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Abstract. Optimizing task scheduling in a distributed heterogeneous computing 
environment, which is a nonlinear multi-objective NP-hard problem, plays a 
critical role in decreasing service response time and cost, and boosting Quality 
of Service (QoS). This paper, considers four conflicting objectives, namely mi-
nimizing task transfer time, task execution cost, power consumption, and task 
queue length, to develop a comprehensive multi-objective optimization model 
for task scheduling. This model reduces costs from both the customer and pro-
vider perspectives by considering execution and power cost. We evaluate our 
model by applying two multi-objective evolutionary algorithms, namely Multi-
Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic 
Algorithm (MOGA). To implement the proposed model, we extend the Cloud-
sim toolkit by using MOPSO and MOGA as its task scheduling algorithms 
which determine the optimal task arrangement among VMs. The simulation re-
sults show that the proposed multi-objective model finds optimal trade-off solu-
tions amongst the four conflicting objectives, which significantly reduces the 
job response time and makespan. This model not only increases QoS but also 
decreases the cost to providers. From our experimentation results, we find that 
MOPSO is a faster and more accurate evolutionary algorithm than MOGA for 
solving such problems.  
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1 Introduction 

Cloud computing is a service-oriented computing paradigm that has significantly 
revolutionized computing by offering three web-based services – Infrastructure as a 
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [1]. 
SaaS and PaaS users generate several jobs in a cloud environment. To deliver these 
services over the World Wide Web, jobs generated by users are submitted to schedu-



lers to be executed by a set of processors (cloud resources). Each job consists of sev-
eral dependent tasks described by a Directed Acyclic Graph (DAG)[2]. In the cloud 
environment, the number of tasks in a workflow, as well as the number of available 
resources, can grow quickly, especially when virtual resources are allocated. Calculat-
ing all possible task-resource mappings in the cloud environment and selecting the 
optimal mapping is not feasible, since the complexity would grow exponentially with 
the number of tasks and resources [3]. Therefore, the development of intelligent task 
scheduling mechanisms that take into account the efficiency of all the cloud compu-
ting facilities, has become a critical part of current cloud optimization problems and 
plays a key role in improving flexible and reliable systems. The main purpose is to 
schedule tasks to adaptable resources in accordance with time, which involves estab-
lishing a proper sequence whereby tasks can be executed under transaction logic con-
straints [4].  

There are several studies [1, 3-10] that mainly emphasize the minimization of job 
makespan and task execution cost in their multi-objective optimization models by 
applying evolutionary algorithms. However, these studies fail to consider the need to 
minimize power consumption by the cloud infrastructure. Meanwhile, there is a con-
siderable amount of research work that focuses on reducing power consumption in 
their proposed bi-objective task scheduling models by minimizing the value of their 
developed predefined power consumption objective functions for multi-core proces-
sors and cloud environment [11, 12]. In addition, several studies have been underta-
ken in the area of energy-aware task scheduling by applying the Dynamic Voltage 
Frequency Scaling (DVFS) technique [13-16].   

To the best of our knowledge, reducing the task queue length of VMs has not 
been investigated in proposed task scheduling optimization models. In addition, our 
work is the first to minimize task transfer time, task execution cost, power consump-
tion, and task queue length concurrently in a task scheduling optimization model. A 
longer task queue results in more waiting time for tasks and a longer response time. In 
current task scheduling optimization models that apply evolutionary algorithms with 
predefined objective functions, the optimal task scheduling schemas are suggested 
based on task and VM properties. In such models, optimizing objective functions 
usually occurs by assigning tasks to high performance VMs and neglecting low per-
formance VMs. This leads to the creation of a long task queue for some VMs, while 
some other VMs remain idle. Although the properties of low performance VMs do 
not optimize the value of objective functions, as they have the lowest number of 
CPUs and smallest amount of memory, they can decrease response time by executing 
waiting tasks in the queues.  

To improve previous research work and address this shortcoming in the existing 
literature, a multi-objective model for task scheduling in a cloud environment that 
considers four aspects of optimizing cloud utilization is proposed in this study. The 
model aims to enhance QoS based on the points of view of both cloud users and pro-
viders by minimizing service response time and price (to raise customer satisfaction), 
and minimizing power consumption (to reduce providers’ expenditure). In addition, 
we determine an objective function to achieve optimal load balance between re-
sources and control the length of task queues in a cluster. This objective function 
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considers changes in resource capacity (memory and number of CPUs) to avoid as-
signing multiple tasks to one VM’s processors and creating long task queues. To find 
the optimal solution for the proposed model, an algorithm is developed based on Mul-
ti-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic 
Algorithm (MOGA). Cloudsim toolkit [17] is extended by applying MOPSO and 
MOGA as its task scheduling algorithms to implement and evaluate the proposed 
model.  

This paper focuses on scheduling highly parallel computations such as Bag-of-
Tasks (BoT) applications for SaaS in a cloud environment. In such applications, com-
pletion of one task does not affect the completion of other tasks, and only one task is 
executed on a computer processor (CPU) at a time. BoT applications are used for data 
mining, massive searches, parameter sweeps, simulations, fractal calculations, compu-
tational biology, and computer imaging [18, 19]. 

The efficiency of the proposed model is evaluated through different scenarios. Si-
mulation results show that the proposed model significantly increases QoS by consi-
dering more criteria for optimization, and has the ability to satisfy both users and 
providers. In fact, the proposed model is able to determine trade-off solutions that 
offer the best possible compromises among the optimization objectives, and not only 
helps cloud providers to reduce the cost of power consumed, but also helps them to 
maintain the expected level of QoS. It has also been found that MOPSO is a faster and 
more accurate evolutionary algorithm than MOGA for solving such problems. The 
contributions of the paper are summarized as follows: 

1) Develop a multi-objective task scheduling model to minimize task transfer time, 
task execution cost, power consumption, and task queue length.  

2) Develop intelligent methods to estimate: (1) task transfer time, (2) task execution 
cost, (3) power consumption based on the number of active Physical Machines 
(PMs), and (4) task queue length based on the remaining resource capacity (memo-
ry and idle CPUs). 

3) Develop a MOPSO/MOGA-based algorithm to solve the proposed multi-objective 
task scheduling problem, and compare two evolutionary algorithms in different 
scenarios.  

4) Extend the Cloudsim package to evaluate the model using MOPSO and MOGA.  

The rest of the paper is organized as follows. In Section 2, related works are pre-
sented. Section 3 illustrates a multi-objective model for task scheduling optimization. 
Section 4 presents a developed MOPSO/MOGA-based algorithm to determine the 
optimal solution (task scheduling pattern) for the proposed multi-objective model. 
The model is evaluated in Section 5. Lastly, the conclusion and future works are pro-
vided in Section 6. 

