @ecir2011
WSDM 2011 @wsdm2011

Programming Languages
PLDI @pldi
OOPSLA 2009 @oopsla2009

Computer Graphics SIGGRAPH @siggraph ic

Operating Systems SOSP 2009 @sosp09

Databases
SIGMOD 2010 @sigmod2010
SIGMOD 2011 @sigmod2011

Data mining
IJCAI 2011 @ijcai11
KDD 2011 @kdd2011

HCI
CHI 2011 @chi2011
UIST 2011 @uist2011

We use a focused crawler to collect the social profile of those people who
follow these events directly or indirectly. It starts crawling from people who



directly follow event profiles (i.e. seed profiles) and uses follow7 relation between
people to find new profiles. For each collected profile, it uses some name similarity
patterns to find the candidate scientific profiles for matching. If it cannot find any
candidate for a given social profile, it will continue crawling from other paths.
As indicated in Algorithm 1, the crawler continues until a maximum number
of candidate pairs is collected. Using name matching patterns introduced in [?],
we use exact, prefix and all patterns to find candidate pairs. Table 2, indicates
these patterns for a person name with three name parts (in this table each NP
represents a name part).

Table 2. Name matching patterns. This example indicates three types of pattern (i.e.
exact match, prefix match and all match) for searching a three-part name. Name =
NP1 NP2 Np3.

Pattern Name Regular expression of matching pattern

Exact match ˆNP1 NP2 NP3$

Prefix match ˆNP1(\w)+\sNP2(\w)+\sNP3(\w)+$

All match

ˆNP1(\w)+\sNP2(\w)+\sNP3(\w)+$
ˆNP1(\w)+\sNP3(\w)+\sNP2(\w)+$
ˆNP2(\w)+\sNP1(\w)+\sNP3(\w)+$
...
ˆNP3(\w)+\sNP2(\w)+\sNP1(\w)+$

3.2 Matching Problem

In previous section, we explained how to collect social and scientific profiles for
matching. The output from the selection phase is a set of social and scientific
candidate pairs, which match to each other according to a name similarity pat-
tern. Due to name ambiguity, a large portion of collected candidate pairs is not
actual matching pairs. For the matching sub-problem, the goal is to find true
matching pairs from the set of collected candidate pairs. Let VD = {d1, d2, ..., dn}
, VS = {s1, s2, ..., sn} and CDS = {(di, sj)|di ∈ VD, sj ∈ VS} be the set of sci-
entific profiles, social profiles and candidate pairs collected during the selection
phase correspondingly. The matching problem can be reduced to labeling each
member of CDS as a true or false matching pair.

Note that the prior probability of the candidate pair (di, sj) for being a true
pair of matching, is inversely related to the distance of sj from its seed profile. As
mentioned before, the main criteria for selecting the pair (di, sj) as a candidate
pair is the existence of 1) a path between sj and its parent seed profile and
2) a name similarity pattern between di and sj . Considering these criteria, we
expect a fairly high prior probability for the true labels. However, there are

7 follow relationship is a directed relationship between profiles of the Twitter, but for
generality and simplicity, we ignore its direction.



Algorithm 1 Focused Crawler Pseudo-Code

function FocusedCrawler(list l)
. l is list of common scientific and social events

for all s ∈ l do
enqueue(queue, extract follower(s)) . queue is a ordinary queue structure

end for
visited ← 0
while visited ≤ MAX V ISIT do

vS ← dequeue(queue)
namePatterns ← generateNamePattern(name(vS))
vDS ← Φ

. vDS is the list of scientific candidate profiles to match with vS
for all p ∈ namePatterns do

vDS ← vDS ∪ searchSientificNetwork(p)
. searchSientificNetwork finds a list of scientific profiles with names compatible

with pattern p
end for
if ‖vDS‖ > 0 then

enqueue(queue,extract follower(vS))
visited ← visited+1
for all vD ∈ vDS do

addMatchingPair(vD,vS)
. add a new candidate pair

end for
end if

end while
end function



two important cases that cause false matching pairs. Firstly, follow-relationship
between social profiles does not necessarily indicate a scientific relation. Hence,
it is very probable that a social profile candidate for matching may have some
friends who have not a corresponding scientific profile and vice versa. In these
cases, the candidate social profile is not an appropriate profile for matching.
Intuitively, the more distant the social profile from its seed, the less probability of
being a valid selection. Secondly, the selected social profile may be an appropriate
one for matching, while because of the name ambiguity, the selected pair is not
a valid matching.

Using discriminative features associated with each candidate pair, we can uti-
lize the well-known classification methods (e.g. logistic regression, SVM, decision
tree, etc.) to classify each candidate pair. These methods independently predict
the label (either true or false) of each candidate pair (i.e. independent predic-
tion). In the next section, we introduce logistic regression as a representative
method of independent classification algorithms.

