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Abstract. Optimizing task scheduling in a distributed hetemgpus computing
environment, which is a nonlinear multi-objectivé{dard problem, plays a
critical role in decreasing service response time eost, and boosting Quality
of Service (QoS). This paper, considers four cotifig objectives, namely mi-
nimizing task transfer time, task execution costv@r consumption, and task
queue length, to develop a comprehensive multiadive optimization model
for task scheduling. This model reduces costs footi the customer and pro-
vider perspectives by considering execution andgrasest. We evaluate our
model by applying two multi-objective evolutionaaigorithms, namely Multi-
Obijective Particle Swarm Optimization (MOPSO) andlt\Objective Genetic
Algorithm (MOGA). To implement the proposed modsg extend the Cloud-
sim toolkit by using MOPSO and MOGA as its taskezliling algorithms
which determine the optimal task arrangement améivig. The simulation re-
sults show that the proposed multi-objective mdithels optimal trade-off solu-
tions amongst the four conflicting objectives, whisignificantly reduces the
job response time and makespan. This model notiaohgases QoS but also
decreases the cost to providers. From our expetatien results, we find that
MOPSO is a faster and more accurate evolutionaygrihm than MOGA for
solving such problems.

Keywords: Cloud computing, Task Scheduling, Multi-Objectivartitle
Swarm Optimization, Multi-Objective Genetic Algdmit, Jswarm, Cloudsim

1 I ntroduction

Cloud computing is a service-oriented computingadeym that has significantly
revolutionized computing by offering three web-lthservices — Infrastructure as a
Service (laaS), Platform as a Service (PaaS), aftiv&e as a Service (SaaS) [1].
SaaS and PaaS users generate several jobs incaerigivonment. To deliver these
services over the World Wide Web, jobs generatedd®ys are submitted to schedu-



lers to be executed by a set of processors (clesaurces). Each job consists of sev-
eral dependent tasks described by a Directed Acyataph (DAG)[2]. In the cloud
environment, the number of tasks in a workflowwa| as the number of available
resources, can grow quickly, especially when virtaaources are allocated. Calculat-
ing all possible task-resource mappings in the clenvironment and selecting the
optimal mapping is not feasible, since the compyewiould grow exponentially with
the number of tasks and resources [3]. Therefaedevelopment of intelligent task
scheduling mechanisms that take into account theesfcy of all the cloud compu-
ting facilities, has become a critical part of et cloud optimization problems and
plays a key role in improving flexible and relialdgstems. The main purpose is to
schedule tasks to adaptable resources in accoradticéme, which involves estab-
lishing a proper sequence whereby tasks can baimdander transaction logic con-
straints [4].

There are several studies [1, 3-10] that mainly leasjze the minimization of job
makespan and task execution cost in their mulecbje optimization models by
applying evolutionary algorithms. However, thesed#ts fail to consider the need to
minimize power consumption by the cloud infrastunet Meanwhile, there is a con-
siderable amount of research work that focusesedmaing power consumption in
their proposed bi-objective task scheduling modgisminimizing the value of their
developed predefined power consumption objectivestions for multi-core proces-
sors and cloud environment [11, 12]. In additicevesal studies have been underta-
ken in the area of energy-aware task schedulinggplying the Dynamic Voltage
Frequency Scaling (DVFS) technique [13-16].

To the best of our knowledge, reducing the taskuguength of VMs has not
been investigated in proposed task scheduling dapaiion models. In addition, our
work is the first to minimize task transfer timask execution cost, power consump-
tion, and task queue length concurrently in a sleduling optimization model. A
longer task queue results in more waiting timetfsks and a longer response time. In
current task scheduling optimization models thailwgvolutionary algorithms with
predefined objective functions, the optimal taskestuling schemas are suggested
based on task and VM properties. In such modelSming objective functions
usually occurs by assigning tasks to high perforceaviMs and neglecting low per-
formance VMs. This leads to the creation of a ltaek queue for some VMs, while
some other VMs remain idle. Although the propertiédow performance VMs do
not optimize the value of objective functions, &syt have the lowest number of
CPUs and smallest amount of memory, they can deenesponse time by executing
waiting tasks in the queues.

To improve previous research work and addressstiostcoming in the existing
literature, a multi-objective model for task schiémty in a cloud environment that
considers four aspects of optimizing cloud utiliaatis proposed in this study. The
model aims to enhance QoS based on the pointswof f both cloud users and pro-
viders by minimizing service response time andegfio raise customer satisfaction),
and minimizing power consumption (to reduce prodtexpenditure). In addition,
we determine an objective function to achieve oatitoad balance between re-
sources and control the length of task queues dfuster. This objective function



considers changes in resource capacity (memorynantber of CPUs) to avoid as-
signing multiple tasks to one VM's processors arghting long task queues. To find
the optimal solution for the proposed model, amatgm is developed based on Mul-
ti-Objective Particle Swarm Optimization (MOPSO)daMulti-Objective Genetic
Algorithm (MOGA). Cloudsim toolkit [17] is extendeldy applying MOPSO and
MOGA as its task scheduling algorithms to implemantl evaluate the proposed
model.