2 Related Works 

The task scheduling problem in distributed computing systems is an NP-hard op-
timization problem that also affects QoS in the cloud environment by optimizing ser-



vice cost and service response time. Therefore, the use of a heuristic algorithm en-
sures an acceptable runtime of the scheduling algorithm itself since it significantly 
reduces the complexity of the search space. In this regard, Song et al. [5] proposed a 
general job selection and allocation framework that utilizes an adaptive filter to select 
jobs and a modified heuristic algorithm (Min-Min) to allocate them. Two objec-
tives—maximizing the remaining CPU capacity, and the utilization of resources—and 
four criteria—the resource requirements of CPU, memory, hard-disk and network 
bandwidth—were considered for the optimization problem.  Li et al. [8] applied an 
Ant Colony optimization approach to create a better scheduling result with shorter 
total-task-finish time and mean-task finish time. Li et al. [6] took resource allocation 
patterns into account and proposed a task and resource optimization mechanism. Tay-
al [4] proposed a fuzzy-GA based optimization approach to enhance the accuracy of 
GA results for the job scheduling process, which makes a scheduling decision by 
evaluating the entire group of tasks in the job queue. Juhnke et al. [3] proposed a mul-
ti-objective scheduling algorithm for cloud-based workflow applications to minimize 
cost and execution time by applying the Pareto Archived Evolution Strategy, which is 
a type of GA. Lei et al. [9] and Salman et al. [7] developed an optimization model to 
optimize task execution time, and showed that the particle swarm optimization (PSO) 
algorithm is able to obtain a better schedule than GA in grid computing and distri-
buted systems. Guo [10] also proposed a multi-objective task scheduling model to 
minimize task execution time and cost using the PSO algorithm. Taheri et al. [1] con-
sidered the data-files required for jobs from public or private clouds and proposed a 
bi-objective job scheduling optimization model to minimize job execution and data 
file transfer time using PSO. These studies mainly emphasized the minimization of 
the job makespan and task execution cost in their multi-objective optimization models 
by applying evolutionary algorithms, and the reduction of power consumption is neg-
lected in such studies.  

 Meanwhile, there are lots of works focus on reducing power consumption in their 
proposed bi-objective task scheduling models by minimizing the value of their devel-
oped predefined power consumption objective functions for multi-core processors and 
cloud environment [11, 12]. Different objective functions have been suggested in 
these models for estimating energy consumption [19-21]. Shieh and Pong [11] de-
signed an energy- and transition-aware algorithm to schedule periodic tasks in multi-
core systems considering voltage transition overheads. They suggested an integer 
linear programming model to find the optimal power-aware scheduling for specific 
task set and core number. Wang et al. [12] developed an energy-aware multi-objective 
bi-level programming model based on MapReduce. They considered energy con-
sumption in the data placement process, combined with a local multi-job scheduling 
scheme. Their approach has three steps. First, they considered changes in energy con-
sumption along with the performance of servers. Then, their model dynamically ad-
justs data locality based on the current network state. In the last step, they developed 
an integer bi-level programming model considering the fact that task-scheduling 
schemas depend on data placement patterns.   

Several investigations have also been conducted into developing energy-aware 
task scheduling algorithms to optimize energy consumption by applying Dynamic 
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Voltage Scaling (DVS) technique [13-16]. In these works, the authors determined 
task-slack time by considering critical and non-critical paths in job DAGs. They then 
extended non-critical task execution times by scaling down the voltage frequency of 
corresponding processors. In other works, energy is reduced by sending non-critical 
tasks to the most cost efficient VMs [15].   

Although a significant number of studies have been carried out in the area of pow-
er consumption reduction in a cloud/grid environment, the reduction of task queue 
length in a cluster by considering the workload capacity of VMs has been neglected in 
earlier multi-objective task scheduling models. Task queue length is an effective fac-
tor for reducing job makespan because it determines the wait and finish time of tasks. 
In addition, the following four optimization objectives: (1) task transfer time, (2) task 
execution cost, (3) power consumption, and (4) the task queue length of VMs, have 
not been considered in the previous works to develop a comprehensive task schedul-
ing model. 

3 Problem Formulation 

A cloud environment dynamically receives a large number of tasks from its appli-
cations’ users in every portion of each second. These tasks accumulate in several 
queues and are then sent to the task schedulers. The task schedulers are responsible 
for allocating these tasks to VMs for execution. These VMs which are in turn allo-
cated to PMs (see Fig. 1), have different numbers of virtual CPUs and different mem-
ory size. The task schedulers apply optimization procedures to allocate task among 
VMs to achieve optimal resource utilization in a cloud environment. The scheduling 
process repeats dynamically to schedule every set of arrival tasks among VMs. Con-
sidering this fact that independent users arbitrarily send tasks to cloud environment, 
the number and type of tasks in each queue may significantly change from one sche-
duling to another.  

To create a higher level of resource utilization while minimizing cost and max-
imizing QoS, we develop a multi-objective model for optimizing task scheduling that 
considers four aspects of the task scheduling optimization problem: task execution 
cost, task transfer time, task queue length and power consumption. The variables that 
are applied to formulate this multi-objective model are defined in Table 1.  

 

 

  



Figure 1. Cloud objects and their relations  

Table 1. Definitions of Variables 

Symbol Definition 

n The number of arrival tasks 

T The set of arrival tasks = {t1, t2, …, tn} 

DEik 
The amount of data (MB) that task i assigns to VMk  to be executed = (taski data length + taski 
output size) 

DTik The amount of data (MB) needing to be transferred = taski file size  

tmj The amount of memory (MB) required for executing task j  

tcj The number of CPUs required for executing task j 

Texek The total task execution time on VMk 

m The number of VMs 

VMj Virtual Machine j, j={1, 2, …, m} 

VMmk The amount of memory of VMk (MB ≈ 0.001 GB) 

VMck The number of CPUs in VMk  

Nk
aCPU The number of active CPUs on VMk  

VMbwk The bandwidth of VMk  (Mb/s) 

VMk
mips VM computing speed (Million Instructions Per Second) 

RVMmk
 The amount of available memory on VMk 

RVMck The number of available CPUs on VMk 

NPM The number of PMs in cloud 

NaPM The number of active PMs in cloud 

Svmz The set of VMs located on the zth PM = ��|VM� ϵ 	th  PM, �	 ∈ �1,2, … , ���}}   
cp The number of cloud providers 

Cp Maximum capacity for provider p 

SPp The set of VMs belonging  to pth provider =�� | VM� ϵ �th  Cloud provider, �� ∈ �1,2, … , "#}$ 
Pcostp The cost of one unit CPUs for pth provider (AUD/hour) 

xij 1 if task i is assigned to VMk and 0, otherwise 

Note: Task output size is the amount of data that each task produces during its execution and need to be 
executed by its subsequent tasks 

 

Task Scheduler 

 

Application 1 Application 2 Application 3 Application n 
Users 

Arrival 
Tasks 

VMs 

PMs 

Scheduled 
Tasks 

Queue 1 Queue 2 Queue 3 Queue m 

… 

… 
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3.1 Tasks Transfer Time 

We apply and improve the formula proposed in [10] to estimate the total task 
transfer time as follows: 

%&'()* =  , , -./ ∗  1%./

2345� ∗ (1
8)

9

.:;

<

/:;
                                               (1) 

The coefficient 1/8 is used to convert Mb to MB.  

