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Abstract. Web automation applications are widely used for different purposes such as B2B
integration and automated testing of web applications. Most current systems build the automatic
web navigation component by using the APIs of conventional browsers. While this approach has
its advantages, it suffers performance problems for intensive web automation tasks which require
real time responses and/or a high degree of parallelism. In this paper, we outline a set of
techniques to build a web navigation component able to efficiently execute web navigation
sequences. These techniques detect what elements and scripts of the pages accessed during the
navigation sequence are needed for the correct execution of the sequence (and, therefore, must be
loaded and executed), and what parts of the pages can be discarded. The tests executed with real
web sources show that the optimized navigation sequences run significantly faster and consume
significantly less resources.

Keywords: Web Automation, Navigation Sequence, Optimization, Efficient

Execution.

1 Introduction

Most today's web sources do not provide suitable interfaces for software
programs. That is why a growing interest has arisen in so-called web automation
applications that are able to automatically navigate through websites simulating
the behavior of a human user. For example, a flight meta-search application can
use web automation to automatically search flights in the websites of different
airlines or travel agencies. Web automation applications are widely used for
different purposes such as B2B integration, web mashups, automated testing of

web applications, Internet meta-search or technology and business watch.

A crucial part of web automation technologies is the ability to execute automatic

web navigation sequences. An automatic web navigation sequence consists in a



sequence of steps representing the actions to be performed by a human user over a
web browser to reach a target web page. Figure 1 illustrates an example of a web
navigation sequence to access to the content of the first message in the Inbox

folder of a Gmail account.
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Fig. 1. Navigation Sequence Example

This work is focused in improving the performance of the execution of automatic
web navigation sequences. The approach followed by most of the current web
automation systems [6] [11] [12] [14] [15] consists in using the APIs of
conventional web browsers to automate them. This approach does not require to
develop a custom navigation component, and guarantees that the accessed web

pages will behave the same as when they are accessed by a regular user.

While this approach is adequate to some web automation applications, it presents
performance problems for intensive web automation tasks which require real time
responses and/or to execute a significant number of navigation sequences in
parallel. This is because commercial web browsers are designed to be client-side
applications and, therefore, they consume a significant amount of resources, both
memory and CPU. In this work we address this problem by using a custom
browser specially built for web automation tasks. This browser is able to improve
the response times and save a significant amount of resources (memory and CPU).

We present a set of techniques and algorithms to automatically optimize the



navigation sequences, detecting which parts of the accessed pages can be
discarded (not loaded), and which of the automatic events that are fired each time
a new page is loaded can be omitted (not fired) without affecting to the correct

execution of the navigation sequence.

There exist other systems which use the approach of creating custom browsers to
execute web navigation sequences [5] [8]. Since they are not oriented to be used
by humans, they can avoid some of the tasks of conventional browsers (e.g.
rendering). Nevertheless, they work like conventional browsers when loading and
building the internal representation of the web pages. Since this is the most
important part in terms of the use of computational resources, their performance

enhancements are much smaller than the ones achieved with our approach.

The rest of the paper is organized as follows. Section 2 briefly describes the
models our approach relies on. Section 3 presents an overview of the solution.
Section 4 explains the designed techniques in detail. Section 5 describes the
experimental evaluation of the approach. Section 6 discusses related work.

Finally, section 7 summarizes our conclusions.

2 Background

The main model we rely on is the Document Object Model (DOM) [4]. This
model describes how browsers internally represent the HTML web page currently
loaded in the browser and how they respond to user-performed actions on it. An
HTML page is modelled as a tree, where each HTML element is represented by
an appropriate type of node. An important type of nodes are the script nodes, used
to place and execute a script code within the document (typically written in a
script language such as JavaScript). The script nodes can contain the code directly
or can reference an external file containing it. Those scripts are processed when
the page is loaded and they can contain element declarations (e.g. a function or a
variable) that are used from other script nodes or event listeners, or other script

sentences that are executed at that moment.



Every node in the tree can receive events produced (directly or indirectly) by the
user actions. Event types exist for actions such as clicking on an element (c/ick),
moving the mouse cursor over it (mouseover), or to indicate that a new page has
just been loaded (load), to name but a few. Each node can register a set of
listeners for different types of events. An event listener executes arbitrary script
code, which normally calls a function declared in script nodes. The scripting code
has the entire page DOM tree accessible and can perform actions such as
modifying existing nodes, removing them, creating new ones or even launching

new events.

The event processing lifecycle can be summarized as follows: the event is
dispatched following a path from the root of the tree to the target node. It can be
handled locally at the target node or at any target's ancestors in the tree. The event
dispatching (also called event propagation) occurs in three phases and in the
following order: capture (the event is dispatched to the target's ancestors from the
root of the tree to the direct parent of the target node), target (the event is
dispatched to the target node) and bubbling (the event is dispatched to the target's
ancestors from the direct parent of the target node to the root of the tree). The
listeners in a node can register to either the capture or the bubbling phase. In the
target phase, the events registered for the capture phase are executed before the
events executed for the bubbling phase. This lifecycle is somewhat of a
compromise between the approaches historically used in major browsers

(Microsoft Internet Explorer using bubbling and Netscape using capture).

The order of execution between the listeners associated to an event type in the
same node is registration order. The event model is reentrant, meaning that the
execution of a listener can cause new events to be generated. Those new events
will be processed in a synchronous way; that is, if 1;, li;; are two listeners
registered to a certain event type in a given node in a consecutive order, then all
events caused by l; execution will be processed (and, therefore, their associated

listeners executed) before l;+; is executed.

In addition to the events caused by the user actions on the page, there are also

some events that are automatically generated by the browser when a new page is



loaded. The most typical example is the load event, which is fired by the browser
over the hody element of the HTML page when the page has just been loaded. We

will name these events as "automatic events".

3 Overview

This section presents an overview of our proposal.

The input for the automatic web navigation component is a navigation sequence
specification. In most systems, this specification is created by example: the user
performs the desired sequence manually and her actions are recorded by some
plugin in the browser. The exact format used to specify navigation sequences is
different in each web automation system but all of them basically consist in a list
of events which must be generated on certain elements of the website pages.
Between executing one event and the next, it is needed to wait for the effects of
the previous event to take place (e.g. wait for a new page to be loaded in the
browser). See [10] for a discussion of the different approaches for recording and
executing web navigation sequences.
The basic idea of our approach consists in detecting which parts of the accessed
pages can be discarded (not loaded) and which events can be omitted (not fired)
without affecting the execution of the desired navigation sequence. Our approach
works in two phases:
¢ In the optimization phase the navigation sequence is executed once, and, in
the meantime, the navigation component automatically calculates which
nodes of the HTML DOM [4] tree of each loaded page are needed to
execute the sequence, and which ones can be discarded. Then, it stores
some information to be able to detect those nodes in subsequent sequence
executions (the information to identify the nodes should be resilient to
small changes in the page, because in real web sites there are usually small
differences between the DOM tree of the same page loaded at different
moments). At the same time, the navigation component calculates which
of the automatic events fired each time a page is loaded are necessary to

execute the sequence.



¢ In the execution phase the navigation component executes the sequence
using the optimization information previously calculated. When each page
is loaded, a reduced HTML DOM tree is built, containing only the relevant
nodes needed to execute the sequence, and only the necessary automatic

events are fired.
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Fig. 2. DOM tree of an example page

Figure 2 shows the DOM tree of a simple example page. We use boxes to
represent the nodes of the tree, and continuous lines to represent its parent-child
relationship. Event listeners are represented as dashed boxes adjacent to the
corresponding tree node (onclick, onload). Arrows with dashed lines are used to
indicate that a script node defines a function (marked with <def>), and to indicate
that the code of an event listener invokes a function defined in a script node
(marked with <calls>). Suppose that the only action specified by the navigation
sequence for this page is executing a click on the first 4 node. When the click
event is produced, the click event listener (onclick) is executed, and the function 72
performs a navigation to the desired page (e.g. window.location =

'hitp://acme.com’;).