3.3 Independent label prediction using logistic regression

Logistic regression is a widely used classification algorithm which predicts the
label of each instance independent of other instances. For scientific-social net-
works integration, a logistic regression classifier can be used to predict the label
of each candidate pair. We can use several indicative features associated with
each candidate pair to train the classifier utilizing a set of training instances
TrainSet = {(x1; t1)...(xn; tn)} where xi is the feature vector associated with
the candidate pair i, ti ∈ {true, false} is its corresponding label and n is the
number of training instances. While each candidate pair i is associated with a
social profile s ∈ VS and a scientific profile d ∈ VD, the classifier determines if
the profile d is a match for s. We use the parametric form of logistic regression
to predict the label of each candidate pair p(ti|xi):

p(ti = 1|xi) =
1

1 + exp (θxi)
(1)

p(ti = 0|xi) =
exp (θxi)

1 + exp (θxi)
(2)

Where vector xi is the feature vector of the candidate pair i and vector θ
represents the corresponding weights for each feature. Training in this model is
to find the vector θ that maximizes the conditional log likelihood of the training
data:

logL(θ |X,T ) =

n∑
i=1

logP (ti|xi; θ) (3)

In this equation, T = {t1, t2, ..., tn} and X = {x1, x2, ..., xn} represent the set
of labels and the set of feature vectors for each candidate pair in the training
set respectively. The above likelihood function is convex and has a unique global
maximum which can be found numerically [30]. After learning the parameter θ,



we can use equations 1 and 2 to predict the most probable label for a given test
instance (i.e. a candidate pair for matching).

3.4 Candidate pairs label dependence

Logistic regression model is one of the most effective techniques for binary classi-
fication. However, it makes its decisions only based on the features of individual
candidate pairs and do not utilize the dependencies between them. In social-
scientific network integration, the label of each candidate pair is not independent
of other pairs. We consider two cases of dependencies between candidate pairs.

First of all, in many cases, scientific collaborators are also social friends. So,
if a common friend (in both social and scientific networks) exists for a candidate
pair (di, sj) ∈ CDS , the probability of classifying this pair as a true matching
pair should be increased, but finding a common friend is impossible until we
resolve all matching pairs. It means that we should jointly decide the labels of
two pairs (di, sj) and (dk, sl), if di and dj are scientific collaborators and sj and
sl are social friends. We refer to this type of dependency between candidate pairs
as dependency type 1.

Secondly, since scientific networks (e.g. digital libraries) use sophisticated al-
gorithms and manual effort to disambiguate people names, we expect that in
most cases each person has at most one scientific profile. On the other hand,
the majority of people have at most one profile in a social network. These as-
sumptions mean that the label of two candidate pairs (di, sk) and (dj , sk) are
dependent on each other. Specifically, if di is already determined as a true match
for sk, the probability of matching (dj , sk) should be reduced.

We refer to this type of dependency between candidate pairs as dependency
type 2. Likewise, the label of two candidate pairs (dl, sm) and (dl, st) are de-
pendent to each other. If dl is already determined as a true match for sm, the
probability of matching (dl, st) should be reduced. We refer to this type of de-
pendency between candidate pairs as dependency type 3.

Figure 2 illustrates a real example of the type 1 dependency. In this figure,
three candidate pairs have been shown. White and gray nodes indicate social
and scientific profiles respectively, and the label of each node indicates the key
attribute of the profile (e.g. username for Twitter network and URL key for
DBLP network). As indicated in this figure, Marshini Chetty ’s candidate social
profile is followed by Andrea Grimes Parker ’s one and also their candidate scien-
tific profiles are related to each other by co-author relationship. Intuitively, this
dependency can increase the matching probability for both candidate pairs. The
mentioned dependency also exists between Desney S. Tan’s and Andrea Grimes
Parker ’s candidate profiles.

Figure 3 illustrates an example of the type 2 dependency. Four candidate
pairs are illustrated, which are dependent on each other by type 2 dependency
(e.g. a single social profile is simultaneously the candidate for four scientific
profiles). If a classifier independently predicts the label of each candidate pair, it
will assign all of them the same label because the social and scientific names are
very similar in this case (Social name of @nlpnoah is Noah Smith and scientific
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Fig. 2. Type1 dependency between candidate pairs. White and gray nodes indicate
social and scientific profiles respectively. The labels of the nodes are Twitter UserName
and DBLP unique URL key. Co-author and follow relationships are indicated by dash
and candidate pairs are indicated by solid lines.

candidate names are Noah W. Smith, Noah A. Smith, Noah H. Smith and Noah
Torp-Smith). However, if we jointly predict the labels of these candidate-pairs,
the set of labels will most probably contain at most one pair with true label.

Figure 4 illustrates an example of the type 3 dependency. In this figure, the
labels of two candidate pairs are dependent on each other because a single scien-
tific profile is simultaneously the candidate for matching with two social profiles.
In this example, social names are exactly the same (e.g. Jonathan Bowen) and
both social profiles have the same chance to match with Jonathan P. Bowen’s
scientific profile. However, if we jointly predict the label of candidate pairs, at
most one of them will be selected as the true matching pair.

s/smith:noah_h=

@nlpnoah

candidate pair

s/smith:noah_w= s/smith:noah_a=

t/torp=smith:noah

Fig. 3. Type2 dependency between candidate pairs. White and gray nodes indicate
social and scientific profiles respectively. The labels of the nodes are Twitter UserName
and DBLP unique URL key.
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Fig. 4. Type3 dependency between candidate pairs. White and gray nodes indicate
social and scientific profiles respectively. The labels of the nodes are Twitter UserName
and DBLP unique URL key.

3.5 Matching Dependency Graph

In the previous section, we mentioned some examples that indicate the depen-
dencies among candidate pairs. These dependencies are quite intuitive and could
help us to make a joint prediction. In this section, we introduce a graph repre-
sentation which captures and models these dependencies. We refer to this graph
as the matching dependency graph (i.e. MDG).