3.2 Task Execution Cost 

 
In this paper, the task execution cost (AUD per hour) for provider p is calculated 

as follows: 

=>->? = , �"@*&? ∗ %>->/
/∈A�B

                                                 (2) 

 
where, %>->/ is the estimated execution time of assigned tasks to VMk in hour, and 
�"@*&?  is the cost of one unit CPUs for pth provider in AUD per hour. In this formu-
la, the total task execution time in each VM belonging to provider p is calculated. 
This value is then multiplied by the provider’s price for using unit CPU.  

Total task execution time in VMk is calculated as follows:  

%>->/ = 1
3600 ∗ , -./

9

.:;
∗ 1F./

VMGHIJ�                                                (3) 

We assume the same price for all CPUs in a VM; therefore, task execution se-
quence and scheduling schema in each VM, are not considered in this function. For 
instance, in a VM with three CPUs, the cost of assigning three tasks to three different 
CPUs will be the same as the cost of assigning the execution of three tasks to one 
CPU. 

Finally, the total task execution cost for all providers is determined as: 
 

=>-> = , =>->?           
K?

?:;
                                                 (4) 

3.3 Power Consumption  

Reducing power consumption in large scale computing systems such as grid and 
cloud environments has been investigated as an important contributor to the reduction 
of operating costs and diverse environmental impacts.  

Several researches have been completed in the area of power consumption reduc-
tion through the proposal of power-aware multi-objective task scheduling models for 



multi-core processors, grid and cloud environments [11, 12]. In these models, a varie-
ty of linear and non-linear objective functions have been suggested to estimate power 
consumption based on task scheduling patterns [19-21]. All these models have been 
developed based on the fact that the energy will be reduced when the PM is either off 
or in idle mode. It has also been proved by Buyya et al. [20, 22] that an idle server 
consumes around 70% of the power compared to a fully utilized server. In a nutshell, 
previous studies show that having fewer active CPUs and PMs leads to lower power 
consumption in a cluster. 

Considering this fact, instead of estimating total energy consumption—which can 
be exactly determined in a real cluster after scheduling and executing tasks— in this 
study we minimize the ratio of active PMs and CPUs to all available PMs and CPUs 
to reduce power consumption. To do this, the optimization model avoids choosing 
VMs on idle PMs as destinations for scheduled tasks and consequently reduces con-
sumed power in the corresponding cloud cluster. Equation 5 is then developed based 
on this theory as an objective function for our optimization model. Using this, the 
percentage of active PMs and CPUs is determined as a measure for reducing power 
consumption as: 

�@5>'= = (�M�� + µ ∑  �MQ�R/</:; )
(��� + µ ∑ VMc�)</:;                                            (5) 

where  NVWXY�  is the number of active CPUs in VM�. To calculate  NVWXY�  we consider 
the fact that the number of tasks assigned to VM� may be less than the number of 
CPUs in VM�, or may exceed the maximum CPU number in this VM. Therefore, 
 NVWXY�  is equal to the minimum value between the total number of tasks assigned to 
VM� and the total number of CPUs in this VM as:  

 �(=�Z� = min (∑ -./9.:; , VMc�)                                           (6)  

The number of active PMs in all iterations (NVX]) is estimated based on the num-
ber of active VMs on each PM. The number of activated VMs is calculated based on 
the number of tasks assigned to them.  If at least one task assigned to VM� is located 
on PM^, this VM will be activated, thus its corresponding PM should be turned on and 
activated as well. As a result, the number of active PM is determined using the fol-
lowing formula:  

�M�� = , min(, -./

9

.:;
, 1)                                           (7)

/∈A`<a
 

where  ∑ -./9.:;  is the number of tasks assigned to CPUs of VM�.  
 
We also prove that minimizing Equation 5 reduces power consumption in the 

cloud cluster. To achieve this, we firstly determine power consumption for each fully 
utilized PM as follows based on this fact that the power consumed by PM increase by 
the number of its active CPUs: 

�5bcd(�3	) = �50	 +  e  �=�Z                                                        	 (8) 
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where �50	  is the amount of power that �3	 consumes when all its CPUs are 
idle, �Q�Rf  is the number of CPUs of �3	, and  α is the amount of extra consumed 
power above �50	  for every active CPU of �3	. Using this, the value of e is: 

 e = �5hij(�3f) − �5lf

 �Q�Rf                                               (9) 

Since we have homogenous PMs in our cluster, all the PMs in this cluster have the 
same value for e and  �5l. Therefore, the total amount of consumed power in this 
cluster can be determined as follows: 

�5bcd(=dc*&>') = , �5bcd(�3	)
��3

	=1
= , �50	

��3

	=1
+  e ,  �=�Z	               (10)

��3

	=1
 

then 

�5bcd(=dc*&>') = �50	 ∗  ��3 + e ∗  �=�Z                              (11) 

where �=�Z is the total number of CPUs in the cluster. On the other hand,  �Q�R =
∑ VMc�</:; . Using this �5bcd(=dc*&>') is calculated as: 

�5bcd(=dc*&>') = �50	 ∗  ��3 + e ∗  , VMck                           (12)
o

�=1
 

By applying the same logic, the value of consumed power by active PMs and CPUs in 
this cluster is calculated as follows: 

�5("&pq>(=dc*&>') = �50	 ∗  �(�3 + e ∗  ,  �(=�Z�                        (13)
o

�=1
 

Using Equations 12 and 13, the ratio of consumed power in the cluster for each task 
scheduling pattern can be calculated as:   

�5MKr.`s(=dc*&>')
�5hij(=dc*&>')  = �5lf ∗  �M�� + e ∗ ∑  �MQ�R/</:;

�5lf ∗  ��� + e ∗ ∑ VMc�</:;
               (14) 

=
�50	  (�(�3 + e

�50	
∗  ∑  �(=�Z� )o�=1

�50	 (��3 + e
�50	

∗  ∑ VMcko
�=1 )

                                (15) 

= (�M�� + µ ∑  �MQ�R/</:; )
(��� + µ ∑ VMc�)</:;   =  �@5>'=                         (16) 

where µ = t
�uva

 . For instance, for Altix XE320 with 16 number of CPUs,    

�5bcd(�3) = 115�5, and �50 =  40�5 [23], µ is equal to 0.1. 