The shaded nodes are those that are needed to simulate the c/ick action and
properly perform the navigation to the next page (we call them relevant nodes). In
this case, the relevant nodes are: the 4 node which is the target of the click event,
the SCRIPT node which defines the /2 function executed by the click event
listener, and their respective ancestors (the exact rules to compute the relevant
nodes will be described later). The rest of the nodes can be discarded (not loaded)

without any problem (we call these ones irrelevant nodes). Besides, the automatic



load event does not need to be fired when the page is loaded, since the execution

of the onload listener is not needed for the execution of the sequence.

This will produce significant performance and resource usage improvements:

e We will save memory, since much less nodes need to be represented.

e We will save CPU and execution time since unneeded scripts are not
executed. For instance, in this case, the script nodes not shaded do not
need to be executed.

e We will save bandwidth and execution time because unneeded navigations
are not performed. For instance, in this case, the navigations specified by

the LINK and IFRAME nodes will not be performed.

The main problem we need to address is how to calculate what we call node
dependencies. For instance, in this example the SCRIPT node which defines f2 is
a dependency of the 4 node when the click event is fired on it (because it is
needed to properly execute the click event listener registered in the 4 node).
Notice that in the DOM model, scripts are "black boxes" and, therefore, these
dependencies cannot be inferred directly. By using a custom browser, where we
have full control over the script execution engine, we have a way to uncover these

hidden dependencies.

Also notice that dependencies can get much more complex than in this example.
For example, in the previous figure, a click on an anchor may produce the
execution of a script that requires another script in a different node in the DOM
tree to be executed previously. Another difficult example would be that the load
event listener of the BODY node could generate content dynamically, including
the 4 node that invokes the script that will lead us to the next page. It could even
happen that the script requires another script contained in an iframe and, therefore,
the iframe would need to be loaded too. We will see how to deal with these

problems in the next section.



4 Proposed Techniques

In this section we begin stating some definitions and properties which will help us
to model all the possible dependencies between the DOM tree nodes we are
interested in (section 4.1). After that, we describe the techniques used during the
optimization phase of our approach, (section 4.2). Then, we explain the method
used to generate expressions to identify the irrelevant nodes at the execution phase

(section 4.3). Finally we outline the operation at the execution phase (section 4.4).

41 Node Dependencies

Definition 1: We say that there exists a dependency between two nodes n/ and n2
when the node n2 is necessary for the correct execution of the node n/. We say
that the node n2 is a dependency of the node n/ and denote it as n/— n2. The
following rules define this type of dependencies:

e If the script code of a node s/ uses an element (e.g. a function or a
variable) declared in a script node s2, then s/— s2. Rationale: to be able to
execute the script code of the node s/ the node s2 must be executed
previously.

e Ifthe script code of a node s uses a node n, then s— n. Rationale: to be
able to execute the script code of the node s, the node » must be loaded
previously. For instance, if s obtains a reference to an anchor node (e.g.
using the JavaScript function document.getElementByld) and navigates to
the URL specified by its Aref attribute, then it will not be possible to
execute s unless the anchor node is loaded.

e [fthe script code of a node s makes a modification in a node n, then n— s
(note that, in this scenario, the dependency s— n also exists, applying the
previous rule). Rationale: the action performed by s may be needed to
allow 7 to be used later. For instance, if s modifies the action attribute of a
form node to set the target URL, then it will not be possible to submit the

form unless s is executed previously.

Definition 2: We say that there exists a dependency conditioned to the event e

being fired over the node n, between two nodes n/ and n2, when the node n2 is



necessary for the correct execution of the node n/, when the event e is fired over

the node . We denote this as n/—*"

n2. Analogous rules to the ones explained
before define this type of dependencies, which, in this case, involve nodes
containing event listeners:

e If the script code of an event listener / for the event e in the node 7 uses an
element (e.g. a function or a variable) declared in a script node s, then
n—°" 5. Rationale: if the event e is fired over the node n, then the event
listener / is executed, and it requires the script node s to be executed
previously.

e If the script code of an event listener / for the event e in the node n/ uses a

elnl

node n2, then n/—""" n2. Rationale: if the event e is fired over n/, then the
event listener / is executed and the node n2 must be loaded previously.
e If the script code of an event listener / for the event e in the node n/ makes

a modification in a node n2, then n2—"!

nl (note that, in this scenario,
the dependency nl—""n2 also exists, applying the previous rule).
Rationale: the action performed by / may be needed to allow n2 to be used
later. For instance, if / modifies the action attribute of a form node to set
the target URL, then it will not be possible to submit the form unless / is
executed previously. Since / will only be executed when the event e is

fired over nl, then nl is needed.

Observe that the following transitivity properties apply to node dependencies (we

will explain them through examples).

Property 1: If n/— n2 and n2— n3 then n/— n3.

The example of Figure 3.a shows a fragment of the DOM tree of a page where
the script code of the node SCRIPTI invokes a function f/ which is defined in the
node SCRIPT2 (SCRIPT1— SCRIPT?2), and the code of function f7 calls a
function /2 which is defined in the node SCRIPT3 (SCRIPT2— SCRIPT3). For the
correct execution of the script code of the node SCRIPTI, both the second and the
third SCRIPT nodes are necessary, so both are dependencies of it (SCRIPTI—
SCRIPT3).

Property 2: If n/—°" n2 and n2— n3 then n1—“"n3.



The example of Figure 3.b shows a fragment of a page DOM tree where the click
event listener of the node A calls a function f7 which is defined in the SCRIPT
node (4— “"* SCRIPT), and the code of the function /7 uses the src attribute of
the IMG node (SCRIPT— IMG). For the correct processing of the 4 node when
the click event is fired over it, both the SCRIPT and IMG nodes are necessary, so
both are dependencies of it (4— ““" IMG).

HEAD HEAD BODY

SCRIPT1]| [SCRIPT2 | [SCRIPT3 | [screT | [A ] [IMG
i | <edefines>> | <<defines>> ecdefiness> [_PPE'.‘EEE__: ™
_...__J:"ﬁ*_'""-}___ SR I____J____,I <<invokess>
<e..:a[[5:-:-"""("}“' <~Ccal!s>l'>""{"}"' L"f;'{..'"‘}“'l __________

HEAD BODY

[SCRIPT1| [SCRIPT2 | FORM
E : <<defines=>

cecallss="---""---2 modifies the
action attribute

(c)

Fig. 3. Transitivity Dependency Examples

Property 3: If n/— n2, and n3— n2 because n2 is a script node which makes a
modification in #3, then n3— nl.

The example of Figure 3.c shows a fragment of a page DOM tree where the script
code of the node SCRIPT invokes a function f7 which is defined in the node
SCRIPT2 (SCRIPTI— SCRIPT?), and the code of the function f7 modifies the
action attribute of the FORM node (FORM— SCRIPT?2). For the correct
processing of the FORM node (for example to correctly submitting it), we need to
ensure that f7 is both defined (and, therefore, we need SCRIPT?2) and executed
(and, therefore, we need SCRIPTI). That is why both are dependencies of it
(FORM— SCRIPTI).