This paper focuses on scheduling highly parallehpotations such as Bag-of-
Tasks (BoT) applications for SaaS in a cloud emriment. In such applications, com-
pletion of one task does not affect the completibnther tasks, and only one task is
executed on a computer processor (CPU) at a timé.dpplications are used for data
mining, massive searches, parameter sweeps, siomdafractal calculations, compu-
tational biology, and computer imaging [18, 19].

The efficiency of the proposed model is evaluatedugh different scenarios. Si-
mulation results show that the proposed model Bogmitly increases QoS by consi-
dering more criteria for optimization, and has #islity to satisfy both users and
providers. In fact, the proposed model is able étednine trade-off solutions that
offer the best possible compromises among the ggation objectives, and not only
helps cloud providers to reduce the cost of povegrsamed, but also helps them to
maintain the expected level of QoS. It has alsmlfeend that MOPSO is a faster and
more accurate evolutionary algorithm than MOGA $otving such problems. The
contributions of the paper are summarized as falow

1) Develop a multi-objective task scheduling modelntmimize task transfer time,
task execution cost, power consumption, and taskiglength.

2) Develop intelligent methods to estimate: (1) tasksfer time, (2) task execution
cost, (3) power consumption based on the numbeactife Physical Machines
(PMs), and (4) task queue length based on the réngaiesource capacity (memo-
ry and idle CPUs).

3) Develop a MOPSO/MOGA-based algorithm to solve ttmppsed multi-objective
task scheduling problem, and compare two evolutipragorithms in different
scenarios.

4) Extend the Cloudsim package to evaluate the maergMOPSO and MOGA.

The rest of the paper is organized as follows.dati®n 2, related works are pre-
sented. Section 3 illustrates a multi-objective giddr task scheduling optimization.
Section 4 presents a developed MOPSO/MOGA-baseatithlin to determine the
optimal solution (task scheduling pattern) for {p@posed multi-objective model.
The model is evaluated in Section 5. Lastly, thectasion and future works are pro-
vided in Section 6.

2 Related Works

The task scheduling problem in distributed comgusgstems is an NP-hard op-
timization problem that also affects QoS in theud@nvironment by optimizing ser-
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vice cost and service response time. Thereforepsieeof a heuristic algorithm en-
sures an acceptable runtime of the scheduling ighgoritself since it significantly
reduces the complexity of the search space. Inréigard, Song et al. [5] proposed a
general job selection and allocation framework thdizes an adaptive filter to select
jobs and a modified heuristic algorithm (Min-Mind llocate them. Two objec-
tives—maximizing the remaining CPU capacity, anel tkilization of resources—and
four criteria—the resource requirements of CPU, mgmhard-disk and network
bandwidth—were considered for the optimization peob Li et al. [8] applied an
Ant Colony optimization approach to create a besgheduling result with shorter
total-task-finish time and mean-task finish timéetk al. [6] took resource allocation
patterns into account and proposed a task andnasoptimization mechanism. Tay-
al [4] proposed a fuzzy-GA based optimization apptoto enhance the accuracy of
GA results for the job scheduling process, whichtkesaa scheduling decision by
evaluating the entire group of tasks in the jobuguduhnke et al. [3] proposed a mul-
ti-objective scheduling algorithm for cloud-basedridflow applications to minimize
cost and execution time by applying the Pareto iethEvolution Strategy, which is
a type of GA. Lei et al. [9] and Salman et al. fléveloped an optimization model to
optimize task execution time, and showed that #iéigle swarm optimization (PSO)
algorithm is able to obtain a better schedule tG#nin grid computing and distri-
buted systems. Guo [10] also proposed a multi-¢bedask scheduling model to
minimize task execution time and cost using the R&©Orithm. Taheri et al. [1] con-
sidered the data-files required for jobs from puldi private clouds and proposed a
bi-objective job scheduling optimization model toanimize job execution and data
file transfer time using PSO. These studies ma@émhphasized the minimization of
the job makespan and task execution cost in thefti-objective optimization models
by applying evolutionary algorithms, and the reéutiof power consumption is neg-
lected in such studies.

Meanwhile, there are lots of works focus on redggower consumption in their
proposed bi-objective task scheduling models byimizing the value of their devel-
oped predefined power consumption objective fumgtifor multi-core processors and
cloud environment [11, 12]. Different objective @ions have been suggested in
these models for estimating energy consumption2[ll9-Shieh and Pong [11] de-
signed an energy- and transition-aware algorithrscteedule periodic tasks in multi-
core systems considering voltage transition ovethiedhey suggested an integer
linear programming model to find the optimal povesvare scheduling for specific
task set and core number. Wang et al. [12] develapecnergy-aware multi-objective
bi-level programming model based on MapReduce. Ttmysidered energy con-
sumption in the data placement process, combinéu aviocal multi-job scheduling
scheme. Their approach has three steps. Firstcthesidered changes in energy con-
sumption along with the performance of servers.nThkeir model dynamically ad-
justs data locality based on the current netwoakestin the last step, they developed
an integer bi-level programming model considerihg fact that task-scheduling
schemas depend on data placement patterns.

Several investigations have also been conductex deteloping energy-aware
task scheduling algorithms to optimize energy camstion by applying Dynamic



Voltage Scaling (DVS) technique [13-16]. In theserke, the authors determined
task-slack time by considering critical and nortical paths in job DAGs. They then
extended non-critical task execution times by sgatiown the voltage frequency of
corresponding processors. In other works, energgdsiced by sending non-critical
tasks to the most cost efficient VMs [15].