3.4 Length of VM Task Queues     

If, in a possible best solution of the multi-objective task scheduling pattern, the 
number of tasks assigned to VMk exceeds the number of its CPUs, extra tasks will be 
allocated to VMk’s task queue (see Fig. 2). In this model, we consider another objec-
tive function to optimize the task scheduling pattern by minimizing the length of VM 
task queues. This will reduce the task makespan and response time, as fewer tasks 
will be located in long queues and in waiting mode. 

 Figure 2. A sample for task scheduling pattern among VMs 

The following objective is proposed to minimize the number of tasks in queues 
which would be created in any suggested possible optimal task scheduling pattern:  

γ� = , -./ ∗  1F./
(x23o� ) ∗ (x23"�)

9

.:;
                                           (17) 

where,   

x23</ = 23o� − y∑ -z�pz=1 ∗ &oz{                                          (18)  

 x23K/ = 23"� − y∑ -z�pz=1 ∗ &"z{                                           (19) 

and y∑ -|/.|:; ∗ &o|{ and y∑ -|/.|:; ∗ &"|{ are the total amount of memory and number 

of CPUs required to execute the task previously assigned to 23/.  
To calculate γ�, the formula that was proposed in [10, 24] is improved by consi-

dering changes in the available capacity (CPU and memory) of the VMs after new 
tasks have been assigned to them. Equation 17 indicates that scheduling the task i 
to 23/—which not only yields increasing DEH�, but also reduces the amount of avail-
able CPU and memory of the corresponding VM— negatively affects 23/ ’s perfor-
mance and execution time of its tasks. We have applied this formula to control the 
number of scheduled tasks to each VM and reduce the length of their task queue. 

In Equation 17, 23o/ ≤  y∑ -|/.|:; ∗ &o|{ and/or 23"/ ≤  y∑ -|/.|:; ∗ &"|{ imp-
ly that there is no available memory or CPU in 23/ to execute extra tasks. In this 
situation, if x23</  and/or x23K/ have a negative value, they will be multiplied to a 
small value (-10-3), and if each of them is equal to zero, the value of 10-3 will be added 
to them. Since the values of  x23</  and x23K/  are multiplied by each other, this will 
increase the value of γ� dramatically whenever one of them equals zero or has a nega-

t1 
CPUs 

VMs 

t3 t5  t2 t4  

t6 

t11 

t13 

 

t7 

t9 

 

t8 

t12 

 

t10 

t14 

t15 

 

Queues 
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tive value. Therefore, the probability of choosing this pattern as a possible optimal 
solution will be decreased. This prevents the assignation of tasks to VMs without 
available resources. In fact, coefficient γ� controls the number of tasks assigned to 
VM� to avoid creating a queue of tasks to be executed on 23/, and maximizes its 
performance. According to this, for all iterations, after tasks have been assigned to 
VMs, the amount of memory of VMs that remains and the number of idle CPUs in 
each VM, are calculated as the available capacity of VMs to execute arrival tasks. The 
following formula is then used as an optimization objective in our proposed model to 
minimize VM task queue length and optimize the load balance:   

Γ = , γ�

<

/:;
                                                               (20) 

3.5 The Multi-Objective Problem  

The multi-objective task scheduling optimization model is described in this section 
based on predefined objective functions to minimize task transfer time, task execution 
cost, power consumption and task queue length, as follows: 

 
Problem: 

op) b�.<s =  %&'()*                                                                                                         (21) 
op) bQ��r = =>->                                                                                                                (22) 
op) b��us�Qi9�i<?r.�9 = �@5>'=                                                                                 (23) 
op) b�M�/�isis = Γ                                                                                                            (24) 

Subject to 

, -./ = 1, ∀ p = 1, … , )
G

/:;
  

-./ ∈ �0,1}, ∀p = 1, . . , ) & � = 1, … , o 
0 ≤ '? ≤  =�?  , ∀# = 1,2, … , "# 
�M�� ≤  ��� 
�M�� , ��� ≠ 0 

4 Multi-Objective Task Scheduling Solution  

The preliminary definition and explanation of MOPSO and MOGA methods are 
provided in this section. A MOPSO/MOGA-based algorithm for determining the op-
timal solution for our proposed model in Section 3 is also developed. 

4.1 The Multi-Objective Particle Swarm Optimization Method 

In majority of optimization problems, the objective functions are in conflict with 
each other and there is not unique solution for them. Therefore, the goal is to find 



good trade-off solutions that represent the best possible compromises among the ob-
jectives [25]. A multi-objective optimization problem is defined as follows: 

Min   F��(x��) = �f;(x��), f�(x��), … , f�(x��)�                                            (25) 

where �� = (-;, -�, … , -/)  is the vector of decision variables; b.: x9 → x, p =
1, … , � are the objective functions. Let particle  ��; = (-;, -�, … , -/) represent a solu-
tion to (1). A solution ��� dominates ��; if b|y��;{  ≥  b|y��� { for all j=1,..,k and 

b|y��;{  >  b|y��� { for at least one j=1,…,k. A feasible solution ��; is called Pareto 

optimal (non-dominated) if there is no other feasible solution ��� that dominates it. 
The set of all objective vectors �y��;{ corresponding to the Pareto optimal solutions is 
called the Pareto front (P*). Thus, the aim is to determine the Pareto optimal set from 
the set F of all the decision variable vectors (particles) [26-29].  

In the PSO method, particles are flown through hyper-dimensional search space. 
Changes to the position of the particles within the search space are based on the so-
cial–psychological tendency of individuals to emulate the success of other individu-
als. The position of each particle is changed according to its own experience and that 
of its neighbors. Let ��.(&) denote the position of particle i, at iteration t. The position 
of ��.(&) is changed by adding a velocity 2��.(& + 1) as follows: 

X���H(t + 1) =  X���H(t) + V���H(t + 1)                                             (26) 

The velocity vector reflects the socially exchanged information and, in general, is 
defined in the following way:  

V���H(t + 1) = WV���H(t) + C;r; �x��I��J�� − X���H(t)  + C�r� �x��¡��J�� − X���H(t)          (27) 

where C1 is the cognitive learning factor and represents the attraction that a particle 
has towards its own success; C2 is the social learning factor and represents the attrac-
tion that a particle has towards the success of the entire swarm; W is the inertia 
weight, which is employed to control the impact of the previous history of velocities 
on the current velocity of a given particle; x��I��J��  is the personal best position of the 
particle i; x��I��J� is the position of the best particle of the entire swarm; and r;, r� ∈
�0,1� are random values [25]. In MOPSO all Pareto optimal solutions are stored in an 
archive and x��¡��J��  is chosen from this archive. 