10



4" n2 and n3— n2 because n2 is a script node which makes a

Property 4: [f n/—
modification in 13, then n3— " nl.

The example of Figure 3.d shows a fragment of a page DOM tree where the click
event listener of the 4 node calls a function f7 which is defined in the SCRIPT
node (4— ““* SCRIPT), and the code of the function /I modifies the action
attribute of the FORM node (FORM— SCRIPT). For the correct processing of the
FORM node (e.g. to correctly submitting it), when the click event is fired over the
A node, both the SCRIPT and A4 nodes are necessary, so both are dependencies of

it (FORM— "4 4).

4.2 Calculating the Relevant Nodes and Automatic Events

The main goal of the optimization phase is finding the set of relevant nodes for
the navigation sequence. During this phase, the browser works in a similar manner
to a conventional browser: the full page is loaded, generating the entire DOM tree,
downloading all external elements (e.g. style sheets, script files) and executing all
the script nodes defined in the page. Also, all the automatic events (recall section
2 for the definition of automatic events) are automatically fired by the browser
when each new page is completely loaded (e.g. the load event is fired over the
body element). After that, the browser will reproduce the desired navigation
sequence by firing the necessary events on the adequate elements to emulate the
user interaction with the page (e.g. clicking on elements, firing mouse events,

etc.), until a navigation to a new page is started.

During all this process, the browser interacts with the script execution engine (we
use Mozilla Rhino) to detect the node dependencies, according to the rules
defined in the previous section. For instance, when a script node is executed, the
browser interacts with the scripting engine to monitor what functions are called
during its execution. Then, according to the first rule of Definition 1, the nodes
defining those functions are marked as dependencies of the script node which
calls them. Similarly, if the code of the script node creates or modifies another
node, then, according to rule 3 of Definition 1, the script node will be a

dependency of the node which is created or modified.

11



In a similar way, when an event (be it automatic or generated by the navigation
sequence) is fired, the browser monitors which other nodes are used during the
execution of the listeners associated to the event, which other events are generated
and which nodes are modified by the execution of the event listeners. The

appropriate dependencies according to the rules of Definition 2 will be generated.

Once the dependencies have been computed, the set of relevant nodes is built

according to the following rules:

1. The nodes which are directly used in the target navigation sequence are
relevant. For instance, if one step in the sequence is generating the click event
on a 4 node, then that 4 node is relevant.

2. If a node n is relevant, all its ancestors are relevant. Note, that the ancestors
could be needed because of the capture and bubbling phases of the event
dispatching model of the DOM trees (see section 2).

3. By definition, if a node n/ is relevant and n/— n2 then n2 is relevant (all its
dependencies are relevant too).

4. By definition, if a node n/ is relevant, nl —eln n2, and the event e was fired over
the node n, then n2 is relevant (all its dependencies conditioned to the event e
being fired over the node n are relevant too, if the event e was fired over n).

5. Some special rules apply to form-related nodes, to be able to properly submit
forms:

(a) If a form node is relevant, all the nodes corresponding to input and select
elements contained in the form are relevant.

(b) If an input or select node is relevant, the form node containing it is relevant.

(c) If a select node is relevant, all its child option nodes are relevant.

6. A small set of nodes corresponding to some special element types are always
considered relevant because they are needed to properly process other nodes of
the page DOM tree. For instance, the base element sets the base URL, which

means that the URLs specified by other elements are relative to it.

From the set of relevant nodes, we can easily calculate the set of irrelevant nodes
which can be ignored at the execution phase. First, all the DOM tree nodes not

contained in the set of relevant nodes are added to the set of irrelevant nodes.

12



Then, all the irrelevant nodes which have an ancestor also contained in the set are
removed from it. The resulting set contains only the root nodes of the sub-trees

whose descendants are all irrelevant. We call them irrelevant sub-trees.

Finally, to determine which of the automatic events are necessary for the correct
execution of the sequence, the system checks, for each automatic event, if any of
the relevant nodes has any dependency derived from it (i.e. it checks if a relevant
node has been affected by the listeners executed as result of firing the event). If
that is the case, the event is added to the list of automatic events that should be

fired at execution time when the current page is loaded.

load
<Cinvokes > I_Df_ea__ BODY

SCRIPT1| BCRIPT2) bCRIPT3| - |FORM||SCRIPT4|

[pvi] [ A ] [Div2][IFRAME] DIV3]

! S AV onclick!
<egefom <<def>> g ":_.-_:_._
—————————————— “ [INPUT] ! |[INPUT] G i SCRIPTS | [SCRIPT6| [DIV4
'f_l_{__L 'f%i__?_r L J(cReS] | iy
SCRIPT7] | ! B
form.action= acme.jsp : SRR
formisubmitl) aoncllck_:_fl[] <ccallse=

<<calls»>

Fig. 4. Example

Let’s see an example. Figure 4 shows a fragment of the DOM tree of a page.
Suppose the target sequence specifies that the navigation component should
execute a click over the 4 node. The relevant nodes for this interaction are shaded
in the figure. Let's see how they are computed:

e According to rule 1, the node 4 is relevant (since it is the target of the
action).

e According to rule 2, all the 4 ancestors are relevant: BODY and HTML.

e According to rule 3, all 4 dependencies are relevant: SCRIPTS and
SCRIPT6 (and its ancestors: DIV3). In this case they are needed because
they execute script code which modifies the click event listener of the node
A when the page is loaded.

o The function f3 (defined in SCRIPT5) modifies the click event
listener of the node 4, so A —SCRIPT?S.

13



o SCRIPT6, which is executed when the page is loaded, invokes the
function /3, so SCRIPT6— SCRIPTS, and due to the transitivity
rules explained in section 2, 4— SCRIPT6.

According to rule 4, all 4 dependencies conditioned to the event click
being fired over 4 are relevant too: SCRIPT1 and FORM (and all its
ancestors: HEAD). They are needed because the event listener of the node
A invokes a function defined in SCRIPT1 which submits the form.

o The click event listener of the node 4 invokes the function f7
defined in SCRIPT1, so A—""*" SCRIPT]I.

o The function f7 uses the node FORM, so SCRIPTI—FORM, and
due to the transitivity rules explained in section 2, A—“"“* FORM.

According to rule 5, if a form node is relevant, all the input nodes
contained in the form are relevant: INPUTI and INPUT2. To properly
submit the form all its input fields are necessary.

According to rule 3, all FORM dependencies are relevant: SCRIPT2 and
BODY (and all its ancestors, already included in the set of relevant nodes).
They are needed because the load event listener of the node BODY
invokes a function defined in SCRIPT?2 which modifies the action attribute
of the form.

o The load event listener of the node BODY invokes the function /2
defined in SCRIPT2, so BODY—"*/"* SCRIPT?,

o The function /2 (defined in SCRIPT?2) modifies the action attribute
of the node FORM, so FORM —SCRIPT2, and due to the
transitivity rules explained in section 2, FORM—"*/"*¥ BODY.

The nodes which are stripped in Figure 4 are those which are identified as the

roots of the irrelevant sub-trees, which can be discarded in the following

executions.

The automatic event load, which is fired over the BODY, must be added to the list

of necessary automatic events, because the FORM, which is a relevant node, has a

dependency derived from it (FORM—"*""*% BODY). Note that, to properly

submit the form, the load event listener of the hody element (onload) must have

been executed, because it invokes f2 which sets the action of the form.

