Skip to main content
Log in

Preference-based content replacement using recency-latency tradeoff

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

This work introduces and establishes a new model for cache management, where clients suggest preferences regarding their expectations for the time they are willing to wait, and the level of obsolescence they are willing to tolerate. The cache uses these preferences to decide upon entrance and exit of objects to and from its storage, and select the best copy of requested object among all available copies (fresh, cached, remote). We introduce three replacement policies, each evicts objects based on ongoing scores, considering users’ preferences combined with other objects’ properties such as size, obsolescence rate and popularity. Each replacement algorithm follows a different strategy: (a) an optimal solution that use dynamic programming approach to find the best objects to be kept (b) another optimal solution that use branch and bound approach to find the worst objects to be thrown out (c) an algorithm that use heuristic approach to efficiently select the objects to be evicted. Using these replacement algorithms the cache is able to keep the objects that are best suited for users preferences and dump the other objects. We compare our proposed algorithms to the Least-Recently-Used algorithm, and provide evidence to the advantages of our algorithms providing better service to cache’s users with less burden on network resources and reduced workloads on origin servers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aggarwal, C., Wolf, J.L., Yu, P.S.: Caching on the World Wide Web. IEEE Trans. Knowl. Data Eng. 11(1), 94–107 (1999)

    Article  Google Scholar 

  2. Altinel, M., Bornhovd, C., Krishnamurthy, S., Mohan, C., Pirahesh, H., Reinwald, B.: Cache tables: Paving the way for an adaptive database cache. In: Proceeding of Very Large Data Bases (VLDB), pp. 718–729 (2003)

  3. Amiri, K., Park, S., Tewari, R., Padmanabhan, S.: DBProxy: A dynamic data cache for web applications. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE), pp. 821–831 (2003)

  4. Arlitt, M.F., Williamson, C.L.: Internet web servers: Workload charaterization and performane impliations. IEEE/ACM Trans. Netw. 5(5), 631–645 (1997)

    Article  Google Scholar 

  5. Arlitt, M., Cherkasova, L., Dilley, J., Friedrich, R., Jin, T.: Evaluating content management techniques for web proxy caches. SIGMETRICS Perform. Eval. Rev. 27(4), 3–11 (2000)

    Article  Google Scholar 

  6. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions: Evidence and implications. Proc. Infocom., 126–134 (1999)

  7. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms. In: Proceedings of the 1997 USENIX Symposium on Internet Technology and Systems, pp. 193–206 (1997)

  8. Cate, V.: Alex – a global file system. In: File System Workshop USENIX, pp. 1–11 (1992)

  9. Cherkasova, L.: Improving WWW proxies performance with greedy-dual-size-frequency caching policy. In: HP Technical Report. Palo Alto (1998)

  10. Chiang, I.R., Goes, P.B., Zhang, Z.: Periodic cache replacement policy for dynamic content at application server. Decis. Support Syst. 43(2), 336–348 (2007)

    Article  Google Scholar 

  11. Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Trans. Int. Technol. (TOIT) 3(3), 256–290 (2003)

    Article  Google Scholar 

  12. Dingle, J.A., Partl, T.: Web cache coherence. In: Proceedings of the Fifth International World Wide Web Conference on Computer Networks and ISDN Systems, pp. 907–920 (1996)

  13. Gal, A., Eckstein, J.: Managing periodically updated data in relational databases: A stochastic modeling approach. J. ACM 48(6), 1141–1183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co, San Francisco (1979)

    MATH  Google Scholar 

  15. Gwertzman, J., Seltzer, M.I.: World Wide Web cache consistency. In: Proceedings of the USENIX Technical Conference, pp. 141–152 (1996)

  16. Jin, S., Bestavros, A.: GreedyDual* web caching algorithm: Exploiting the two sources of temporal locality in web request streams. In: Proceedings of the Fifth Web Caching and Content Distribution Workshop, pp. 174–183. Portugal (2000)

  17. Kumar, C., Norris, J.B.: A new approach for a proxy-level web caching mechanism. Decis. Support Syst. 46(1), 52–60 (2008)

    Article  Google Scholar 

  18. Larson, P.-A., Goldstein, J., Zhou, J.: MTCache: Transparent mid-tier database caching in SQL server. In: Proceedings of the 20th International Conference on Data Engineering, (ICDE), pp. 177–189 (2004)

  19. Malik, T., Burns, R.C., Chaudhary, A.: Bypass caching: Making scientific databases good network citizens. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE), pp. 94–105 (2005)

  20. Paxson, V., Floyd, S.: Wide area traffic: The failure of Poisson modeling. IEEE/ACM Trans. Netw. (ToN) 3(3), 226–244 (1995)

    Article  Google Scholar 

  21. Rabinovich, M., Spatschek, O.: Web Caching and Replication. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

    Google Scholar 

  22. Rashkovits, R., Gal, A.: A Cooperative Model for preference-based information sharingin narrow bandwith networks. Int. J. Coop. Inf. Syst., 22,01,1 (2013)

  23. Rowstron, A.I.T., Lawrence, N., Bishop, C.M.: Probabilistic modelling of replica divergence. In: Proceedings of the 8th Workshop on Hot Topics in Operating Systems HOTOS (VIII), vol. 9,1, pp. 55–60 (2001)

  24. Sam, R., ElAarag, H.: A neural network proxy cache replacement strategy and its implementation in the Squid proxy server. Neural Comput. Appl. 20(1), 59–78 (2011)

    Article  Google Scholar 

  25. Siti, A.W., Shamsuddin, M., Ismail, A.S.: Intelligent Web proxy caching approaches based on machine learning techniques. Decis. Support Syst. 53(3), 565–579 (2012)

    Article  Google Scholar 

  26. Soonthornsutee, R., Pramote, L.: Web log mining for improvement of caching performance. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1 (2012)

  27. Timo, K., Heikkonen, J., Kaski, K.: Web cache optimization with nonlinear model using object features. Comput. Netw. 43(6), 805–817 (2003)

    Article  MATH  Google Scholar 

  28. Wu, S.Y., Eu, Y.S.: Intelligent caching for mobile web browsing. First Int. Workshop Intell. Multimed. Comput. Netw. (IMMCN) 2, 628–631 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Rashkovits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashkovits, R. Preference-based content replacement using recency-latency tradeoff. World Wide Web 19, 323–350 (2016). https://doi.org/10.1007/s11280-014-0313-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-014-0313-1

Keywords

Navigation