4.2 The Multi-Objective Genetic Algorithm 

A multi-objective genetic algorithm (MOGA) is concerned with the minimization 
of multiple objective functions that are subject to a set of constraints. In this algo-
rithm, an initial population whose scale is N is first randomly generated. The first 
generation child population is gained through non-dominated sorting and basic opera-
tions such as selection, crossover and mutation [30]. Then, from the second genera-
tion on, the parent population and the child population are merged and sorted based 
on fast non-dominated solutions. The crowding distance between individuals on each 
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non-dominated layer is calculated. According to the non-dominant relationship and 
crowding distance between individuals, appropriate individuals for forming a new 
parent population are selected. Lastly, a new child population is generated through 
basic operations of the genetic algorithm which iterates until the conditions of the 
process end can be met [31]. 

4.3 A MOPSO/MOGA-Based Algorithm 

A MOPSO/MOGA-based algorithm is proposed to solve the proposed multi-
objective task scheduling problem presented in Section 3. In the task scheduling mod-
el, there are n tasks �&; �, &� , … , �&9 } that should be assigned to m VMs 
�qo; �, qo� , … , �qo< } to be executed (Table 2). MOPSO and MOGA methods are 
used to find the optimal task scheduling pattern, while minimizing task transfer time, 
task execution cost, power consumption and task queue length. All optimal suggested 
solutions (particle position/gene pattern) determined by MOPSO/MOGA techniques, 
are illustrated as ��H = (-;, -�, … , -9) vectors with continuous values, but their corres-
ponding discrete values are needed to determine the ID of the VM chosen to execute 
tasks. Therefore, these continuous vectors ��H are converted to discrete vectors 
¢(��H) = (¢;, ¢�, … , ¢9) by applying the Small Position Value (SPV) rule [10]. 

Table 2. Task scheduling pattern. 

Particle position (or gene pattern) in Table 2 are a possible solution, i.e.,  ¢(��.) =
(¢;, ¢�, … , ¢9) = (7, 4, 5, 7, 3, . . , o), after converting the continuous values to dis-
crete values. According to this, VMs: vm7, vm4, vm5, vm7, …, and vmm are chosen to 
execute t1, t2, t3, t4, …, and tn, respectively. Considering this fact, every particle/gene 
in our MOPSO/MOGA model has n dimensions to assign n tasks to m VMs. Every 
particle/gene will be assessed considering the predefined objective functions and all 
Pareto optimal solutions stored in an archive. In this paper, it is assumed that: 

£@¤ y��.{ = − , ¥|b|y��.{
¦

|:;
, �∀ ��. ∈ Archive}                                   (28) 

where, q is the number of objective functions and Wj is the preference weight for 
every objective function (b|y��.{). Pareto optimal solutions (archive members) are 
then ranked on the basis of the number of functions they minimize, and the maximum 
value of QoS. The top-ranking solution is chosen as the possible optimal solution 
(��¨©s�rª). 

The first population in evolutionary algorithms is usually initialized randomly. In 
this paper, the first population is determined using VMs and task properties to accele-
rate the performance of MOPSO and MOGA. Evolutionary algorithms are therefore 

Tasks t1 t2 t3 t4 t5 … tn 

VM number = Particle position/gene 
pattern 

vm7 vm4 vm5 vm7 vm3 … vmm 



expected to find the best solution faster because they start from the near best solution 
pattern. To achieve this, we select the VMs with a greater number of CPUs and a 
large amount of memory on active PMs as the new hosts for excess tasks. We apply 
the roulette wheel technique as it is applied in [2] to produce the first population for 
both MOPSO and MOGA. The Roulette Wheel selection method randomly selects a 
given choice from several options, based on the value of their winning probability. In 
this technique, the slots of a roulette wheel are first filled with the winning chance of 
the options, then the wheel is spun and an option is selected [2]. Equations 29 and 30 
are proposed to determine the probability of choosing a task, and a host VM respec-
tively. Then, based on the normalized winning chance, two roulette wheels are gener-
ated for tasks and VMs. 

   =ℎ()">_23/ = 23<.?� + 23o/ + (­; ∗ 23"/) + (2345//­�)          (29)  

=ℎ()">_%(*�. = (1F.//­¯) + 1%./                                                       (30) 
where, coefficients ­;, ­�, and ­¯ have been determined based on the value of task 
and VM properties to make the same impact for all properties in determining winning 
chance. In this study, we have determined ­;= ­�=100 and ­¯=1000 based on the data 
given in Tables 3 and 4. Fig. 3 shows a roulette wheel for VMs that is determined 
based on the information in Table 3.  

 
Figure 3. VM Roulette Wheel (Winning Probability) 

After creating roulette wheels, a task and a VM are selected from the task and VM 
roulette wheels respectively as ti and VMj . Then the selected task (ti) is deleted from 
task set, and a new task roulette wheel is generated for the new set of tasks. In addi-
tion, VMj properties are updated by applying the following equations: 

 °q(pd(4d>_o>o@'±²�³ = 23o| − &o.                                       (31)  

 °q(pd(4d>_=�Z²�³ = 23"| − &".                                            (32) 

If the value of °q(pd(4d>_o>o@'±²�³ or °q(pd(4d>_=�Z²�³   is less than zero, this 

means VMj has no available capacity to execute additional tasks. This VM is therefore 
deleted from the VM set and a new VM roulette wheel is generated for the new set of 
VMs based on their available capacity. After selecting all VMs as the new host for 
executing a set of tasks, and deleting those from the available set of VMs, all VMs are 
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applied again to execute the remaining tasks. These tasks are allocated to the VM task 
queues in waiting mode.  
The corresponding steps for implementing the roulette wheel technique to initialize 
the first population for MOGA and MOPSO are described in Steps 2 of the 
MOPSO/MOGA-based algorithm, which is summarized as follows:   

Step 1. Collect data and information about a possible set of host VMs and set of arriv-
al tasks  

Step 2. Initialize population: Determine new population (position and velocity of par-
ticles in MOPSO, or genes’ pattern in MOGA) based on VM and task proper-
ties by applying roulette wheel technique as follows: 
Step 2.1. Create the task and VM roulette wheels based on their properties by 

applying Equations 29 and 30 
Step 2.2. =@c)&²� = o 
Step 2.3. For i=1 to n  

Step 2.3.1. Select a task (ti) from task roulette wheel 
Step 2.3.2. Select a VM (VMj) from VM roulette wheel 
Step 2.3.3. Delete ti from the task set  
Step 2.3.4. Create the task roulette wheel based on new task set and 

their properties by applying Equation 30. 
Step 2.3.5. Calculate available VM memory and CPU by applying 