Although a significant number of studies have besmied out in the area of pow-
er consumption reduction in a cloud/grid environtmehe reduction of task queue
length in a cluster by considering the workloadazty of VMs has been neglected in
earlier multi-objective task scheduling models. Kr'gaeue length is an effective fac-
tor for reducing job makespan because it deterntimesvait and finish time of tasks.
In addition, the following four optimization objéats: (1) task transfer time, (2) task
execution cost, (3) power consumption, and (4)tds& queue length of VMs, have
not been considered in the previous works to degvalcomprehensive task schedul-
ing model.

3 Problem For mulation

A cloud environment dynamically receives a largenbar of tasks from its appli-
cations’ users in every portion of each second.séhiasks accumulate in several
queues and are then sent to the task schedulezsta¥k schedulers are responsible
for allocating these tasks to VMs for executione3é VMs which are in turn allo-
cated to PMs (see Fig. 1), have different numbéxgriual CPUs and different mem-
ory size. The task schedulers apply optimizatioocedures to allocate task among
VMs to achieve optimal resource utilization in awd environment. The scheduling
process repeats dynamically to schedule everyfsatrival tasks among VMs. Con-
sidering this fact that independent users arbiyragnd tasks to cloud environment,
the number and type of tasks in each queue mayfisamtly change from one sche-
duling to another.

To create a higher level of resource utilizationilg/tminimizing cost and max-
imizing QoS, we develop a multi-objective model égutimizing task scheduling that
considers four aspects of the task scheduling dgaiion problem: task execution
cost, task transfer time, task queue length andep@ansumption. The variables that
are applied to formulate this multi-objective mode¢ defined in Table 1.
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Figure 1. Cloud objects and their relations

Table 1. Definitions of Variables

Symbol Definition

n The number of arrival tasks

T The set of arrival tasks =q{tt,, ..., &}

DE. The amount of data (MB) that taskssigns to VM to be executed = (tas#fata length + tagk
ik output size)

DTi The amount of data (MB) needing to be transferregisk file size

tm The amount of memory (MB) required for executingkia

tG; The number of CPUs required for executing fask

Texe The total task execution time on \{M

m The number of VMs

VM Virtual Machine j, j={1, 2, ..., m}

VMm, The amount of memory of VMMB = 0.001 GB)

VMG, The number of CPUs in VM

Ncpy  The number of active CPUs on M

VMbw,  The bandwidth of VM (Mb/s)

VMkmipS VM computing speed (Million Instructions Per Secpnd
RVMnf  The amount of available memory on YM

RVM¢& The number of available CPUs on YM

Npm The number of PMs in cloud

Napm The number of active PMs in cloud

Svm The set of VMs located on the zth PMEVMy € zth PM, z € {1,2, ..., Npp }}

cp The number of cloud providers

G Maximum capacity for providgy

SR, The set of VMs belonging to pth provideid VM, € Pth Cloud provider,P € {1,2, ..., cp}}
Pcost The cost of one unit CPUs fpth provider (AUD/hour)

X 1 if taski is assigned to ViMand 0O, otherwise

Note: Task otput size is the amount of data that each tasdlymes during its execution and need to be
executed by its subsequent tasks



3.1 TasksTransfer Time

We apply and improve the formula proposed in [I®]estimate the total task
transfer time as follows:

m n
DTy,
Ttrans = Z Z Xj ¥ ———————— D

1
k=1i=1 VMbw, * (§)

The coefficient 1/8 is used to convert Mb to MB.

3.2 Task Execution Cost

In this paper, the task execution cost (AUD perrhéar providerp is calculated
as follows:
Cexe, = Z Pcosty, * Texey 2)

KESPy

where,Texe,, is the estimated execution time of assigned t&skéM, in hour, and
Pcost,, is the cost of one unit CPUs fath provider in AUD per hour. In this formu-

la, the total task execution time in each VM belaggto providerp is calculated.
This value is then multiplied by the provider'sqarifor using unit CPU.

Total task execution time in VMs calculated as follows:

n
1 DEy,
Texe, = ——* Z Xip ¥ —0— 3)
3600 & VME s

We assume the same price for all CPUs in a VM;etioee, task execution se-
quence and scheduling schema in each VM, are natidered in this function. For
instance, in a VM with three CPUs, the cost ofgEsig three tasks to three different
CPUs will be the same as the cost of assigningeiteeution of three tasks to one
CPU.

Finally, the total task execution cost for all pidess is determined as:

cp
Cexe = Z Cexe, 4
p=1

3.3 Power Consumption

Reducing power consumption in large scale compuiysiems such as grid and
cloud environments has been investigated as anrtengacontributor to the reduction
of operating costs and diverse environmental imgpact

Several researches have been completed in theohpeaver consumption reduc-
tion through the proposal of power-aware multi-alijee task scheduling models for
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multi-core processors, grid and cloud environméghis 12]. In these models, a varie-
ty of linear and non-linear objective functions Béxeen suggested to estimate power
consumption based on task scheduling patterns 11942 these models have been
developed based on the fact that the energy witedeced when the PM is either off
or in idle mode. It has also been proved by Buyyale[20, 22] that an idle server
consumes around 70% of the power compared to waltillzed server. In a nutshell,
previous studies show that having fewer active CBits PMs leads to lower power
consumption in a cluster.