As explained before, each instance of the matching problem can be formulated
by the following set of profiles and relationships: VD = {d1, d2, ..., dk} and VS =
{s1, s2, ..., sm} are the set of scientific and social profiles. Within each network,
there exist relationships that indicate social friendship among members of VS and
co-author relationship among members of VD. ED = {(di, dj)|di, dj ∈ VD ∧Co−
author(di, dj)} indicates the co-authorship relation between scientific profiles
and ES = {(sl, sn)|sl, sn ∈ VS ∧ Follow(sl, sn)} indicates the social friendship
between social profiles. During selection phase, the focused crawler finds for
each social profile some few matching candidates in the scientific network. We
can indicate the candidate pairs by:

CSD = {(si, dj)|si ∈ VS ∧ dj ∈ VD ∧ CandidMatch(si, dj)}

Figure 5 illustrates an instance of matching problem (i.e. output of focused
crawler). In this figure, the nodes in VD and the edges in ED are indicated by
red color while the nodes in VS and the edges in ES are indicated by blue color.
Each candidate pair is also represented by a black edge. As mentioned before,
in the matching problem we should decide the label of each candidate pair as
either a true or a false matching pair.

We formally define matching dependency graph MDG(VMDG, EMDG) as
follows. Each node in MDG corresponds to exactly one candidate pair in CSD

as defined by:

VMDG = {(si, dj)|si ∈ VS , dj ∈ VD, (si, dj) ∈ CSD}

According to those three types of dependencies introduced in section 3.4, we
define three types of edges in MDG graph as

EMDG = E1 ∪ E2 ∪ E3

The edges in E1 capture the type1 dependency between nodes in VMDG and
can be defined as

E1 = {((si, dj), (sm, dn))|si, sm ∈ VS∧dj , dn ∈ VD∧(si, sm) ∈ ES∧(dj , dn) ∈ ED}
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Fig. 5. A sample of matching problem instance- VS and ES are indicated in blue, VD

and ED are indicated in red and CSD are indicated in black.

The type2 dependency between nodes of VMDG is indicated using the edges
in E2 and it can be defined as

E2 = {((si, dj), (sm, dn))|si, sm ∈ VS ∧ dj , dn ∈ VD ∧ si = sm ∧ dj 6= dn}

The edges in E3 represent the type3 dependency between nodes of VMDG

and can be defined as

E3 = {((si, dj), (sm, dn))|si, sm ∈ VS ∧ dj , dn ∈ VD ∧ si 6= sm ∧ dj = dn}

Figure 6 illustrates corresponding MDG graph of Figure 5. In this figure
each node represents a candidate pair and edges indicate different types of de-
pendencies between them. Dependencies of type1,type2 and type3 are indicated
by black, blue and red edges respectively. In next section, we introduce a joint
prediction model for labeling the MDG ’s nodes.

3.6 Joint label prediction using Conditional Random Field

Given the MDG graph defined above, the matching problem can be reduced
to jointly predict the label (either true or false) of all candidate pairs (i.e all
nodes in MDG) simultaneity. The label of each node in MDG graph indicates
if its corresponding profiles (refer to the definition of VMDG in Section 3.5) are
true matches of each other and each edge in MDG graph indicates the label
dependency between two candidate pairs (i.e. two neighbor node). As descried
in section 3.3, the label of each candidate pair (i.e the label ti of each node vi
in MDG) is dependent on the observed feature vector (xi) of its corresponding
profiles. On the other hand, as described in Section 3.5, the label of each node
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Fig. 6. Corresponding MDG graph of figure 5 E1, E2 and E3 are black, blue and red
respectively.



in MDG is dependent to the label of its neighbor nodes. Therefore, we expect
better label prediction by considering both effects of node features and their label
dependency’s simultaneity. In this section, we propose a joint label prediction
method that captures both mentioned effect simultaneity.

Relational classification is a natural solution for our joint label prediction
problem. By definition[30], relational data has two characteristics: first, statisti-
cal dependencies exist between the entities, and second; each entity has a rich set
of features that can aid classification. The main idea of relational classification
is to represent the distribution of target random variables (i.e. the label of each
node in MDG) by a product of local functions (i.e. potential function) that each
depends on only a small number of variables.

Considering two main effective factors on label prediction in MDG graph (i.e.
node feature set and label dependency among neighbor nodes), following the idea
of conditional random field[15], we can define two types of potential function in
our model namely, node potential function and edge potential function. Node
potential function is responsible to capture the dependency of the label ti on the
observed feature xi for each node vi of MDG and edge potential is responsible
to model the label dependency among neighbor nodes in MDG graph.

According to the definition of Conditional Random Field [15], we can esti-
mate the joint conditional probability of a particular label assignment T given
observed feature X as a normalized product of the following set of non-negative
potential functions.

P (T |X) =
1

Z

n∏
i=1

Φ1(ti, xi)
∏

elm∈E1

Φ2(tl, tm)
∏

ekn∈E2

Φ3(tk, tn)
∏

ejh∈E3

Φ4(tj , th)

(4)
In this equation, T = {t1, t2, ..., tn} is the set of assigned labels for all nodes
of MDG where n is the number of nodes and ti ∈ {true, false} is the random
variable indicating the assigned label for node vi. X = {x1, x2, ..., xn} is the set
of observed feature vectors, where xi is the feature vector associated with node
vi and eij indicates the edge connecting two nodes vi and vj . Z is a normalizing
factor that guarantees P (T |X) is a valid distribution.