Equations 31 and 32 
Step 2.3.6. If  °q(pd(4d>_o>o@'±²�³ ≤ 0 or °q(pd(4d>_=�Z²�³ ≤ 0   then 

{  
Delete VMj from VM set,  

  =@c)&²� = =@c)&²� −  1, 
If =@c)&²� = 0 then 

{  
Create new VM roulette wheel using original VM 
properties by applying Equation 29 
=@c)&²� = o 

} 
} 

else (if Step 2.3.6), create new VM roulette wheel based on avail-
able VM capacities by applying Equation 29 

Next i 
Step 3. Initialize an archive in which members are non-dominated solutions (n dimen-

sions particles/genes whose position/pattern is a Pareto optimal solution) 

Step 4. Convert continuous values of vector  ��.  to discrete vector ¢(��.) using the SPV 
rule to determine the VM allocated for every arrival task.    

Step 5. Determine the value of  1F.|, 1%.|,  23o|, 23c|,  �"@*&?, VMGHIJ� , �M��, 

�MQ�R/ ,  x23</ , x23K/ and 2345| based on ¢(��.)  to calculate the value of 

every fitness function. 



Step 6. Evaluate population according to defined fitness functions: 

• Minimize task transfer time (Equation (21)) 

• Minimize task execution cost (Equation (22)) 

• Minimize power consumption (Equation (23)) 

• Minimize VM task queue length  (Equation (24)) 
Step 7. Update the archive content by deleting dominated members from archive and 

store the Pareto optimal (non-dominated) solutions in the archive. 
Step 8. Sort archive members based on the number of minimized functions and the 

maximum value of  £@¤ y��{ 

Step 9. Produce new population using MOPSO: 

Step 9.1. Choose ��¨©s�r from top sorted members in the archive  

Step 9.2. Choose ��?©s�rªfor every particle: If the current position of the particle 

dominates best position of the particle, use current position as new 
best position for the particle 

Step 9.3. Compute inertia weight and learning factors      
Step 9.4. Compute new position of the particles and new velocity based on 

MOPSO formulations (Equations (26) and (27)) 
Step 10. Produce new population using MOGA: 

Step 8.1. Reproduce best individuals using crossover and mutation 
Step 11. If maximum iteration is satisfied, then 

Step 11.1. Output  ¢(��¨©s�r) position for both MOPSO and MOGA as their 

best task scheduling patterns 
   Else  

Step 11.2. Go to Step 3 

5 Simulation Results  

This section analyzes the efficiency of the proposed model. In Section 5.1 we first 
describe the simulation environment. Then, in Section 5.2 we explain how the Cloud-
Sim package [17] is extended to implement the method, and lastly, the performance 
and evaluation is presented in Section 5.3.   

5.1 Environment Description 

We design the simulation environment by assuming that we have 15 PMs (data 
centers in CloudSim), 20 VMs, 3 cloud providers and 200 arrival tasks (cloudlets). 
Data and information about VMs and tasks (cloudlets) are summarized in Tables 3 
and 4:  
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Table 3. Properties of VMs. 

VM Id MIPS 
VM memory 

(Ram) 
Bandwidth 

The number of 
CPUs 

VMM name 

1-4 300 512 10000 4 Xen 
5-8 200 256 1000 1 Xen 
9-12 300 512 10000 2 Xen 
13-16 200 256 1000 1 Xen 
17-20 200 256 1000 1 Xen 

Table 4. Properties of tasks. 

Task Id Length File Size Output Size The number of required CPUs 

1-20 250000 300 300 1 
21-40 25000 200 300 1 
41-60 250000 300 300 1 
61-80 25000 200 300 1 
81-100 250000 300 300 1 
101-120 250000 300 300 1 
121-140 25000 200 300 1 
141-160 250000 300 300 1 
161-180 250000 300 300 1 
181-200 25000 200 300 1 

5.2 Implementation  

To implement the proposed method, we extend the Cloudsim toolkit [17] by using 
the  MOPSO (MO-Jswarm package [32]) and MOGA (NSGA-II [33]) algorithms as 
the task scheduling optimization algorithms. The bindCloudletToVm() method in the 
DatacenterBrocker class of Cloudsim is responsible for allocating tasks to VMs ac-
cording to the optimal task arrangement that results from the developed 
MOPSO/MOGA-based algorithms.  

The objective functions in the proposed multi-objective task scheduling model 
are applied as the fitness functions in MOPSO and MOGA. In our model, we have 
200 particles and the optimal results are obtained after the 2000th iteration of the 
MOPSO/MOGA algorithms.  

5.3 Evaluation  

To evaluate the proposed method, we first perform the simulation under the envi-
ronment that we defined in Section 5.1. We evaluate our proposed multi-objective 
method of solving task scheduling problems with conflicting objectives by consider-
ing optimization time, cost, power consumption and workload from the following 
aspects: 

� Compare the efficiency of the proposed four-objectives model with current bi-
objective models in terms of optimizing cloud utilization, QoS and Job makes-
pan. 



� Compare the efficiency of MOPSO and MOGA in speed and reliability to find 
the highest value of QoS in different iterations. 

To make the first comparison, we compare our method with the optimization 
methods proposed in previous works [10, 32, 34] in which just two aspects of QoS 
optimization were considered: (1) task transfer time, and (2) execution cost. The VM 
workload situation is also considered in this study to avoid multiple tasks being as-
signed to one VM, reducing its performance and increasing service response time. 
Our optimization model also has the objective of reducing the number of active PMs 
and busy CPUs to decrease power consumption and provider costs.  

The graphs for task transfer time (fTime), task execution cost (fCost), power con-
sumption ratio (fPowerConsumption), and VM task queue length (fTaskQueue) obtained from 
the MOPSO/MOGA-based algorithm in 2000 iterations are illustrated in Figs. 4 and 
5. The values of the axis on the right show the range of values of fTaskQueue. 