Considering this fact, instead of estimating teaérgy consumption—which can
be exactly determined in a real cluster after sahieg and executing tasks— in this
study we minimize the ratio of active PMs and CR&Jall available PMs and CPUs
to reduce power consumption. To do this, the ogitnon model avoids choosing
VMs on idle PMs as destinations for scheduled tasid consequently reduces con-
sumed power in the corresponding cloud cluster.ago 5 is then developed based
on this theory as an objective function for ourimiation model. Using this, the
percentage of active PMs and CPUs is determinesl ragasure for reducing power
consumption as:

PowerC = (Napm + 1 Xie1 Nocpy) (5)
(Npy + p k=1 VMey)
where NX.py is the number of active CPUsViM,. To calculateNX.p,; we consider
the fact that the number of tasks assigne® may be less than the number of
CPUs inVM,, or may exceed the maximum CPU number in this iMerefore,
NK.py is equal to the minimum value between the totahiper of tasks assigned to
VM, and the total number of CPUs in this VM as:

Nl;CPU = min (¥iL; X , VMcy) (6)

The number of active PMs in all iteration$,fy,) is estimated based on the num-
ber of active VMs on each PM. The number of actidatMs is calculated based on
the number of tasks assigned to them. If at leasttask assigned M, is located
onPM,, this VM will be activated, thus its correspondiPly! should be turned on and
activated as well. As a result, the number of &®M is determined using the fol-

lowing formula:
n
Nopw = Y min(Y x,1) @
i=1

keSvmy,

where Y1 ; x;, is the number of tasks assigned to CPUgMJ.

We also prove that minimizing Equation 5 reducesvggoconsumption in the
cloud cluster. To achieve this, we firstly deterenpower consumption for each fully
utilized PM as follows based on this fact that ploever consumed by PM increase by
the number of its active CPUs:

Pwpy(PM,) = Pwi + a Nipy ®)



where Pw? is the amount of power tha@M, consumes when all its CPUs are

idle, N5y is the number of CPUs dtM,, and a is the amount of extra consumed

power abovePwy}, for every active CPU dPM,. Using this, the value af is:
a =

z
NCPU

©)

Since we have homogenous PMs in our cluster, allRNs in this cluster have the
same value forr and Pw,. Therefore, the total amount of consumed powethis
cluster can be determined as follows:

NPM NPM NPM
Pwg, (Cluster) = Z Pwg, (PM,) = Z PwWi+ «a Z Nipy (10)
z=1 z=1 z=1
then
Pwg, (Cluster) = Pwg * Npy +a* Nepy (11)

where N p; is the total number of CPUs in the cluster. Ondbeer handN¢py =
Y1 VMcy. Using thisPw ., (Cluster) is calculated as:

m
Pwg, (Cluster) = Pwg * Npy + a * z VMc, (12)
k=1

By applying the same logic, the value of consumedeqy by active PMs and CPUs in
this cluster is calculated as follows:

m
PW o iive (Cluster) = Pwj * N py + a * Z Nicpy (13)
=1

Using Equations 12 and 13, the ratio of consumasepdn the cluster for each task
scheduling pattern can be calculated as:

Pwgcrive (Cluster) _ Pw§ * Nopy + @ * TRty Nizpy

= 14
Pwgy (Cluster) Pw¢ * Npy + a * Y-, VMcy (14
a

Pwy (Napy + Pu? Yt Nicey)

- " (15)
PwG(Npy + PwZ 2= VMcy)
Napu + 020y N&

_ (Napy + 1 2k=1 Nacpy) — PowerC (16)

 (Npw + XL, VMo
ooz - For instance, for Altix XE320 with 16 number &&PUs,
0
Pwp,,(PM) = 115", andPw, = 40" [23], pis equal to 0.1.

where u =



3.4 Length of VM Task Queues

If, in a possible best solution of the multi-objeettask scheduling pattern, the
number of tasks assigned to YBkceeds the number of its CPUs, extra tasks will be
allocated to VM's task queue (see Fig. 2). In this model, we amrsanother objec-
tive function to optimize the task scheduling pattby minimizing the length of VM
task queues. This will reduce the task makespanresgbnse time, as fewer tasks
will be located in long queues and in waiting mode.

7 | 7 |G &= || T
A A
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Figure 2. A sample for task scheduling pattern among VMs

The following objective is proposed to minimize thember of tasks in queues
which would be created in any suggested possiltienaptask scheduling pattern:

DE;;
Yk = E Xik 7)
1

*
(RVMy,) * (RVMY)

where,
RVM), = VMmy — (Zi_; Xji  tmy) (18)
RVME = VMcy, — (Zizq xjic * tc;) (19)

and (i, xj  tm;) and (X5, x; * tc;) are the total amount of memory and number
of CPUs required to execute the task previousligass toV M,,.

To calculatey, , the formula that was proposed in [10, 24] is ioved by consi-
dering changes in the available capacity (CPU amdhany) of the VMs after new
tasks have been assigned to them. Equation 17atedichat scheduling the task
to VM,—which not only yields increasingE;,, but also reduces the amount of avail-
able CPU and memory of the corresponding VM— negétiaffectsV M, 's perfor-
mance and execution time of its tasks. We haveiegphis formula to control the
number of scheduled tasks to each VM and reducketiggh of their task queue.

