Skip to main content
Log in

Information diffusion model in modular microblogging networks

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

We focus on information diffusion in microblogging networks. As a classic problem of human dynamics in social networks, many researches have been done on information spreading in social media. In this work, we presented a new information diffusion model considering both network topology and spreading mechanism in microblogging networks. Extensive experiments have been done to estimate the impacts of reciprocity and modulrity on the outbreak size and spreading speed of a story in many artificial networks. By analyzing the experimental results in detail, we show that both reciprocity and modularity will impact the outbreak size and the spreading speed to some extent. Furthermore, modularity will impact the outbreak size much more than reciprocity. In most circumstances, the outbreak size of a story in the network with moderate modularity could be larger than that with low or high modularity. In addition, with the growth of reciprocity, the outbreak size will increase slightly. As a significant application, we have found some efficient strategies to control information spreading in real-world microblogging networks, and a better outcome will be attained to improve or restrain the outbreak size by adding or removing the edges between modules, rather than the edges with large betweenness. These findings introduced in this paper could be useful for decision-making processes in microblogging networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alec Go, L.H., Bhayani, R.: Twitter sentiment analysis. Final Projects from CS224N for Spring 2008/2009 at The Stanford Natural Language Processing Group (2009)

  2. Bakshy, E., Karrer, B., Adamic, L. A.: Social influence and the diffusion of user-created content. In: Proceedings of the 10th ACM conference on Electronic commerce. EC ’09 , pp 325–334. ACM, New York (2009)

    Book  Google Scholar 

  3. Choromański, K., Matuszak, M., Miekisz̧, J.: Scale-free graph with preferential attachment and evolving internal vertex structure. J. Stat. Phys. 151, 1175–1183 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Daley, D.J., Gani, J.M.: Epidemic Modeling: an introduction. Cambridge University Press (1999)

  5. Garlaschelli, D., Loffredo, M.I.: Patterns of link reciprocity in directed networks. Phys. Rev. Lett. 93, 268701 (2004)

    Article  Google Scholar 

  6. Good, B.H., de Montjoye, Y.A., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106 (2010)

    Article  MathSciNet  Google Scholar 

  7. Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)

    Article  Google Scholar 

  8. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through blogspace. In: WWW ’04: Proceedings of the 13th international conference on World Wide Web, pp 491–501. ACM Press, New York (2004)

    Chapter  Google Scholar 

  9. Hogg, T., Lerman, K.: Stochastic models of user-contributory web sites. CoRR abs/0904.0016 (2009)

  10. Huberman, B.A., Pirolli, P.L.T., Pitkow, J.E., Lukose, R.M.: Strong regularities in world Wide Web surfing. Science 280(5360), 95–97 (1998)

    Article  Google Scholar 

  11. Kwak, H., Lee, C., Park, H., Moon, S.B.: What is twitter, a social network or a news media? In: Proceedings of the 19th international conference on World Wide Web, pp. 591–600. ACM, New York (2010)

  12. Lentz, H.H.K., Selhorst, T., Sokolov, I.M.: Spread of infectious diseases in directed and modular metapopulation networks. Phys. Rev. E 85, 066111 (2012)

    Article  Google Scholar 

  13. Lerman, K., Ghosh, R.: Information contagion: An empirical study of the spread of news on digg and twitter social networks. In: Proceedings of 4th International Conference on Weblogs and Social Media (ICWSM) (2010)

  14. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: WWW ’08: Proceeding of the 17th international conference on World Wide Web, pp 915–924. ACM, New York (2008)

    Chapter  Google Scholar 

  15. Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., Hurst, M.: Cascading Behavior in Large Blog Graphs (2007)

  16. Liben-Nowell, D., Kleinberg, J.: Tracing information flow on a global scale using Internet chain-letter data. Proc. Natl. Acad. Sci. 105(12), 4633–4638 (2008)

    Article  Google Scholar 

  17. Meyers, L.A., Newman, M., Pourbohloul, B.: Predicting epidemics on directed contact networks. J. Theor. Biol. 240(3), 400–418 (2006)

    Article  MathSciNet  Google Scholar 

  18. Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. KDD ’12, pp 33–41. ACM, New York (2012)

    Chapter  Google Scholar 

  19. Nan C., Yu-Ru Lin, X.S.L.D.S.L., Qu, H.: Whisper: Tracing the spatiotemporal process of information diffusion in real time. IEEE Trans. Vis. Comput. Graph. 18(12), 2649–2658 (2012)

    Article  Google Scholar 

  20. Newman, M.E.: Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  21. Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett. 103, 058701 (2009)

    Article  Google Scholar 

  22. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  23. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  24. Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. 104(18), 7332–7336 (2007)

    Article  Google Scholar 

  25. Pathak, N., Banerjee, A., Srivastava, J.: A generalized linear threshold model for multiple cascades. In: Data Mining (ICDM), 2010 IEEE 10th International Conference on (2010)

  26. Pei, F.P.H.Z.L.: Measurement of microblogging network. Journal of Computer Research and Development 49, 691–699 (2012)

    Google Scholar 

  27. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World wide web. WWW ’10. ACM, New York (2010)

  28. Salath, M., Jones, J.H.: Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6(4), e1000736+ (2010)

    Article  Google Scholar 

  29. Stanoev, A., Smilkov, D., Kocarev, L.: Identifying communities by influence dynamics in social networks (2011)

  30. Vzquez, A., ao Gama Oliveira, J., Dezsö, Z., Goh, K.I., Kondor, I., Barabási, A.L.: Modeling bursts and heavy tails in human dynamics. Phys. Rev. E 73(3), 036127+ (2006)

    Article  Google Scholar 

  31. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: Davison, B.D., Suel, T., Craswell, N., Liu, B. (eds.) WSDM, pp 261–270. ACM (2010)

  32. Wu, F., Huberman, B., Adamic, L., Tyler, J.: Information flow in social groups. Physica A: Statistical Mechanics and its Applications 337(1–2), 327–335 (2004)

    Article  MathSciNet  Google Scholar 

  33. Xiong, X., Niu, X., Zhou, G., Xu, K., Huang, Y.: Microgroup mining on tsina via network structure and user attribute. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA (2). Volume 7121 of Lecture Notes in Computer Science. 138–151 (2011)

  34. Xiong, X., Zhou, G., Huang, Y., Chen, H., Xu, K.: Dynamic evolution of collective emotions in social networks: a case study of sina weibo. SCIENCE CHINA Information Sciences 56(7), 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  35. Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Directed network community detection: A popularity and productivity link model. In: SIAM International Conference on Data Mining (2010)

  36. Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Proceedings of the 33rd European conference on Advances in information retrieval. ECI’11 , pp 338–349. Springer, Berlin (2011)

    Google Scholar 

  37. Zhao, J., Wu, J., Feng, X., Xiong, H., Xu, K.: Information propagation in online social networks: a tie-strength perspective. Knowl. Inf. Syst. 32(3), 589–608 (2012)

    Article  Google Scholar 

  38. Zhao, J., Wu, J., Xu, K.: Weak ties: Subtle role of information diffusion in online social networks. Phys. Rev. E 82, 016105 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Ma, J., Wang, M. et al. Information diffusion model in modular microblogging networks. World Wide Web 18, 1051–1069 (2015). https://doi.org/10.1007/s11280-014-0306-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-014-0306-0

Keywords

Navigation