14



4.3 Identifying the Irrelevant Subtrees at Execution Phase

Once the root nodes of the irrelevant sub-trees have been calculated, we need to
generate expressions to be able to identify them at the execution phase. There are
two requirements for this process. On one hand, the generated expressions should
be resilient to small changes in the page because in real web sites there are usually
small differences between the DOM tree of the same page loaded at different
moments (e.g. new advertisement banners can appear or different data records can
be shown). On the other hand, the process of testing if an expression identifies a
node should be very efficient, because, at the execution phase the browser should
check if each node is identified by any of those expressions before adding it to the

DOM tree.

To uniquely identify a node in the DOM tree we use an XPath-like [16]
expression which can contain information about the element and some of its
ancestors. For our purposes, we need to ensure that the generated expression
identifies a single node, but is not too specific to be affected by the
aforementioned small changes in the pages. For this, we use an enhanced version
of the algorithm explained in [10]. The basic idea of the algorithm consists in
building an expression matching the minimum required number of nodes in the
DOM tree (maximizing, this wayi, its resilience), using its tag name, its attributes,

and its associated text.

An important concept is what we will call a “node expression”. It is an XPath-like
expression which only contains information about one node, and it has the
following format:

//TagName[@a;="v;” and ... and @a,="vy, " and text()="1"]
values of attributes of the node, and ¢ is the text of the node if it is a leaf node

(being the TagName the unique element of the expression which is mandatory).

If the target node can be uniquely identified in the whole DOM tree with a node

expression, then that is the result XPath-like expression to identify it. If it cannot

15



be uniquely identified (i.e. all the possible node expressions also match with other
nodes in the DOM tree), then a node which can be uniquely identified with a node
expression is searched in the path from the target node to the root of the tree.
When it is found, the expression to identify the node is added to the result XPath-
like expression, and the algorithm is applied again over the subtree whose root is
that node. This way, the global resulting XPath-like expression would be
composed by a sequence of node expressions:

11X 1//% /]S Xn
subtree considered in each iteration of the algorithm. We define the length of an

XPath-like expression as the number of node expressions compounding it.

Figure 5 gives the complete algorithm to generate the XPath-like expression to
identify a node n contained in the DOM tree 7. The repeat loop iterates until the
target node n can be uniquely identified in the subtree considered in the current
iteration (initially, the whole page DOM tree is considered). The while loop
iterates from the target node n to the root of the subtree until a node which can be
uniquely identified is found. When that node is found, the node expression to
uniquely identify it (x) is added to the result expression (result) and the subtree
considered in the next iteration of the repeat loop is set to the one which has that

node as root.

The function getNodeExp receives as input a node and a subtree and tries to
generate a node expression to uniquely identify the input node in the input
subtree. If such expression uniquely identifying the node cannot be generated, it

returns null.

A special case is considered at the end of the while loop, to deal with the case
when there is not any node in the path from the target node to the root of the
subtree which can be uniquely identified using exclusively the node data (i.e with
a node expression). In that case, the function getChildNodeExp is called over the
child node of the root of S (the current subtree) which is in the path to the target

node. This function works in a similar way as the function getNodeExp but:
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e It never returns null. It applies the considerations explained in the two
following points to the node expression which identifies the fewer number
of nodes (including the target node).

e The returned expression starts with “/” instead of “//”. This means that the
node must be a direct child of the last node whose information was added
to the result expression (i.e. the root node of S, whose information was
added to result in the previous iteration of the repeat loop). This allows
differentiating this node from other nodes matching with the same node
expression, which are not child nodes of the root of S.

e Ifnecessary, it also uses the node position between its siblings to create an
expression to uniquely identify it. This allows differentiating the node
from other nodes matching with the same node expression, which are also
child nodes of the root of S.

So, the final XPath-like expression will have the following format:
xS xS X
Note that the first node expression always starts with “//”” because, if no other

node is found before, the nodes HTML, BODY and HEAD always can be

uniquely identified using only its tag name.
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Algorithm: Generate an XPath-like expression to identify a node in a DOM tree
- X = GenerateExpression(n,T)
Inputs:
- n, the target node to be identified by the expression
- T, the DOM tree where n is contained
Output:
- result, the XPath-like expression to uniquely identify » in T.

result = *“”; # Initialize the variable that will contain the result expression
S=T; # Initialize the variable that will contain the subtree considered in each iteration
m = null; # Auxiliary variable that will contain the node analyzed in each iteration

Repeat { # Iterate until the target node n can be uniquely identified in S
m =n,;  # Initialize m to the target node n
x = null; # Initialize the variable that will contain the node expression generated to identify m

# Iterate from n to the root of S until a node which can be uniquely identified is found or the root
# of S is reached
While (x==null && m!= root(S)) {
x = getNodeExp(m, S); # Returns an expression to uniquely identify m in S
# or null if such expression cannot be generated
If (x I=null) { # The node can be uniquely identified in S
result = result + x;
S = <the subtree whose root is m>;

Jelse { # The node cannot be uniquely identified in §
m = parent(m,T); # Analyze the parent node in the tree
}
If (m=root(S)) { # No node can be uniquely identified in the path from  to the root of S.

Let m’ be the child of m which is in the path to the target node n;
x = getChildNodeExp(m’,S); # Returns an expression to uniquely identify

# m’ as a child of m in S, using the node position if necessary
result = result + x;

S = <the subtree whose root is m’>;

/

} Until (m==n),
return result;

Fig. 5. Algorithm to generate an XPath-like expression to identify a node

Let see now how the function genNodeExp tries to generate a node expression to
uniquely identify a node in a subtree. As commented previously it only uses the

node tag name, its attributes and its associated text (if it is a leaf node).

First, it tries to identify the element using only its tag name. If it is not enough,
then it tries to use its tag name and its attributes. The algorithm considers some
attributes as “more relevant” to identify a node. For example, the attribute id, in
most of the cases, identifies a single node in the entire DOM tree by itself.
Examples of other attributes considered as more relevant are name, title, alt,
value, for, src, action, href, class, etc. The algorithm also considers some
attributes as “less relevant” to identify a node. These attributes, in most of the
cases, are not useful to identify the node (for example, when they only represent

numeric values) and, besides, if they were used, the generated expression could be
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weaker. Examples of some of these attributes are cellpading, cellspacing, type,
method, content, width, height, align, rel, etc. Initially, the algorithm tries to
generate an expression using only the more relevant attributes. If the node cannot
be uniquely identified using those attributes, then it tries to generate an expression
considering all the node attributes except the ones considered as less relevant. If
the node cannot be uniquely identified either, then it tries to generate an

expression using all the attributes.

If the attributes are not enough to uniquely identify the node, and it is a leaf node,
then the algorithm tries to use the text of the node. First, it tries to generate an
expression using exclusively the node tag name and its text, and if it is not enough

it also uses its attributes (in the same way as commented previously).

Figure 6 shows a simple example illustrating several scenarios. It shows a
fragment of a DOM tree, showing the set of attributes of each node beside it. The
SPAN grayed node is the one to be identified. In the first iteration of the algorithm
the whole DOM tree is considered (S7). The target SPAN node cannot be uniquely
identified in S7 because there are other SPAN nodes with the same attributes and
values. So a node which can be uniquely identified is searched in the path to the
root. The first one which is found is the TABLE node, which can be uniquely
identified using its id attribute (note that the attribute width could also be used to
identify the node but it is not present in the set of “more relevant” attributes,
whereas the attribute id is). In the second iteration the target SPAN node cannot be
uniquely identified in S2, and there is not any node, in the path to the root of S2,
that can be. So, the child 7R in the path to the target node is used to generate the
node expression indicating that this node must be a direct child of the previous
one (i.e. starting with ““/”’). In this case, the position must also be used to
differentiate it from its sibling 7R nodes. In the third iteration, the SPAN target
node can be uniquely identified in S3 because there is not any other SPAN node,

in that subtree, having the value “c2” assigned to the attribute c/ass.
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result=//TABLE[@id="table2"] result=//TABLE[@id="table2"]/TR[2]

Third iteration:

5=53

x = [/SPAN[class="c2"]

result= //TABLE[ @id="table2"]/TR[2]//SPAN[class="c2"]

Fig. 6. XPath-like expression generation example

4.4 Execution Phase

The general functioning of the navigation component at this phase is the following
one: before loading each page, it checks if it has optimization information
regarding relevant nodes associated to that page, that is, a set of expressions to
identify the root nodes of the irrelevant sub-trees. That information is used to
build a reduced version of the HTML DOM tree, containing only the relevant
nodes. Then it checks if it has optimization information related to automatic
events that should be fired in that page. If that is the case, only the appropriate

events are fired.