In Equation 17VMmy, < (X, x * tm;) andloVMc,, < (X5-, xj * te;) imp-
ly that there is no available memory or CPUVIM,, to execute extra tasks. In this
situation, ifRVMEK and/orRVM¥ have a negative value, they will be multipliedato
small value (-10), and if each of them is equal to zero, the valu0®will be added
to them. Since the values &MY, andRVM} are multiplied by each other, this will
increase the value gf dramatically whenever one of them equals zercasrennega-



tive value. Therefore, the probability of choositis pattern as a possible optimal
solution will be decreased. This prevents the asgign of tasks to VMs without
available resources. In fact, coefficignt controls the number of tasks assigned to
VM, to avoid creating a queue of tasks to be execatddM,, and maximizes its
performance. According to this, for all iteratioradter tasks have been assigned to
VMs, the amount of memory of VMs that remains aine humber of idle CPUs in
each VM, are calculated as the available capatit§Ms to execute arrival tasks. The
following formula is then used as an optimizatidsjeative in our proposed model to
minimize VM task queue length and optimize the lbathnce:

r=>w (20)
k=1

3.5 TheMulti-Objective Problem

The multi-objective task scheduling optimizationdabis described in this section
based on predefined objective functions to minintésk transfer time, task execution
cost, power consumption and task queue lengthgliasie:

Problem:
min frime = Ttrans (21)
min fose = Cexe (22)
min fPowerCunsumption = PowerC (23)
min fTastueue =T (24’)
Subject to
m
ink =1,vi=1,..,n

k=1
xx €{01},Vvi=1,..,n&k=1,..,m
0<n,<C,,Vp=12,..,cp

Ngpu < Npy

Napm, Npy # 0

4 Multi-Objective Task Scheduling Solution

The preliminary definition and explanation of MOP&@d MOGA methods are
provided in this section. A MOPSO/MOGA-based altjori for determining the op-
timal solution for our proposed model in Sectiois &lso developed.

4.1  TheMulti-Objective Particle Swarm Optimization Method

In majority of optimization problems, the objectifienctions are in conflict with
each other and there is not unique solution fomth&herefore, the goal is to find
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good trade-off solutions that represent the bessipte compromises among the ob-
jectives [25]. A multi-objective optimization pradh is defined as follows:

Min F®) = [[,X), £,X), ..., i )] (25)

where X = (x4, %4, ., x;) is the vector of decision variableg;: R™ - R,i =

1, ..., k are the objective functions. Let partidé = (x4, Xy, .-, X} ) represent a solu-
tion to (1). A solutionX, dominatesX, if fj(X;) > f;(X,) for all j=1,..k and
fi(X1) > f;(X;) for at least ong=1,....k A feasible solution¥; is called Pareto
optimal (non-dominated) if there is no other feksiiaolution)?2 that dominates it.
The set of all objective vectoﬁs()?l) corresponding to the Pareto optimal solutions is
called the Pareto front (P*). Thus, the aim is étedmine the Pareto optimal set from
the set~ of all the decision variable vectors (particley29].

In the PSO method, particles are flown through hyfimensional search space.
Changes to the position of the particles within skarch space are based on the so-
cial-psychological tendency of individuals to entellthe success of other individu-
als. The position of each particle is changed atingrto its own experience and that
of its neighbors. Lefi(t) denote the position of particle i, at iteratioMhe position
of X;(¢) is changed by adding a velocify(t + 1) as follows:

Xt+1D =X +Vit+1) (26)

The velocity vector reflects the socially exchanggdrmation and, in general, is
defined in the following way:

Vi(t + 1) = W‘_ii(t) + Clrl (ipbesti - X1(0) + Czrz (igbesti - i1(0) (27)

whereC; is the cognitive learning factor and representsattection that a particle
has towards its own succes€s; is the social learning factor and represents tlraa
tion that a particle has towards the success ofetitde swarm;W is the inertia
weight, which is employed to control the impacttloé previous history of velocities
on the current velocity of a given partick;,, is the personal best position of the
particlei; X,pes¢ is the position of the best particle of the ensivearm; andry,r, €
[0,1] are random values [25]. In MOPSO all Pareto oftsotutions are stored in an
archive angpe, is chosen from this archive.

4.2  TheMulti-Objective Genetic Algorithm

A multi-objective genetic algorithm (MOGA) is correed with the minimization
of multiple objective functions that are subjectamet of constraints. In this algo-
rithm, an initial population whose scale Nsis first randomly generated. The first
generation child population is gained through nomuhated sorting and basic opera-
tions such as selection, crossover and mutatioh [3ten, from the second genera-
tion on, the parent population and the child pojtaare merged and sorted based
on fast non-dominated solutions. The crowding distabetween individuals on each



non-dominated layer is calculated. According to tlem-dominant relationship and
crowding distance between individuals, appropriattividuals for forming a new

parent population are selected. Lastly, a new gbdgulation is generated through
basic operations of the genetic algorithm whichates until the conditions of the
process end can be met [31].