In Equation 4, the node potential function (i.e. Φ1) gives a non-negative
weight to each possible outcome of the random variable ti (i.e. true or false)
according to the observed feature vector xi. Corresponding to three different
types of dependencies among neighbor nodes in MDG, we define three edge
potential functions in Equation 4 where Φ2, Φ3 and Φ4 capture type1, type2
and type3 label dependency respectively. The edge potential functions, defined
on the edge eij connecting node vi and vj , give a non-negative weight to all
four combinations that labels of vi and vj can take. (i.e. (ti,tj)=(false,false),
(false,true),(true,false) or (true,true)).

Each type of edge potential functions defined above, assigns different weights
for these combinations. For example, as discussed in section 3.6, two neighbor
nodes vi and vj which are connected by a type1 edge are more likely to have
the same label, so we expect that Φ2 gives higher weight/potential to the con-



figurations in which ti and tj take the same label (especially for (true, true)
combination). In contrast, one-to-one matching dependency discussed in section
3.6, suggests that two neighbor nodes vi and vj that are connected by a type2
or type3 edge are more likely to have different labels. In other words, we expect
that at most one of them take the true label. Therefore, we expect that Φ3 and
Φ4 give lower weight/potential to the configurations in which ti and tj take the
same label (especially for (true, true) combination).

Basically, each potential function can be an arbitrary non-negative function,
but according to [30], the most widely-used type of potential functions are log-
linear functions. Log-linear potential functions can be defined as the weighted
combination of the observed feature variables. This type of potential function is
appealing since it is jointly convex in the parameters of the model. Using log-
linear potential functions, we can re-write conditional probability of the label
set T given the observed feature variable X as follows:

P (T |X) = 1
Z′ exp{

n∑
i=1

ψ1(xi, ti) +
∑

elm∈E1

ψ2(tl, tm) +

∑
ekn∈E2

ψ3(tk, tn) +
∑

ejh∈E3

ψ4(tj , th)}

In this equation where the parameters are similar to Equation 4, the exponential
function guarantees that P (T |X) yields a positive value, and Z ′ is the normal-
ization constant which guarantees that P (T |X) sums to 1 defined as:

Z ′ =
∑

t′1∈{true,false}...t′n∈{true,false}
(exp{

n∑
i=1

ψ1(xi, t
′
i) +

∑
elm∈E1

ψ2(t′l, t
′
m) +

∑
ekn∈E2

ψ3(t′k, t
′
n) +

∑
ejh∈E3

ψ4(t′j , t
′
h)})

Using log-linear potential functions [30], each potential function ψ1, ψ2, ψ3, ψ4

is represented by weighted combinations of feature vectors in the following form:

ψ1(xi, ti) =

M1∑
m=1

θmfm(xi, ti)

ψ2(ti, tj) =

M2∑
m=1

αmgm(ti, tj)

ψ3(ti, tj) =

M3∑
m=1

βmhm(ti, tj)

ψ4(ti, tj) =

M4∑
m=1

ζmsm(ti, tj)



Where θ, α, β and ζ represent trainable weight vectors, f , g, h and s represent
features vectors and M1, M2, M3 and M4 represent the number of features for
each potential function.

Similar to the logistic regression label prediction method introduced in Sec-
tion 5.3, we use an extensive set of features to train ψ1 potential function and for
edge potential functions (i.e. ψ2, ψ3 and ψ4), we define a set of binary/indicative
features that captures the compatibility of labels among two neighbor nodes.
Binary features associated with ψ2 are defined as follows:

g1(ti, tj) = ¬ti ∧ ¬tj

g2(ti, tj) = ¬ti ∧ tj ∨ ¬tj ∧ ti
g3(ti, tj) = ti ∧ tj

For each combination of labels assigned to two neighbor nodes ti and tj , the
value of one of the above-mentioned features is 1 and other features will be zero.
For example, if both ti and tj take true labels, then the value of g1, g2 and g3 will
be zero, zero and one respectively. Specifically, feature g2 indicates conflicting
label assignment and g1 and g3 indicate homogenous label assignment for two
neighbor nodes ti and tj . Since MDG is an undirected graph, only three features
are sufficient to model all combinations of labels assigned to ti and tj . In other
words, the value of g2 will be 1 for conflicting combinations regardless of order
of nodes. We define the binary features of ψ3 and ψ4 analogously.

Training in the proposed model is to find vectors θ, α, β and ζ that maxi-
mize the conditional log likelihood of the training data as defined below. In our
proposed model, training data is an instance of MDG graph with known values
of labels and features for each node.

logL(θ, α, β, ζ |X,T ) =

n∑
i=1

logP (ti|xi; θ) +
∑

elm∈E1

logP (tl, tm;α)

+
∑

ekn∈E2

logP (tk, tn;β) +
∑

ejh∈E3

logP (tj , th; ζ)

In this equation, the unknown parameters are θ, α, β and ζ while the value of
each ti and xi are given as an instance of MDG graph (e.g. training instance).

Despite there is no closed-form solution for the above maximization problem,
the above log likelihood function is convex and can be efficiently maximized by
iterative searching algorithms such as BFGS [31]. It is worth noting that if we
remove all edges of the MDG graph, the above equation will be the same as
Equation 3. In other words, logistic regression is a special case of the aforemen-
tioned model where there is no edge between the nodes of MDG graph.