The process of checking if a node is the root of an irrelevant sub-tree should be

very efficient because it is executed for all the elements present in the page to
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decide if they must be added to the HTML DOM tree or not. That is why we do
not use a conventional XPath matching algorithm. Instead, we leverage on the fact
that the XPath-like expressions we generate use a strict subset of XPath and
always verify certain restrictions. This allows us to use a faster algorithm for those

particular expressions.

The main idea of the algorithm consists in checking, for each XPath-like
expression, if there are nodes in the path from the analyzed node to the root of the
tree which match with all the individual node expressions compounding it. Figure
7 gives the complete algorithm to check if a node is the root of an irrelevant

subtree.

The external while loop iterates over the XPath-like expressions generated during
the optimization phase. If any of the expressions identifies the node, then it is
considered as irrelevant. To check if each XPath-like expression identifies the
node, the first condition to check is if its last node expression matches with the
target node. If it does not match, then that expression does not identify the node.
On the contrary, if it matches and if the expression is compound by more node
expressions, we need to check if there are nodes in the path to the root of the tree
which match with all those node expressions. This is accomplished by the second
while loop, which iterates over the individual node expressions previous to the
last one. The main idea of each iteration of this loop consists in going up by the
tree until a node which matches with the current node expression is found, but we
need to consider the special case of the node expressions starting with “/” instead
of “//” (note that, in this case, we can consider that a node matches with that node
expression, only if its parent node matches with the previous node expression).
So, the third while loop gets all the consecutive node expressions concatenated by
“/”” to create a partial XPath-like expression. Then, the fourth while loop iterates
over the nodes in the path to the root of the tree, trying to find a list of consecutive
nodes matching with this partial expression (i.e. each node of the list matches with
the corresponding node expression contained in the partial XPath-like expression).
Note that when the node expression analyzed in the second while loop does not

start with “/”, then the partial XPath-like expression built in the third while loop is
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equal to the node expression, and the fourth while loop tries to find one node

matching with it.

Algorithm: Check if a node matches with any of the XPath-like expressions which identifies the root
nodes of the irrelevant subtrees

- result = ChecklfIrrelevantNode(n,X)

Inputs:

- n, the target node to check if it matches with any expression.

- X={Xy, ...X.}, where each X; jc(1,__ is an XPath-like expression identifying the root node of an
irrelevant subtree. Each X; is an expression with the following format: //x;; [“//” | “/"|xip ... [“//”
| “/”1xic where [“//” | “/”]Xik keq1,..qy 18 @ node expression to identify a node using its tag name,
attributes and/or text.

- T, the DOM tree built up to the moment, and where the node n will be added if it does not match
with any expression in X.

Output:

- True if n matches with any X; j¢(; , or false in other case.

i=1; # Auxiliary expression counter

While (i<=r) { # Process one XPath-like expression in each iteration
m=n; # Initialize m to the target node n
k =length(X;);  # Auxiliary counter, initialized to the number of node expressions in X;

If (matches(m,xy) { # If the target node matches with the last node expression
m = parent(m);  # Take the parent node
k=k-1; # Point to the previous node expression
While (k>0 && m!=null) {  # While there are node expressions left and parent nodes to match
P =X # Partial expression initially set to the current node expression
While (x; is preceded by “/”) { # Add to p all the consecutive previous node expressions
k=k-1; # concatenated by “/”
p=xpt+ /T p
)
J
matched = false;
While (m != null && !matched) { # Iterates over nodes in the path to the tree root

N=[m]; # Node list, initially containing the current node
m’=m;
Repeat (length(p) -1) times { # Add to N the same number
m’ = parent(m’,T); # of nodes as node expressions are in p
append(N,m’);

if (matches(N,p) {  # If the partial expression matches with the list of nodes
matched = true;

m = parent(m’,T); # Continue with the parent node of the ones matched in this iteration

k=k-1; # and the node expression previous to the ones matched in this iteration
}else {
m = parent(m,T); # Try to match p from the parent node of the current one

}
/

If (k=0) { # All the node expressions of X; have been matched
return true;

Jelse {
i =i+1; # Analyze the next XPath-like expression
/
Jelse {
i =i+1; # Analyze the next XPath-like expression
/
/
return false;

Fig. 7. Algorithm to check if a node is the root of an irrelevant subtree
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Suppose we are building the DOM tree of the figure 5 and we have the expression

generated to discard the grayed node (recall section 4.3). For each node which is

added to the DOM tree we need to check if that expression identifies it:

5

All the nodes which do not have the tag name SPAN, or have it but they do
not have the attribute class equals to “c2”, do not match with the last node
expression (//SPAN[class=“c2”’]), so they are not identified by the
expression.

The first SPAN node with attribute class equals to “c2” matches with the
last node expression. Then, the previous node expression is analyzed. In
this case, the partial expression /TABLE[@id=“table2”’]/TR[2] (because
they are concatenated by “/”). A list of two consecutive nodes matching
this expression cannot be find in the path to the tree root (note that when
analyzing the TABLE node and its first 7R child, the expression does not
match because of the position of the 7R between the children of the
TABLE), so the node is not identified by the expression.

The second SPAN node with attribute class equals to “c2” matches with
the last node expression. Besides, we are able to find two consecutive
nodes in the path to the tree root matching the partial expression
//TABLE[@id=“table2”’]/TR[2] (the TABLE node and its second 7R
child). At this point, all the node expressions compounding the XPath-like
expression have been matched, so the expression identifies the node, and it
is considered as the root of an irrelevant subtree. As a consequence, the
node and all its descendants would be discarded, and not added to the

DOM tree.

Evaluation

To evaluate the validity of our approach we implemented a custom browser. This

browser emulates Microsoft Internet Explorer (MSIE) version 9 and was fully

developed in Java using open-source libraries including Apache Commons-

Httpclient to handle HTTP requests, Neko HTML parser to build DOM structures,

and Mozilla Rhino as JavaScript engine. The browser neither has user interface

nor renderization capabilities, but is able to simulate them, and it also supports

CSS, cookies and Java Applets. Most of the JavaScript objects and functions
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implemented in MSIE are also implemented in the custom browser including
support for AJAX and some built-in ActiveX objects. Some MSIE advanced
features are not implemented, including support for proprietary scripting
languages (e.g. VBScript) or support for embedded objects (e.g. Adobe Flash).
There are also some MSIE proprietary non-standard JavaScript functionalities not

implemented in the custom browser.

This section explains the set of experiments that we have performed. We selected
a set of websites of different domains included in the top 500 sites on the web
according to Alexa [1]. In each website we recorded a navigation sequence
representative of its main function (e.g. a product search in an e-commerce
website). Every sequence executes events to fill and submit forms, to navigate
through hyperlinks and, in some cases, to display content collected with AJAX

requests.