43 A MOPSO/MOGA-Based Algorithm

A MOPSO/MOGA-based algorithm is proposed to sollie proposed multi-
objective task scheduling problem presented ini@e&. In the task scheduling mod-
el, there aren tasks {t;,t,,..,t,}that should be assigned ton VMs
{vm,,vm,, ...,vm,, } to be executed (Table 2). MOPSO and MOGA methods ar
used to find the optimal task scheduling patterilevminimizing task transfer time,
task execution cost, power consumption and taskejlength. All optimal suggested
solutions (particle position/gene pattern) deteadiy MOPSO/MOGA techniques,
are illustrated a&; = (x,,x,, ..., x,) vectors with continuous values, but their corres-
ponding discrete values are needed to determiniDtiod the VM chosen to execute
tasks. Therefore, these continuous veckprsare converted to discrete vectors

d()?i) = (dy, d,, ..., d) by applying the Small Position Value (SPV) rule][10
Table 2. Task scheduling pattern.

Tasks i 1) 13 1y ts t
VM number = Particle position/gene
pattern vy, vim Vi vy, vimy ™

Particle position (or gene pattern) in Table 2 apossible solution, i.ed()?i) =
(dy, dy, ..., dy) = (7,4,5,7,3,..,m), after converting the continuous values to dis-
crete values. According to this, VMemy, vimy, vim, vy, ..., andvm, are chosen to
executety, t, t3, t4, ..., andt,, respectively. Considering this fact, every pagtigene
in our MOPSO/MOGA model has dimensions to assign tasks tom VMs. Every
particle/gene will be assessed considering thegfireetl objective functions and all
Pareto optimal solutions stored in an archivehla paper, it is assumed that:

q
QoS (%) = - Z Wif,(£.), (¥ %, € Archive} (28)
=1

where, q is the number of objective functions alig is the preference weight for
every objective functionﬂ()?i)). Pareto optimal solutions (archive members) are
then ranked on the basis of the number of functibag minimize, and the maximum
value of QoS. The top-ranking solution is choserthes possible optimal solution
()?gbesti)-

The first population in evolutionary algorithmsusually initialized randomly. In
this paper, the first population is determined gsifMs and task properties to accele-
rate the performance of MOPSO and MOGA. Evolutigrelgorithms are therefore

13



expected to find the best solution faster because $tart from the near best solution
pattern. To achieve this, we select the VMs witgreater number of CPUs and a
large amount of memory on active PMs as the newshos excess tasks. We apply
the roulette wheel technique as it is applied iht¢2produce the first population for
both MOPSO and MOGA. The Roulette Wheel selecti@athaod randomly selects a
given choice from several options, based on thaevaf their winning probability. In
this technique, the slots of a roulette wheel ast filled with the winning chance of
the options, then the wheel is spun and an opicelected [2]. Equations 29 and 30
are proposed to determine the probability of chapsi task, and a host VM respec-
tively. Then, based on the normalized winning cleao roulette wheels are gener-
ated for tasks and VMs.

Chance VM, = VMyps + VMmy + (p1 x VMcy) + (VMbwy /p,) (29)

Chance_Task; = (DE;/p3) + DTy, (30)
where, coefficientp;, p,, andp; have been determined based on the value of task
and VM properties to make the same impact for @pprties in determining winning
chance. In this study, we have determipgd p,=100 andp;=1000 based on the data
given in Tables 3 and 4. Fig. 3 shows a rouletteeltior VMs that is determined
based on the information in Table 3.

EVMs1-4

B VMs 5-8
VMs 9-12

B VMs 13-16

HVMs 17-20

Figure 3. VM Roulette Wheel (Winning Probability)

After creating roulette wheels, a task and a VM sekected from the task and VM
roulette wheels respectively asnd VM, . Then the selected tafl) is deleted from
task set, and a new task roulette wheel is gertefatethe new set of tasks. In addi-
tion, VM, properties are updated by applying the followingations:

Available_memoryyy; = VMm; — tm, (31)
Available_CPUyy; = VMc; — tc; (32)

If the value ofAvailable_memoryVM]. or Available_CPUVM]. is less than zero, this

meansVM, has no available capacity to execute addition&istashis VM is therefore
deleted from the VM set and a new VM roulette whsegjenerated for the new set of
VMs based on their available capacity. After sefertll VMs as the new host for
executing a set of tasks, and deleting those fla@ravailable set of VMs, all VMs are



applied again to execute the remaining tasks. Ttasdes are allocated to the VM task
queues in waiting mode.

The corresponding steps for implementing the réailetheel technique to initialize
the first population for MOGA and MOPSO are desedibin Steps 2 of the
MOPSO/MOGA-based algorithm, which is summarizedbiisws:

Step 1Collect data and information about a possible $ébst VMs and set of arriv-
al tasks
Step 2lnitialize population: Determine new population ¢imn and velocity of par-

ticles in MOPSO, or genes’ pattern in MOGA) basadvd/ and task proper-
ties by applying roulette wheel technique as folow
Step 2.1Create the task and VM roulette wheels based an pneperties by

applying Equations 29 and 30
Step 2.20ountyy =m
Step 2.3Fori=1ton

Step 2.3.1Select a task;f from task roulette wheel

Step 2.3.2Select a VM ¥YM,) from VM roulette wheel

Step 2.3.3Deletet; from the task set

Step 2.3.4Create the task roulette wheel based on new tasénse

their properties by applying Equation 30.
Step 2.3.5Calculate available VM memory and CPU by applying
Equations 31 and 32
Step 2.3.6f Available_memoryyy; < 0 Or Available_CPUyy; < 0 then
{ DeleteVM; from VM set,
Countyy = Countyy — 1,
If Countyy = 0 then