After learning the parameters of the model using an instance of MDG graph,
we can jointly predict the label of all nodes for a given test instance of MDG
graph. (i.e. an MDG graph with unknown values of labels and known values
of features for each node.) The prediction (also known as inference[30]) in our



conditional model is to compute the posterior distribution over the label variables
T given a test instance of MDG graph with observed values of node features X,
i.e., to compute the following most probable assignment of labels:

T ∗ = argmaxTP (T |X)

Exact inference can be done efficiently for a set of dependent variables with
simple graph topologies such as sequences and trees[31]. However, the proposed
MDG graph goes beyond these simple topologies, and exact inference is usu-
ally intractable in this case. Belief propagation is an exact inference algorithm
for simple topologies such as sequences and trees, which generalizes the forward-
backward algorithm[30]. Although this algorithm is neither exact nor guaranteed
to converge for loopy graph structures, it is still well-defined and relatively effi-
cient, specifically for sparse graphs. Therefore, we resort to approximate loopy
belief propagation [30] to find the most probable assignment of labels for a given
MDG test. As indicated in Figure 6, the MDG graphs resulting from the three
cases of dependencies are usually not densely connected in real cases. So, the
inference task can be done efficiently by belief propagation for the proposed
graphical model.

4 Experiments

4.1 Data

We test our proposed models on six test collections collected from the Twitter
social network and the DBLP scientific network. To build these test collections,
we use the crawler (described in section 3.1) to collect Twitter profiles and
their corresponding candidate DBLP profiles. General statistics of the crawled
profiles are reported in Table 3. According to this table, for each Twitter profile
there are on average 3.65 candidate DBLP profiles and for each DBLP profile
there are on average 1.65 candidate Twitter profiles for matching. We build one
automatically generated and five manually annotated test collections from these
collected candidate pairs.

Table 3. General statistics of the crawled profiles form Twitter and DBLP.

Number of crawled Twitter profiles 61863

Number of crawled DBLP Profiles 136596

Average Number of candidate DBLP profiles for each Twitter profile 3.65

Average Number of candidate Twitter profiles for each DBLP profile 1.65

We automatically generate a test collection, which is called URL test collec-
tion in our experiments. Twitter and DBLP profiles have an optional field that
can be filled with the homepage URL address of the profile owner. 56.97% of all
the collected Twitter profiles and 1.8% of all the collected DBLP profiles have a



valid URL address, which can be used as a unique identifier of the profile owner.
We used a simple string matching method to find Twitter and DBLP profile
pairs with exactly the same URL address. We found 173 Twitter profiles, which
have a unique corresponding DBLP profile with the same URL address and used
these pairs as positive instances. For this set of automatically matched Twitter
and DBLP profiles, we used all other candidates found by the crawler as the
negative instances. The set of negative instances includes non-matching DBLP
and non-matching Twitter profiles.

Apart from the automatically generated test collection, we also build five
other manually annotated test collections to evaluate the proposed matching
algorithms. As mentioned in section 3.1, we used several seed profiles to collect
profiles form the Twitter social network. Each of these seed profiles (refer to
Table 1) is related to a well-known computer science event such as a conference,
workshop or journal. We can topically categorize the set of collected Twitter
profiles according to the topic of their seed parent. Selected seed profiles cover
a broad range of topics in computer science research community. In order to
categorize seed profiles according to their topics, we used the WikiCFP topical
tags related to each of these seed profiles.8 In our experiments, the total number
of seed profile is 152, and we extract 67 related tags from WikiCFP, while each
seed profile is associated with 1.66 tags on average. Table 4 illustrates a few
examples of seed profiles and their associated tags. While some of the extracted
tags are very specific (e.g. object-oriented programming, virtual reality, etc.),
some others cover broader topics in computer science (e.g. software engineering,
semantic web, etc.). After removing tags with less than two occurrences, we
categorized the remaining tags into five main topics in computer science. The
main topics and the number of associated seeds and tags are illustrated in Table
5.9

Table 4. Examples of seed profiles and their associated tags extracted from the Wi-
kiCFP

Seed Profile WikiCFP Tag Seed Profile WikiCFP Tag

@aamas2012 agents @KDD2011 data mining

@clef2011 information retrieval @acmchi2012 HCI

@sosp2011 operating systems @PLDI programming language

Table 6 illustrates the number of the collected Twitter profiles for each main
topic. In this table, the number of the collected Twitter profiles is separated by
the distance of the Twitter profile from its parent seed. This table also illustrates
the fraction of ambiguous Twitter profiles (i.e. profiles with more than one can-
didate DBLP profile) separated by distance from the seed parent. As mentioned

8 WikiCFP is a forum for researchers to share news about call for papers.
http://www.wikicfp.com.

9 Due to several common tags in the Information Retrieval and Data Mining topics;
we combine them in a single topic as DM-IR topic.



Table 5. Five main topics related to the seed profiles. DB= Database, DM-IR= Data
mining and Information Retrieval, HCI = Human Computer Interaction, OS = Oper-
ating Systems, SF= Software.

Topical collection DB DM-IR HCI OS SF

# associated tags 2 27 2 7 8

# associated seeds 3 116 11 10 12

before, the fraction of the ambiguous Twitter profiles grows with the distance
from the parent seed.

Table 6. Number of collected Twitter profiles and fraction of ambiguous profiles for
each main topic separated by distance form parent seed. Profiles of a topic may have
overlap with profiles of other topics.