In the first experiment, we compared the resources consumed by our custom
browser when it uses its optimization capabilities, with the resources consumed in
its normal operation mode (which emulates the behavior of the commercial
browsers, loading the accessed pages entirely and firing all the automatic events).
We ran a first execution of the navigation sequence, in each of the selected
websites, to collect the optimization information. Then, we compared a normal
execution of each sequence, without using the optimization information, and
another one using it. To prevent the problem of small variations in web pages
when they are accessed in different moments, each sequence was executed 10

times and the results shown in this section are the averages of the 10 executions.

Table 1 shows the following metrics for each web site:
e Mean number of XPath-like expressions generated per page. That is, the
mean number of irrelevant subtrees identified per page.
e Mean length of the generated XPath-like expressions. That is, the mean
number of “node expressions” per XPath-like expression.
e Total time consumed to calculate node dependencies (and the percentage it
represents regarding the time consumed by the normal execution of the

sequence).
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e Total time consumed to calculate the necessary automatic events and the
irrelevant nodes from the node dependencies, and to generate the XPath-
like expressions identifying the root nodes of the irrelevant subtrees (and
the percentage it represents regarding the time consumed by the normal
execution of the sequence).

e Total time consumed by the normal execution of the sequence.

As we will demonstrate later, the number of XPath-like expressions (between 29.5
and 159.25 per page, with a global mean of 72.79 per page) is relatively small
compared to the number of nodes which they allow discarding. The mean length
of the expressions is always greater than 1 which implies that, all the sources
contains nodes that cannot unambiguously be identified using only their text
and/or their attributes. On the other hand, the mean length of the expressions is
always fewer than 2, so the generated expressions contain information about a
small number of nodes, having a high resilience to small changes. Finally, it can
be observed that the time consumed to calculate node dependencies and generate
the XPath-like expressions is quite small (globally, they represent, respectively,
the 0.69% and the 2.51% of the time consumed by a normal execution), so, we
can conclude that the process of calculating and colleting the optimization
information is very efficient, and it could be executed frequently, if desired, to
prevent the invalidation of the collected optimization information due to major

changes in the websites pages.

Table 2 shows the following metrics comparing the normal and the optimized
executions (each cell shows the result of the normal execution followed by the
results of the optimized execution):
e Total number of HTML DOM tree nodes created.
e Total number of script nodes created and executed.
e Total number of frame and window objects created.
e Total number of HTML pages downloaded. Note that the number of
frames and windows created can be greater than the number of HTML
pages downloaded because some frames only execute JavaScript code

without needing to download an HTML page.
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e Total number of external objects downloaded (including JavaScript and
CSS files).

e Total number of AJAX requests executed.

Measuring the resources used in all the navigation sequences, the optimized
executions only require the 12.41% of the nodes. Discarding those nodes, the
browser also avoids unnecessary downloads and the execution of unnecessary
scripts, so the memory and CPU usage, is highly minimized. The optimized
executions only execute the 24.85%% of the scripts, create the 31.11% of the
frames and windows, download the 50.81% of the HTML documents and the
33.23% of the external objects, and execute the 29.03% of the AJAX requests.

The first five columns of Table 3 show the times consumed by the browser to
perform the main tasks necessary to execute each navigation sequence (again,
each cell shows the result of the normal execution followed by the results of the
optimized execution). These tasks are:

e Build the DOM tree (this task include creating frames and windows when

needed).

e Execute scripts.

e Download HTML pages.

e Download external objects (including JavaScript and CSS files).

e Execute AJAX requests.
The sixth column shows the time consumed, in the optimized execution, to check
if the nodes are the root of an irrelevant subtree according to the optimization
information (this task corresponds to the execution of the algorithm explained in
the section 4.4, to decide if each node should be added to the DOM tree). Note
that this time is part of the time consumed in the optimized execution to build the
DOM tree, and which is shown in the first column.
Finally, the seventh column shows the total time consumed to execute the
sequence (note that this time is not exactly the sum of the first five columns
because the browser needs to execute other internal tasks to execute the
navigation sequences).
Measuring the mean time consumed in all the navigation sequences, the optimized

executions, compared to the normal ones, consume the 45.68%. By tasks, to build
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the DOM tree they consume the 37.36%, to execute scripts the 37.69%, to
download HTML pages the 67.37%, to download external objects the 33.3%, and
to execute AJAX requests the 32.38%.

The last row shows the total time which the optimized executions save in each
task, and the percentage which it represents regarding the total time of the normal
executions. As can be seen, checking if the nodes should be added to the DOM
tree only adds a penalization of the 0.18%, which is insignificant compared to the
time savings in all the tasks. Even if we consider only the task of building the
DOM tree, which in the optimization execution includes the time to check if the
nodes should be added to the DOM tree, a 1.02% of the time is saved (this is
explained because creating objects is a much more expensive operation than
comparing strings). Executing scripts it is saved a 16.42% of the time,
downloading HTML pages a 10.08%, downloading external objects a 25.27%,
and executing AJAX requests a 1.65%. Globally a 54.32% of the time is saved.

In the second experiment we compared the execution time of our custom browser
using and without using its optimization capabilities, with the execution time of
other representative navigation components. We used a navigation component
based on another custom browser, in this case, we chose HtmlUnit [5] because it
is an open source project and also supports JavaScript and CSS, and a navigation
component using the APIs of two commercial web browsers, in this case
Microsoft Internet Explorer 9 and Mozilla Firefox 19.0. Table 4 shows the
average execution time of 20 consecutive executions of each of our test navigation
sequences, discarding those that don't fit in the range of the standard deviation.
The table 4 also shows, between brackets, the percentage they represent in
comparison with the execution time of our custom browser using its optimization
capabilities. The last four rows show, respectively, the following aggregate
metrics about the time percentages: the average, the standard deviation, the
average discarding those results that do not fit in range of the average + standard

deviation, and the median.

The execution time of the custom browser using its optimization capabilities
always got better results. Compared with the executions without optimization, the

execution time varies from 141% in the worst case to the 651% in the best case.
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Calculating the average of the percentages, the execution time of the custom
browser without optimization is 2.44 times slower (244%) than the execution time
with optimization. Discarding the results that do not fit in range of the average +
the standard deviation (the standard deviation is 45%), the execution time of the
custom browser without optimization is 2.01 times slower (201%). The median
value of the executions indicates that the custom browser without optimization is

2.19 times slower (219%).

Regarding the other browsers, the HtmlUnit custom browser is the one that got
better results. In average it is 3.55 times slower than our custom browser with
optimization (2.48 times if we discard the results that do not fit in range of the
average =+ the standard deviation), and the median of the executions indicates that
it is 3.01 times slower. In the case of the navigation components based on
Microsoft Internet Explorer and Mozilla Firefox, the average execution times are
6.34 and 5.19 times slower than the execution time of the custom browser with
optimization (4.49 and 3.85 times if we discard the results that do not fit in range
of the average + the standard deviation), and the median of the executions

indicates that they are 5.07 and 4.63 times slower, respectively.

The website where the optimized execution got better results was W3CSchools.
As can be seen in Tables 2 and 3 it is because in the normal execution it
downloaded 33 external objects and executed 89 scripts, but none of them were
necessary in the optimized execution. This allows saving a lot of time in the
corresponding tasks. The worst result was obtained in the website Barnes&Noble.
As can be seen in Table 2, in this website the optimized exeuction could build a
smaller DOM tree, but it needed to download the same external objects and
HTML pages, and executed the same scripts. In Table 3, it can be observed that
the optimized execution saves time building the DOM tree and also executing
scripts, although the same ones are executed. The scripts are executed faster in the
optimized execution because some of them contain operations which are executed
faster when applied to a reduced DOM tree (for example if they access to the

collection which contains all the nodes of the tree).