 

Figure 4. The value of objective functions: Task transfer time, task execution cost, VM task 
queue length, and power consumption ratio using MOPSO 

 

Figure 5. The value of objective functions: Task transfer time, task execution cost, VMs tasks 
queue length, and power consumption ratio using MOGA 

To estimate the QoS that results from every method, Equation 33 is utilized by as-
suming the same preference weight (w1= w2= w3=1) for time, cost and power con-
sumption. We assign preference weight (w4=10-3) or (w4=1) for a task queue determi-
nator function based on its value. As discussed in Section 3.4, a small value -10-3 is 
multiplied by x23</  or  x23K/ to increase the value of γ� when the required capacity 
by arrival tasks exceeds the amount of available capacity in the target VM. This pre-
vents sending multiple tasks to a single VM. Therefore, in cases where a suggested 
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possible optimal task scheduling pattern assigns multiple tasks to certain VMs, the 
capacity required for executing the tasks assigned to those VMs would exceed the 
capacity of the VMs, then the value of fTaskQueue would be more than 103. In these situ-
ations w4=10-3 will be used in Equation 33, otherwise w4=1. The value 10-3 for prefe-
rence weight of fTaskQueue is determined as an aligner to make its value coherent with 
the other objective values and neutralize the effect of -10-3 coefficient in Equation 17. 
As the optimal values of these conflicting objectives are independent of one another, 
there is no need to normalize their weights in the QoS equation (Equation 28). How-
ever, as objective functions have different measurement units, we need to normalize 
their values to be able to calculate the QoS. To do this, we convert the range of objec-
tive functions to (0,1). For instance, the maximum value for the objective function 
b�.<s produced by MOPSO and MOGA is 2300 seconds (see Figs. 4 and 5). There-
fore, we convert b�.<s ranging (0, 2300) to (0,1). As a result, the normalized value of 
b�.<s i.e. �b%po> for MOPSO is 0.11. The normalized value for all objective functions 
is calculated as �b%po>, �bQ��r, �b�M�/�isis and  �b��us�Q�9�i<?r.�9 for all scenarios to 
determine the estimated value of QoS. In addition, considering the fact that we mi-
nimize the objective functions that have a negative impact on QoS, this method max-
imizes £@¤ y��{ as follows:  

£@¤ y��{ = −�w; ∗ �b�.<s + w� ∗ �bQ��r + w¯ ∗  �b��us�Q�9�i<?r.�9 + wµ ∗ �b�M�/�isis�   (33) 

MOPSO and MOGA are applied to optimize both the four-objective model and 
bi-objective model. In a bi-objective model, the optimal value of fTime and fCost is de-
termined by MOPSO and MOGA, then the corresponding value of fTaskQueue and fPower-

Consumption is calculated by applying the optimal pattern of distribution tasks over VMs 
that results from these optimization algorithms. We run the algorithms 25 times for 
each comparison section, and the results are almost the same. The optimal results of 
all methods are summarized in Table 5.  

Table 5. Comparison results. 
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As can be seen from the comparison results in Table 5, the estimated QoS in the 
proposed model with four objectives achieves the highest QoS compared to bi-
objective models that apply both MOPSO and MOGA. In addition, in the four objec-
tive models, the MOPSO determines the highest QoS in the lowest number of itera-
tions (in 49th iteration) compared to MOGA, which determines its best possible solu-
tion in 992th iteration. MOPSO in bi-objective models is also faster than MOGA. As 
can be seen, the optimal load balancing between resources determined by our model 
also has the shortest makespan. This means the model has the ability to offer a task 
scheduling pattern with the lowest response time. In addition, the proposed model 
achieves lower power consumption and task queue length than the bi-objective mod-
els; however, the number of idle VMs in the cluster in all scenarios is almost the 
same.  

Better load balancing leads to the highest level of power consumption because op-
timal load balancing requires a higher number of active PMs and CPUs. In this case, 
preference weights of the conflicting objectives fTaskQueue and fPowerConsumption can be 
changed according to the Service Level Agreement (SLA) to determine optimal task 
scheduling that satisfies the SLA criteria.  

As a result, the proposed model that considers more aspects of task scheduling op-
timization, determines an optimal trade-off solution for the multi-objective task sche-
duling problem with objective functions that are in conflict with one another, and 
results the best possible compromise between objectives based on SLA, thereby in-
creasing QoS.  

6 Conclusion and Future Works  

This study has developed a multi-objective model to optimize task scheduling 
which considers four aspects of the task scheduling optimization problem: task trans-
fer time, task execution cost, power consumption, and task queue length (VMs’ work-
load). We have also designed a MOPSO/MOGA-based algorithm to find the optimal 
solution for the proposed multi-objective task scheduling problem. To evaluate this 
method we extended the Cloudsim toolkit by applying MOPSO and MOGA as its task 
scheduling algorithms. The optimal solution determined by the  MOPSO/MOGA-
based algorithm is applied by the bindCloudletToVm() method in the Datacenter-
Brocker class of Cloudsim to assign tasks to VMs in an optimal way. The experimen-
tal results in the simulation environment show that the proposed optimization model 
has the ability to determine the best trade-off solutions compared to recent task sche-
duling approaches; it provides the best possible compromise between objectives and 
achieves the highest QoS. The experimental results also show that MOPSO is the 
most efficient and reliable algorithm since it not only determines the optimal task 
scheduling pattern with highest QoS, but also obtains the solution in the shortest poss-
ible time. The multi-objective model could be made part of the virtualization layer. 
This would enable data center operators to make use of this model for optimal load 
balancing. It would also give cloud providers the opportunity to boost their benefits 
by optimizing their preferred goals based on their determined objective weights in a 
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unique optimization model. They also have the ability to conduct sensitivity analysis 
on the value of optimized objective functions by changing their preferred weights. 
This sensitivity analysis process helps them to find the model with the highest level of 
benefit. 

In future work, we will also consider task priorities and types in our optimization 
model, and cover more criteria of SLA. In addition, we will implement the proposed 
model in a real private cloud environment.  

Acknowledgment 

The work presented in this paper was supported by the Australian Research Council 
(ARC) under Discovery Project DP140101366. The Authors also would like to thank 
Mr Chaosong Nie for his kind help in implementing the MOGA algorithm. 
 