# of collected Twitter profiles Fraction of ambiguous profiles

Collection Distance1 Distance2 Distance3 Distance1 Distance2 Distance3

DB 222 2011 8592 0.26 0.37 0.54

DM IR 2034 8362 23453 0.40 0.44 0.55

HCI 589 4495 19340 0.33 0.44 0.55

OS 217 1781 12067 0.39 0.44 0.55

SF 443 3116 18667 0.33 0.46 0.55

400 Twitter profiles are randomly chosen for each main topic to build the
topical test collections. For these randomly selected Twitter profiles and their
corresponding DBLP candidate profiles, which are collected by the crawler, two
human assessors are asked to determine the label of each candidate pair. They
used several external evidence to determine the label of each candidate pair.
For example, they used the information on the web (e.g. homepage) as well as
other social-networking websites (e.g. the Facebook social network, the LinkedIn
professional network) to decide the label of each pair. In some cases, they also de-
cided the label of candidate pairs based on the topic similarity of their associated
Tweets and papers. Table 7 gives detailed statistics of the data collections.

Table 7. Detailed statistics of the test collections. URL is the automatically generated
test collection and other test collections are named by the abbreviations introduced in
the Table 5.

Statistics/Dataset DB DM-IR HCI OS SF URL

Number of candidate pairs collected by crawler 540 873 617 800 732 619

Number of Twitter having no DBLP 145 305 197 256 264 35

Number of edges of type1 in MDG 28 8 27 9 38 31

Number of edges of type2 in MDG 383 807 433 656 597 290

Number of edges of type3 in MDG 132 515 201 308 353 205



We can notice that the test collections have different characteristics. In partic-
ular, the number of the Twitter profiles which do not have any DBLP matching
profile is smaller in the URL test collection in comparison with other test collec-
tions. It comes from the method, we select the Twitter profiles for the URL test
collection. As mentioned before, we use exact URL matching to select Twitter
profiles (positive instances) for this test collection, but for other test collections,
we randomly select the Twitter profiles from the output of the focused crawler.
Furthermore, there are more edges of type two and three in the DM-IR test col-
lection in comparison with other test collections. This may come from the fact
that in this collection, more ambiguous names are occurred.

In our experiments, we used the negative and the positive candidate pairs
of five collections to train each proposed discriminative model and used the
candidate pairs of the remaining collection as the test set. Precision, Recall and
the F-measure are used to evaluate the proposed models, which are defined as
follows:

P =
Number of correctly (true) predicted matching pairs

Number of predicted matching pairs

R =
Number of correctly (true) predicted matching pairs

Number of correct(true) matching pairs

F =
2PR

P +R

4.2 Experiments Setup

In our experiments, we compared the matching performance of 1) a simple heuris-
tic method, 2) independent label predication methods, 3) proposed joint label
prediction method and 4) the method proposed in the [?].

Simple heuristic method which is called SIMPLE method in our experiments,
matches each Twitter profile to exactly one DBLP profile. For each Twitter
profile, the SIMPLE method selects the DBLP profile with most name similarity
as the true match between the set of DBLP candidate profiles found by the
crawler. In other words, the SIMPLE method assumes that each Twitter profile
has exactly one matching profile in DBLP and selects it based on the name
similarity10.

To train the independent and joint classification models, we use three sets
of features as presented in Table 8. The total features are divided into five
groups based on where the feature comes from, namely, 1) Twitter homepage
URL features, 2) Twitter location feature, 3) Twitter-DBLP name features, 4)
Twitter Description features and 5) Twitter-DBLP profile features. For example,
the Twitter homepage URL features include some binary and real features that
indicate the properties of the homepage URL reported by the Twitter profile

10 We used the edit distance algorithm to measure the name similarity between DBLP
and Twitter names



owner. Specifically, feature URL ˜ indicates whether or not the symbol tilda ĩs
occurred in the homepage field of a Twitter profile. The Twitter-DBLP name
similarity features indicate the similarity of names in a candidate pair, and the
Twitter-DBLP profile features include crawling and profile information of can-
didate pairs. To examine the performance of each feature group, we used three
sets of features to train proposed discriminative models. The Minimal feature
set includes 1) the Twitter homepage URL, 2) the Twitter location features and
3) the Twitter-DBLP name similarity features. Minimal+Description includes
the Minimal features as well as the Twitter description features. The Twitter
description feature set includes some binary features that indicate the occurrence
of some informative words such as ”student”, ”computer”, ”research”, ”PhD”
and so on in the description field of a Twitter profile. Finally, the All feature set
includes Minimal+Description features as well as the Twitter-DBLP profile fea-
tures. There are totally 32 features used in our experiments, and all the feature
scores are normalized by the maximum score in that feature. In addition, for the
joint prediction method, we used the binary features introduced in section 3.6.

Table 8. Feature group and feature sets used in discriminative learning.

Category Feature Name Minimal Minimal+Description All Type

Twitter homepage URL

homepage URL exist? 4 4 4 Binary
homepage URL Length 4 4 4 Real
# of slashes in URL 4 4 4 Real
homepage URL has ∼? 4 4 4 Binary

Twitter Location Twitter Location Exist? 4 4 4 Binary

Name Similarity
Distance based(2 features) 4 4 4 Real
Pattern based (8 features) 4 4 4 Binary
Overlap based(2 features) 4 4 4 Binary

Twitter Description
Description Exists? - 4 4 Binary
Word(10 features) - 4 4 Binary

Twitter-DBLP profile
Distance from parent seed - - 4 Real
Number of papers - - 4 Real
Number of followers - - 4 Real
Number of co-authors - - 4 Real

5 Results

An extensive set of experiments were conducted on the six test collections to
address the following questions:

– How good are the discriminative independent label prediction approaches
compared with the SIMPLE heuristic method? The experiments described
in the Section 5.1 are conducted on SIMPLE method as well as logistic
regression (LR), Support Vector Machine (SVM) and decision tree methods
trained on the Minimal feature set.