{

Create new VM roulette wheel using original VM
properties by applying Equation 29
Countyy =m
}
}

else (if Step 2.3.6), create new VM roulette whHeseded on avail-
able VM capacities by applying Equation 29
Nexti
Step 3lnitialize an archive in which members are non-daated solutionsn(dimen-
sions particles/genes whose position/pattern iarat® optimal solution)
Step 4Convert continuous values of vectﬁf to discrete vectod(fi) using the SPV
rule to determine the VM allocated for every arritesk.
Step 5Determine the value oPE;;, DT;;, VMm;, VMcj, Pcost,, VM c, Napu,
Ngzpy, RVMY, RVME and VMbw; based ord(X,) to calculate the value of
every fitness function.
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Step 6Evaluate population according to defined fithesxfions:
«  Minimize task transfer time (Equation (21))
« Minimize task execution cost (Equation (22))
e Minimize power consumption (Equation (23))
« Minimize VM task queue length (Equation (24))
Step 7Update the archive content by deleting dominatechbezs from archive and
store the Pareto optimal (non-dominated) solutiorthe archive.
Step 8Sort archive members based on the number of mietinfenctions and the
maximum value ofQoS (X)
Step 9Produce new population using MOPSO:
Step 9.1Choos@_(’gbest from top sorted members in the archive

Step 9.$hoos@pbestifor every particle: If the current position of tparticle
dominates best position of the particle, use cdrparsition as new
best position for the particle

Step 9.3Compute inertia weight and learning factors

Step 9.4Compute new position of the particles and new vtobased on
MOPSO formulations (Equations (26) and (27))

Step 10Produce new population using MOGA:
Step 8.1. Reproduce best individuals using crossover and tioata
Step 111f maximum iteration is satisfied, then
Step 11.10utput d()?gbest) position for both MOPSO and MOGA as their
best task scheduling patterns
Else
Step 11.2Go to Step 3

5 Simulation Results

This section analyzes the efficiency of the propas®del. In Section 5.1 we first
describe the simulation environment. Then, in $&ch.2 we explain how the Cloud-
Sim package [17] is extended to implement the ntethnd lastly, the performance
and evaluation is presented in Section 5.3.

5.1 Environment Description

We design the simulation environment by assumirsg e have 15 PMs (data
centers in CloudSim), 20 VMs, 3 cloud providers &@d arrival tasks (cloudlets).
Data and information about VMs and tasks (cloudllate summarized in Tables 3
and 4:



Table 3. Properties of VMs.

VM Id MIPS VM memory Bandwidth  |"C MUMPErof v name
(Ram) CPUs
1-4 300 512 10000 4 Xen
5-8 200 256 1000 1 Xen
9-12 300 512 10000 2 Xen
13-16 200 256 1000 1 Xen
17-20 200 256 1000 1 Xen
Table 4. Properties of tasks.
Task Id Length File Size Output Size The numbeegtiired CPUs
1-20 250000 300 300 1
21-40 25000 200 300 1
41-60 250000 300 300 1
61-80 25000 200 300 1
81-100 250000 300 300 1
101-120 250000 300 300 1
121-140 25000 200 300 1
141-160 250000 300 300 1
161-180 250000 300 300 1
181-200 25000 200 300 1

5.2  Implementation

To implement the proposed method, we extend thedsim toolkit [17] by using
the MOPSO (MO-Jswarm package [32]) and MOGA (NSIGS83]) algorithms as
the task scheduling optimization algorithms. Thed@loudletToVm() method in the
DatacenterBrocker class of Cloudsim is respondimeallocating tasks to VMs ac-
cording to the optimal task arrangement that resutom the developed
MOPSO/MOGA-based algorithms.

The objective functions in the proposed multi-objex task scheduling model
are applied as the fitness functions in MOPSO arm@@A. In our model, we have

200 particles and the optimal results are obtaiafter the 2000th iteration of the
MOPSO/MOGA algorithms.

5.3 Evaluation

To evaluate the proposed method, we first perfarensimulation under the envi-
ronment that we defined in Section 5.1. We evaluwate proposed multi-objective
method of solving task scheduling problems withficiing objectives by consider-

ing optimization time, cost, power consumption amorkload from the following
aspects:

> Compare the efficiency of the proposed four-objetimodel with current bi-

objective models in terms of optimizing cloud atition, QoS and Job makes-
pan.
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> Compare the efficiency of MOPSO and MOGA in speed reliability to find
the highest value of QoS in different iterations.

To make the first comparison, we compare our methitd the optimization
methods proposed in previous works [10, 32, 34)iich just two aspects of QoS
optimization were considered: (1) task transfertimnd (2) execution cost. The VM
workload situation is also considered in this sttolyavoid multiple tasks being as-
signed to one VM, reducing its performance andeasing service response time.
Our optimization model also has the objective afua@ng the number of active PMs
and busy CPUs to decrease power consumption andlpraosts.