28



6 Related Work

Currently, web automation applications are widely used for different purposes.
The approach followed by most of the current web automation systems, like
Smart Bookmarks [6], Wargo [11], QEngine [12], Sahi [14], Selenium [15], and
Montoto et al. [7] consists in using the APIs of conventional web browsers to
automate them. This approach has two important advantages: it does not require
to develop a new browser (which is costly), and it is guaranteed that the page will
behave in the same way as when a human user access the page with her browser.
Nevertheless, it presents performance problems for intensive web automation
tasks which require real time responses and/or to execute a significant number of
navigation sequences in parallel. This is because commercial web browsers are
designed to be client-side applications and, therefore, they consume a significant

amount of resources and time, as we have demonstrated in the evaluation section.

Other systems use the approach of creating simplified custom browsers specially
built for the task. WebVCR [2] and WebMacros [13] rely on simple HTTP clients
that lack the ability to execute complex scripting code or to support AJAX

requests. Our custom browser supports all those complexities.

HtmlUnit [5] and Kapow [8] use their own custom browser with support for many
JavaScript and AJAX functionalities. They are more efficient than commercial
web browsers, because they are not oriented to be used by humans and can avoid
some tasks (e.g. rendering). Nevertheless, HtmlUnit works like conventional
browsers when loading and building the internal representation of the web pages.
The last versions of Kapow are not downloadable, but to the best of our
knowledge it also works like conventional browsers regarding this issue. Since
this is the most important part in terms of the use of computational resources, their
performance enhancements are much smaller than the ones achieved with our

approach, as we have demonstrated in the evaluation section.

Related to the problem of identifying elements in web pages, some systems [2] [7]
[11][12] [13] [14] use the text associated to the elements and the value of some
specific pre-configured attributes (e.g. href for A tags). In complex websites it is

frequent that some elements cannot unambiguously be identified by their text
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and/or the value of their attributes (as our experiments have demonstrated). Smart
Bookmarks [6] can also generate full XPath expressions pointing to the target
element when the above strategy does not uniquely identify it. But these
expressions are not resilient to small changes on the page loaded at different
moments. Selenium [15] generates XPath expressions to identify the target
element trying to make them resilient to changes but they consider only some pre-
defined attributes (e.g. id, href). Kapow [6] generates an XPath-like expression
that tries to be resilient to small changes, although the details of the algorithm
they use have not been published. Works like [3] [9] have also addressed the
problem of generating change-resilient XPath expressions, but in those
approaches, the user have to provide several example pages identifying the target

element.

7 Conclusions

In this paper, we have presented a novel set of techniques and algorithms to
efficiently execute web navigation sequences. Our approach is based on executing
the navigation sequence once, to automatically collect information about the
elements of the loaded pages that are irrelevant for that navigation sequence.
Then, that information is used in the next executions of the sequence, to load only

the required elements and fire only the required events.

To evaluate the proposed techniques and algorithms, they have been implemented
in the core of a custom browser, developed for this purpose. According to our
experiments the techniques are very effective: smaller DOM tree nodes are built,
unneeded scripts are not executed and unneeded navigations are not performed.
This way, the techniques allow to save bandwidth, memory and CPU usage, and
to execute the navigation sequences faster compared with the same custom
browser without using its optimization capabilities, and with other representative

navigation components.
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Figure Legends

Fig. 1. Navigation Sequence Example

Fig. 2. DOM tree of an example page

Fig. 3. Transitivity Dependency Examples

Fig. 4. Example

Fig. 5. Algorithm to generate an XPath-like expression to identify a node
Fig. 6. XPath-like expression generation example

Fig. 7. Algorithm to check if a node is the root of an irrelevant subtree
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Tables

Table 1. Metrics about the optimization phase

Irrelevant nodes XPATH-like Time calculating Time generating XPATH- Total
per page expressions length node dependencies like expressions execution time

Alexa 43,5 1,2 36 (0,81%) 95 (2,15%) 4426
Amazon 78,25 1,14 46 (0,54%) 364 (4,26%) 8549
AppleStore 57,67 1,6 61 (1,44%) 130 (3,07%) 4228
Barnes&Noble 49 1,19 54 (0,75%) 149 (2,07%) 7187
Bloomberg 66,67 1,29 56 (0,71%) 322 (4,07%) 7908
CNET 71,67 1,23 92 (0,8%) 177 (1,53%) 11563
CNN 37,33 1,46 72 (0,77%) 218 (2,35%) 9294
Ebay 159,25 1,38 39 (0,47%) 693 (8,27%) 8377
Flickr 30,25 1,39 70 (0,75%) 67 (0,72%) 9338
GoogleNews 47,25 1,38 42 (0,72%) 187 (3,22%) 5810
Imdb 120,33 1,35 79 (0,84%) 268 (2,86%) 9361
Linkedin 86,33 1,92 43 (0,69%) 252 (4,04%) 6230
Reference 152,5 1,28 95 (0,75%) 189 (1,5%) 12639
Reuters 52,75 1,62 99 (0,51%) 212 (1,1%) 19341
Softonic 59,75 1,27 38 (0,58%) 184 (2,8%) 6579
Spiegel 123,5 1,48 48 (0,5%) 376 (3,93%) 9570
StackOverflow 34,67 1,3 56 (0,83%) 121 (1,79%) 6770
Taringa 72,67 1,25 65 (0,47%) 126 (0,92%) 13746
Theguardian 106,33 1,18 124 (1,01%) 383 (3,13%) 12219
Tripadvisor 41,75 1,18 15 (0,3%) 307 (6,24%) 4921
W3CSchools 53 1,36 51(0,63%) 89 (1,09%) 8143
Walmart 97 1,26 73 (0,58%) 531 (4,23%) 12554
Wikipedia 51 1,67 81 (1,13%) 249 (3,46%) 7192
Wordpress 29,5 1,17 37 (0,64%) 41 (0,71%) 5776
WSlournal 90 1,55 149 (0,71%) 229 (1,09%) 21028
Yahoo 77,5 1,06 45 (0,51%) 107 (1,21%) 8875
Yelp 76 1,13 41 (0,61%) 176 (2,62%) 6706
Global 72,79 1,34 1707 (0,69%) 6242 (2,51%) 248330
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Table 2. Metrics comparing normal and optimized executions