– Can the prediction performance be improved by considering the dependency
between the labels of the candidate pairs? Experiments in the Section 5.2
are conducted to compare the performance of the proposed joint prediction
model with the logistic regression method (as an independent label prediction
method).

– What is the impact of the different features on prediction? Experiments in
the Section 5.3 are conducted to compare the performance of the proposed
joint prediction model, and the logistic regression method trained on different
feature sets introduced in the Table 8.

– How good is the proposed joint classification approach in comparison with
the method proposed in [?]? Experiments in the Section 5.4 are conducted to
compare the matching performance of the proposed model with the method
proposed in [?].

5.1 SIMPLE Heuristic method versus independent label prediction

In this experiment, we compare the SIMPLE heuristic method described in the
Section 4.2 with the independent label predication methods (i.e. logistic regres-
sion, support vector machine and decision tree.) Table 9 contains the comparisons
in F-score. In these experiments, we used the Minimal feature set described in
Table 8.

Table 9. SIMPLE method versus independent label prediction. Comparisons are based
on F-measure

Collection/Method Simple Decision Tree SVM LR

DB 0.619 0.775 0.782 0.804

DM-IR 0.382 0.683 0.689 0.709

HCI 0.569 0.635 0.632 0.678

OS 0.474 0.767 0.764 0.775

SF 0.405 0.707 0.699 0.731

URL 0.794 0.802 0.789 0.785

We can see that all the independent classification methods improve upon the
SIMPLE approach and usually LR, SVM and Decision Tree have almost the
same performance. The SIMPLE method has almost the same behavior on all
test collections except for two cases. Its F-score on the DM-IR collection is very
low and on the URL test collection is very high. It may come from the ambiguity
level of these test collections. As mentioned in Section 4.1, the DM-IR collection
is the most ambiguous and the URL collection is the least ambiguous collection
among other collections. Therefore, it seems that matching problem is easier to
solve for the URL collection in comparison with other collections. In contrast,
independent classification methods have almost the same performance on all test
collections.
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Figure 7 and 8 depict the precision and recall scores for SIMPLE and inde-
pendent classification methods. We can see that the SIMPLE method usually
has large recall in comparison with the independent classification methods, but
it has very low precision (except for URL test collection). The high recall prop-
erty of the SIMPLE method can be explained by the fact that people usually
use very similar names in Twitter and DBLP networks. Therefore, if multiple
DBLP candidates exist for a given Twitter profile, the most likely DBLP pro-
file for matching will be the one with the most similar name to that Twitter
name (exactly the same heuristic is used by the SIMPLE method). In contrast,
the SIMPLE method has very low precision, which means that it is not able
to recognize non-matching pairs that have very similar names. The independent
classification methods can improve the F-score by enhancing the precision score,
but this methods decrease the recall score substantially. It means that these
methods tend to select only candidate pairs with very similar names as true
matches. As a result, these methods miss a lots of true matching pairs (i.e. low
recall).

5.2 Independent versus joint label prediction

In this experiment, using the Minimal feature set, we compare the matching
performance of the logistic regression method with the joint label prediction
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method trained on the dependency type 1, type 2, type 3 and the combination of
them. Table 10 contains the comparisons in F-score. In this table, CRF-1, CRF-2
and CRF-3 indicate the joint label prediction method for the MDG graph that
has only edges of type 1, type 2 and type 3 respectively. CRF-123 indicates the
joint label prediction method for the MDG graph with all mentioned dependency
types. Table 10 shows that the method CRF-2 substantially improves the F-score

Table 10. Independent versus joint label prediction. Comparisons are based on F-
measure. The * symbol indicates statistical significance at 0.9 confidence interval.

Collection/Method LR CRF-1 CRF-2 CRF-3 CRF-123

DB 0.804 0.842 0.846 0.817 0.861*

DM-IR 0.709 0.710 0.760 0.718 0.774*

HCI 0.678 0.692 0.732 0.682 0.736*

OS 0.775 0.763 0.783 0.752 0.797*

SF 0.731 0.739 0.793 0.751 0.812*

URL 0.785 0.796 0.871 0.785 0.891*

in all test collections in comparison with the logistic regression method. Inspired
from the SIMPLE method, CRF-2 only selects the most probable DBLP candi-
date for each Twitter profile as a true match, but using discriminative features
it also prevents from many false negatives. Figures 9 and 10, indicate that this
method improves the recall score but retains the precision in the same level in
comparison with logistic regression. In other words, CRF-2 brings together the
advantages of the SIMPLE method (i.e. high recall) and the logistic regression
method (i.e. high precision). The average improvement of F-score using CRF-2
is 6.8% for all test collections in comparison with logistic regression.

CRF-1 and CRF-3 generally increase the F-score, but their improvement is
less than the CRF-2. CRF-3 improves the F-score 0.6% on average and CRF-1
can improve it up to 1.3% on average. Specifically, CRF-1 improves the precision
on all the collections, but in two cases, slightly reduces the recall score (i.e. the
DM-IR and the OS collections). CRF-123 considers all the dependency types
in the MDG graph to predict the label of each candidate pair. In all the test
collections, CRF-123 improves the precision and recall scores in comparison with
logistic regression method, and it also has the best performance in F-score in
comparison with other methods in all collections. The improvement of F-score
using CRF-123 is 8.7% averaged on all the test collections in comparison with
logistic regression.