References 

[1] J. Taheri, A. Y. Zomaya, H. J. Siegel and Z. Tari. Pareto frontier for job execution and data 
transfer time in hybrid clouds. Future Generation Computer Systems, 2014, vol. 37, pp. 321-
334. 
[2] J. Taheri, A. Y. Zomaya, P. Bouvry and S. U. Khan. Hopfield neural network for 
simultaneous job scheduling and data replication in grids. Future Generation Computer 
Systems, 2013, vol. 29, pp. 1885-1900. 
[3] E. Juhnke, T. D¨ornemann, D. B¨ock and B. Freisleben. Multi-objective scheduling of 
BPEL workflows in geographically distributed clouds. In 4th IEEE International 
Conference on Cloud Computing, 2011, pp. 412-419. 
[4] S. Tayal. Tasks Scheduling optimization for the Cloud Computing Systems. International 
Journal of Advanced Engineering Sciences and Technologies, 2011, vol. 5, no. 2, pp. 111-115. 
[5] B. Song, M. M. Hassan and E. Huh. A novel heuristic-based task selection and allocation 
framework in dynamic collaborative cloud service platform. In 2nd IEEE International 
Conference on Cloud Computing Technology and Science (CloudCom), 2010, pp. 360-367. 
[6] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin and Z. Gu. Online optimization for scheduling 
preemptable tasks on IaaS cloud systems. Journal of Parallel and Distributed Computing, 
2012, vol. 72, no. 5, pp. 666-677. 
[7] A. Salman, I. Ahmad and S. Al-Madani. Particle swarm optimization for task assignment 
problem. Microprocessors and Microsystems, 2002, vol. 26, no. 8, pp. 363-371. 
[8] J. Li, J. Peng, X. Cao and H.-y. Li. A task scheduling algorithm based on improved ant 
colony optimization in cloud computing environment. Energy Procedia, 2011, vol. 13, pp. 
6833-6840. 
[9] Z. Lei, C. Yuehui, S. Runyuan, J. Shan and Y. Bo. A task scheduling algorithm based on 
PSO for grid computing. International Journal of Computational Intelligence Research, 2008, 
vol. 4, no. 1, pp. 37-43. 
[10] L. Guo, S. Zhao, S. Shen and C. Jiang. Task Scheduling Optimization in Cloud Computing 
Based on Heuristic Algorithm. Journal of Networks, 2012, vol. 7, no. 3, pp. 547-553. 



[11] W.-Y. Shieh and C.-C. Pong. Energy and transition-aware runtime task scheduling for 
multicore processors. Journal of Parallel and Distributed Computing, 2013, vol. 73, no. 9, pp. 
1225-1238. 
[12] X. Wang, Y. Wang and Y. Cui. A new multi-objective bi-level programming model for 
energy and locality aware multi-job scheduling in cloud computing. Future Generation 
Computer Systems, 2014, vol. 36, no. 0, pp. 91-101. 
[13] N. B. Rizvandi, J. Taheri and A. Y. Zomaya. Some observations on optimal frequency 
selection in DVFS-based energy consumption minimization. Journal of Parallel and 
Distributed Computing, 2011, vol. 71, no. 8, pp. 1154-1164. 
[14] A. Mahabadi, S. M. Zahedi and A. Khonsari. Reliable energy-aware application mapping 
and voltage–frequency island partitioning for GALS-based NoC. Journal of Computer and 
System Sciences, 2013, vol. 79, no. 4, pp. 457-474. 
[15] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang and J. Wang. Cost-efficient task scheduling 
for executing large programs in the cloud. Parallel Computing, 2013, vol. 39, no. 4–5, pp. 177-
188. 
[16] L. Wang  et al. Energy-aware parallel task scheduling in a cluster. Future Generation 
Computer Systems, 2013, vol. 29, no. 7, pp. 1661-1670. 
[17] R. N. Calheiros, R. Ranjan, C. A. F. De Rose and R. Buyya. Cloudsim: A novel 
framework for modeling and simulation of cloud computing infrastructures and services. Arxiv 
preprint arXiv:0903.2525, 2009. 
[18] W. Cirne  et al. Labs of the world, unite!!! Journal of Grid Computing, 2006, vol. 4, no. 3, 
pp. 225-246. 
[19] A. Tchernykh, J. E. Pecero, A. Barrondo and E. Schaeffer. Adaptive energy efficient 
scheduling in Peer-to-Peer desktop grids. Future Generation Computer Systems, 2014, vol. 36, 
no. 0, pp. 209-220. 
[20] B. Priya, E. S. Pilli and R. C. Joshi. A survey on energy and power consumption models 
for Greener Cloud. In Advance Computing Conference (IACC), 2013 IEEE 3rd International, 
2013, IEEE, pp. 76-82. 
[21] Y.-w. Zhang and R.-f. Guo. Power-aware scheduling algorithms for sporadic tasks in real-
time systems. Journal of Systems and Software, 2013, vol. 86, no. 10, pp. 2611-2619. 
[22] R. Buyya, A. Beloglazov and J. Abawajy. Energy-efficient management of data center 
resources for cloud computing: A vision, architectural elements, and open challenges. arXiv 
preprint arXiv:1006.0308, 2010. 
[23] Top 500 Supercomputing Sited, [Online], Available: 
http://www.top500.org/system/176223. 
[24] F. Ramezani, J. Lu and F. K. Hussain. Task-Based System Load Balancing in Cloud 
Computing Using Particle Swarm Optimization. International Journal of Parallel 
Programming, 2013, vol. 42, no. 5, pp. 739-754. 
[25] M. J. Mahmoodabadi, A. Bagheri, N. Nariman-zadeh and A. Jamali. A new optimization 
algorithm based on a combination of particle swarm optimization, convergence and divergence 
operators for single-objective and multi-objective problems. Engineering Optimization, 2012, 
vol. 44, no. 10, pp. 1-20. 
[26] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist multiobjective genetic 
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, vol. 6, no. 2, pp. 
182-197. 



23 
 

[27] M. J. Alves. Using MOPSO to solve multiobjective bilevel linear problems. Heidelberg: 
Springer, 2012. 
[28] Y. Gao, G. Zhang, J. Lu and H.-M. Wee. Particle swarm optimization for bi-level pricing 
problems in supply chains. Journal of Global Optimization, 2011, vol. 51, no. 2, pp. 245-254. 
[29] J. Lu, G. Zhang and D. Ruan. Multi-objective group decision making: methods, software 
and applications with fuzzy set techniques. London: Imperial College Press, 2007. 
[30] N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated sorting in 
genetic algorithms. Evolutionary Computation, 1994, vol. 2, no. 3, pp. 221-248. 
[31] Y. Zhang, C. Lu, H. Zhang and J. Han. Active vibration isolation system integrated 
optimization based on multi-objective genetic algorithm. In IEEE 2nd International Conference 
on Computing, Control and Industrial Engineering (CCIE), 2011, pp. 258-261. 
[32] F. Ramezani, J. Lu and F. Hussain. Task scheduling optimization in cloud computing 
applying multi-objective particle swarm optimization. International Conference on Service 
Oriented Computing (ICSOC), 2013, pp. 237-251. 
[33] D. Hadka. MOEA Framework A Free and Open Source Java Framework for 
Multiobjective Optimization, [Online], Available: http://www.moeaframework.org/. 
[34] H. Liu, A. Abraham, V. Snášel and S. McLoone. Swarm scheduling approaches for work-
flow applications with security constraints in distributed data-intensive computing 
environments. Information Sciences, 2012, vol. 192, no. 0, pp. 228-243. 

 
 