HTML DOM nodes Scripts Frames and HTML pages External objects AJAX
created executed Windows downloaded downloaded requests
Alexa 1176/144 48/20 1/1 2/2 27/16 0/0
Anazon 7965/4047 176/77 6/2 9/4 13/5 21
AppleStore 2611/79 69/1 1/1 3/3 15/11 2/0
Barnes&Noble 3989/136 26/26 1/1 4/4 14/14 0/0
Bloomberg 6281/187 243/28 14/11 8/7 53/6 0/0
CNET 3395/157 113/56 7/4 9/6 52/24 0/0
CNN 4539/40 103/8 6/1 7/3 30/5 0/0
Ebay 4932/3175 80/37 4/1 8/4 25/9 0/0
Flickr 1332/61 61/9 21 5/4 19/1 0/0
GoogleNews 7460/114 48/11 2/1 4/4 9/3 0/0
Imdb 2608/485 183/56 28/1 8/3 34/10 43
Linkedin 2095/167 52/12 3/1 5/3 20/5 3/0
Reference 2709/579 152/29 7/2 9/3 33/11 0/0
Reuters 2797/298 265/50 11/2 12/3 156/41 a/1
Softonic 4932/250 79/6 12/1 15/4 17/3 0/0
Spiegel 3361/139 92/25 20/3 21/4 22/7 1/0
stackOverflow 3950/153 43/9 1/1 3/3 21/5 a/1
Taringa 2530/256 209/15 10/1 13/3 47/8 7/0
Theguardian 4519/248 257/70 5/1 4/3 76/28 o/o
Tripadvisor 6769/88 92/14 1/1 4/4 6/0 0/0
W3CSchools 2380/32 89/0 8/1 8/3 33/0 0/0
Walmart 6926/385 208/29 15/3 4/3 42/13 4/3
Wikipedia 5078/143 52/24 1/1 4/4 37/21 0/0
Wordpress 472/37 56/21 6/1 7/2 18/10 o0/0
WSJournal 6303/1148 204/118 39/24 60/35 78/50 0/0
Yahoo 1946/85 127/33 7/1 8/2 16/2 0/0
Yelp 2815/508 52/6 7/1 2/2 14/0 0/0
Total 105870/13141 3179/790 225/70 246/125 927/308 31/9
(12,41%) (24,85%) (31,11%) (50,81%) (33,23%) (29,03%)

34



Table 3. Times comparing normal and optimized executions

Building Executing Downloading Downloading  Executing AJAX Checking Total time
DOM Tree Scripts HTML pages external objects requests irrelevant nodes

Alexa 108/25 1733/952 820/825 1716/947 0/o 3 44262782
Amazon 170/76 1792/873 4700/3544 849/190 940/244 5 8549/5019
AppleStore 152/27 2881/1305 193/212 529/391 261/0 4 4228/2003
Barnes&Noble 122/42 4171/2173 1910/1912 934/912 0/o 5 7187/5094
Bloomberg 118/62 3443/281 889/656 3392/525 0/0 9 7908/1593
CNET 108/75 2575/1063 4710/3949 4097/1839 0/o0 42 11563/7065
CNN 100/47 1988/652 3410/1562 3747/468 ofo 2 9294/2779
Ebay 135/106 3102/1442 3716/2580 1318/1005 o/0 47 8377/5274
Flickr 111/39 1965/530 2999/2569 4221/480 0/0 9 9338/4055
GoogleNews 263/50 2393/584 1345/1387 1757/328 0/0 5 5810/2414
Imdb 193/65 3095/1501 2513/1335 2737/676 756/614 23 9361/4279
Linkedin 94/42 1085/499 2634/1752 1686/473 639/0 24 6230/2839
Reference 147/53 3103/1252 3035/1514 6300/1754 ofo 24 12639/4694
Reuters 179/40 3105/749 2817/620 12485/3983 686/190 17 19341/5621
Softonic 114/52 1614/647 2258/1654 2542/870 0/o 10 6579/3272
Spiegel 202/62 1102/567 3432/1101 4791/2519 15/0 15 9570/4297
StackOverflow 81/41 1471/570 654/758 3255/703 1279/244 6 6770/2341
Taringa 192/32 3798/980 4054/2244 5083/1241 567/0 8 13746/4546
Theguardian 126/56 4090/1985 438/397 7486/3023 0/o 15 12219/5604
Tripadvisor 217/41 768/53 3225/3207 617/0 0/o 7 4921/3353
W3CSchools 176/30 2219/0 1927/1108 3787/0 ofo 13 8143/1251
Walmart 171/63 5028/1717 3315/2343 3067/783 910/668 15 12554/5633
Wikipedia 77/50 1977/1261 824/850 4148/2100 0/0 7 7192/4309
Wordpress 96/46 568/277 2822/1064 2266/1371 0/0 34 5776/2792
WSlJournal 184/231 3894,/2402 11041/6984 5800/3877 0/0 72 21028/13621
Yahoo 101/21 926/333 4195/2736 3597/875 ofo 6 8875/4013
Yelp 305/36 1538/11 28232806 1874/0 0/o 14 6706/2906
Total 40421510 65424/24659 76699/51669  94081/31333 6053/1960 0/441 248330/113449

(37,36%) (37,69%) (67,37%) (33,3%) (32,38%) (45,68%)
Time Savings 2532 40765 25030 62748 4093 -441 134881

(1,02%) (16,42%) (10,08%) (25,27%) (1,65%) (-0,18%) (54,32%)
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Table 4. Average execution times in milliseconds

Custom browser

Custom browser

Internet

with optimization without optimization L Explorer (el atERs
Alexa 2782 4426 (159%) 5329 (192%) 13902 (500%) 13152 (473%)
Amazon 5019 8549 (170%) 10927 (218%) 22320 (445%) 18584 (370%)
AppleStore 2009 4228 (210%) 5043 (251%) 16953 (844%) 16253 (809%)
Barnes&Noble 5094 7187 (141%) 6422 (126%) 27578 (541%) 26390 (518%)
Bloomberg 1593 7908 (496%) 18081 (1135%) 34744 (2181%) 26710 (1677%)
CNET 7065 11563 (164%) 17537 (248%) 26615 (377%) 21389 (303%)
CNN 2779 9294 (334%) 21763 (783%) 20392 (734%) 14649 (527%)
Ebay 5274 8377 (159%) 12286 (233%) 22993 (436%) 17894 (339%)
Flickr 4055 9338 (230%) 11813 (291%) 21277 (525%) 14124 (348%)
GoogleNews 2414 5810 (241%) 8599 (356%) 27337 (1132%) 16783 (695%)
Imdb 4279 9361 (219%) 11429 (267%) 21530 (503%) 16629 (389%)
Linkedin 2839 6230 (219%) 5839 (206%) 17941 (632%) 13135 (463%)
Reference 4694 12639 (269%) 19650 (419%) 17849 (380%) 17364 (370%)
Reuters 5621 19341 (344%) 22261 (396%) 20323 (362%) 19562 (348%)
Softonic 3272 6579 (201%) 14048 (429%) 16600 (507%) 18893 (577%)
Spiegel 4297 9570 (223%) 12948 (301%) 14562 (339%) 14513 (338%)
StackOverflow 2341 6770 (289%) 6377 (272%) 19113 (816%) 13681 (584%)
Taringa 4546 13746 (302%) 14614 (321%) 18690 (411%) 17569 (386%)
Theguardian 5604 12219 (218%) 18490 (330%) 23730 (423%) 27909 (498%)
Tripadvisor 3353 4921 (147%) 14942 (446%) 24896 (742%) 18772 (560%)
W3CSchools 1251 8143 (651%) 8793 (703%) 19049 (1523%) 12407 (992%)
Walmart 5633 12554 (223%) 20183 (358%) 20998 (373%) 20896 (371%)
Wikipedia 4309 7192 (167%) 10711 (249%) 18742 (435%) 14524 (337%)
Wordpress 2792 5776 (207%) 6373 (228%) 16020 (574%) 14177 (508%)
WSlJournal 13621 21028 (154%) 19201 (141%) 21719 (159%) 19087 (140%)
Yahoo 4013 8875 (221%) 13496 (336%) 21816 (544%) 16639 (415%)
Yelp 2906 6706 (231%) 10228 (352%) 20035 (689%) 19828 (682%)
Average 244% 355% 634% 519%
Standard Dev. 109 (45%) 210 (59%) 404 (64%) 284 (55%)
Average + Stdev, 201% 248% 449% 385%
Median 219% 301% 507% 463%
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