5.3 Impact of using different feature sets

In this experiment, we compare the matching performance of the logistic re-
gression method with the best joint label prediction methods (i.e. CRF-123) for
different sets of features defined in Table 8. Figure 11, indicates the precision
of LR and CRF-123 methods on the different set of features. The general trend
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is that the precision can be improved for some test collections by adding the
Twitter description and the Twitter-DBLP profile features. This improvement
is more obvious for the DM-IR test collection which is the most ambiguous test
collection. Another interesting trend is that in all cases, the precision of the
CRF-123 is better than its corresponding logistic regression method (i.e. LR)
in the same level of the feature set. It means that joint prediction model never
decreases the precision measure, but it can also improve the recall measure and
accordingly, the F-score.

Figure 12, indicates the recall score of the LR and CRF-123 methods on
the different set of features. The general trend is that the recall score can be
improved by adding the Twitter-DBLP profile features, but the Twitter descrip-
tion features may decrease the recall score on some collections. Similar to the
precision score, for all feature sets, the recall score of CRF-123 is better than
LR method.

Table 11 contains the F-score comparisons of LR and CRF-123 on the differ-
ent feature sets. According to this table, the overall performance of matching can
be improved by using the complete set of features (i.e. All feature set introduced
in Table 8) for both CRF-123 and LR methods. It is worth noting that in all
collections, and for all levels of the feature sets the F-score of CRF-123 surpass
its corresponding LR in the same level of the feature set. The improvement is
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more salient on the Minimal feature set, which means that the proposed joint
model of label prediction can be very useful in matching problems in which there
is not enough set of features to integrate profiles of two networks.

Table 11. Independent versus joint label prediction. F-scores are reported for different
set of features introduced in section 4.1. The * symbol indicates statistical significance
at 0.9 confidence interval.

Test Collection LR CRF-123
Feature Set MIN MIN+DESC ALL MIN MIN+DESC ALL

DB 0.804 0.795 0.833 0.861 0.863 0.863*

DM IR 0.709 0.750 0.778 0.774 0.789 0.817*

HCI 0.678 0.727 0.775 0.736 0.782 0.794*

OS 0.775 0.747 0.771 0.797 0.823 0.825*

SF 0.731 0.728 0.838 0.812 0.826 0.851*

URL 0.785 0.800 0.841 0.891 0.888 0.887

5.4 Comparison with previous method

In this experiment, we compare the matching performance of the CRF-1 and
CRF-123 methods with the proposed method in [?]. As mentioned in section 2,
You, et al. [?] used numerical features to model the common-friend property. In
contrast, CRF-1 and CRF-123 uses relational learning to model the dependen-
cies between candidate pairs. Similar to [?], CRF-1 considers common-friend de-
pendency between candidate pairs but CRF-123 considers both common-friend
dependency and one-to-one matching dependency simultaneously. We imple-
mented the same feature set proposed in [?] to predict the label of the collected
candidate pairs by the crawler. Table 12 indicates that CRF-1 and SS[?] method

Table 12. Comparison of Joint prediction and method proposed in [?]. Comparisons
are based on F-scores. The * symbol indicates statistical significance at 0.9 confidence
interval.

method SS[?] CRF-1 CRF-123

DB 0.833 0.833 0.863*

DM IR 0.769 0.769 0.817*

HCI 0.778 0.778 0.794*

OS 0.773 0.773 0.825*

SF 0.850 0.844 0.851

URL 0.840 0.840 0.887*

have almost the same performance on all data collections, but CRF-123 surpass
the SS method by a large margin. As mentioned above, SS and CRF-1 models



the same property and almost have the same result, but our proposed relational
learning model is more flexible to consider one-to-one matching dependency and
it can improve the matching performance substantially.

6 Conclusions and Future Work

Social and Scientific network integration is a crucial step toward building a
multi environment expert finding system. It is an important information retrieval
task because each network has its own properties and characteristics, and the
integration of them can help us to improve the quality of expert finding. This
task is also closely related to other IR problems such as named disambiguation
and homepage finding as presented in TREC Web Track. In this paper, we
designed a focused crawler to collect high probable matching profile pairs in the
DBLP and the Twitter networks. Using a bootstrapping method, the crawler
starts to collect people’ profiles form common profiles of the two networks and
in each step using name similarity patterns, it collects profile pairs with high
prior probability of matching. The network integration problem is then reduced
to finding true matching pairs among these collected candidate pairs. We noticed
that two important types of dependency exist between collected candidate pairs
namely common friend dependency and one-to-one dependency. Considering
these dependencies between candidate pairs of matching, we introduced a joint
label predication method to predict the label of candidate pairs simultaneously.
We tested our algorithm on six test collections collected from The DBLP and the
Twitter networks, and our experiments indicate that the joint label prediction
method can improve the F-score of matching up to 8.7% averaged on all the test
collections. Furthermore, utilizing the different sets of features for training, we
concluded that the proposed profile matching method can be especially useful
for matching problem with few available discriminative features. It is worth
nothing that the mentioned dependencies in network integration problem are
quite general and can be utilized to integrate other social and scientific networks.
In the future, we intend to use the aligned profiles of The Twitter and The DBLP
to obtain a better relevance score estimation for each expert according to his
social and scientific interactions.
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