The graphs for task transfer timi;{), task execution cosfs), power con-
sumption ratio feowerconsumptior @and VM task queue lengthfir{squeu) Obtained from
the MOPSO/MOGA-based algorithm in 2000 iterations iustrated in Figs. 4 and
5. The values of the axis on the right show th@eaof values ofraskoueue
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To estimate the QoS that results from every metkodation 33 is utilized by as-
suming the same preference weight= w,= ws=1) for time, cost and power con-
sumption. We assign preference weighi=10"%) or w,=1) for a task queue determi-
nator function based on its value. As discusse8dation 3.4, a small valudG?is
multiplied byRVME or RVMF to increase the value gf when the required capacity
by arrival tasks exceeds the amount of availabpacigy in the target VM. This pre-
vents sending multiple tasks to a single VM. Theref in cases where a suggested



possible optimal task scheduling pattern assignKipteltasks to certain VMs, the
capacity required for executing the tasks assigoethose VMs would exceed the
capacity of the VMs, then the value fgfsquesavould be more thahC®. In these situ-
ationsw,=107 will be used in Equation 38therwisew,=1. The valuel0?for prefe-
rence weight ofraskqueudS determined as an aligner to make its value restiewith
the other objective values and neutralize the efiéel0° coefficient in Equation 17.
As the optimal values of these conflicting objeetivare independent of one another,
there is no need to normalize their weights in@wS equation (Equation 28). How-
ever, as objective functions have different measerg units, we need to normalize
their values to be able to calculate the QoS. Tthi¥y we convert the range of objec-
tive functions to (0,1). For instance, the maximuatue for the objective function
frime Produced by MOPSO and MOGA is 2300 seconds (see Bignd 5). There-
fore, we converfr,,,. ranging (0, 2300) to (0,1). As a result, the norreal value of
frime 1.€. Nf, for MOPSOis 0.11. The normalized value for all objective funas

is calculated a8, .. Nfcost: Nfraskouewe @M Nfpowerconsumption fOr @ll scenarios to
determine the estimated value of QoS. In additcamsidering the fact that we mi-
nimize the objective functions that have a negaitiveact on QoS, this method max-
imizesQos (X) as follows:

QOS (X) = _[Wl * NfTime + Wy * NfCost + W3 * NfPowerConsumption + Wy * NfTastueue] (33)

MOPSO and MOGA are applied to optimize both therfoljective model and
bi-objective model. In a bi-objective model, thetiofal value offrine andfcys is de-
termined by MOPSO and MOGA, then the correspongaige Offraskqueuc@Ndfpower-
consumptioniS Calculated by applying the optimal pattern aftdibution tasks over VMs
that results from these optimization algorithms. YMe the algorithms 25 times for
each comparison section, and the results are alfimestame. The optimal results of
all methods are summarized in Table 5.

Table 5. Comparison results.
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e
9 MOPSO 260 71 42% 116.00 -1.82 4400 49 45%
=
g
8 MOGA 260 72 71% 117.18 -2.21 5100 992 40%
<
§ MOPSO 260 65 71% 156.2 -2.24 5400 148 40%
g
8 MOGA 260 65 71% 156.2 -2.24 5400 709 40%
N

19



As can be seen from the comparison results in Tapthe estimated QoS in the
proposed model with four objectives achieves thghéét QoS compared to bi-
objective models that apply both MOPSO and MOG Aadidlition, in the four objec-
tive models, the MOPSO determines the highest @atBd lowest number of itera-
tions (in 49th iteration) compared to MOGA, whichtermines its best possible solu-
tion in 992th iteration. MOPSO in bi-objective mtgles also faster than MOGA. As
can be seen, the optimal load balancing betweeruress determined by our model
also has the shortest makespan. This means thel masl¢he ability to offer a task
scheduling pattern with the lowest response timeaddition, the proposed model
achieves lower power consumption and task quelgthehan the bi-objective mod-
els; however, the number of idle VMs in the clusterall scenarios is almost the
same.

Better load balancing leads to the highest levglafer consumption because op-
timal load balancing requires a higher number ¢fvad®Ms and CPUs. In this case,
preference weights of the conflicting objectiviggqueue@nd frowerconsumptionCan be
changed according to the Service Level Agreemehnf)$o determine optimal task
scheduling that satisfies the SLA criteria.

As a result, the proposed model that considers mgpects of task scheduling op-
timization, determines an optimal trade-off solntfor the multi-objective task sche-
duling problem with objective functions that are danflict with one another, and
results the best possible compromise between dgscbased on SLA, thereby in-
creasing QoS.

6 Conclusion and Future Works

This study has developed a multi-objective modebpdimize task scheduling
which considers four aspects of the task scheduptgmization problem: task trans-
fer time, task execution cost, power consumptiog, ask queue length (VMs’ work-
load). We have also designed a MOPSO/MOGA-baseatitig to find the optimal
solution for the proposed multi-objective task shilang problem. To evaluate this
method we extended the Cloudsim toolkit by apphM@PSO and MOGA as its task
scheduling algorithms. The optimal solution detemdi by the MOPSO/MOGA-
based algorithm is applied by the bindCloudletToyYmmethod in the Datacenter-
Brocker class of Cloudsim to assign tasks to VMarroptimal way. The experimen-
tal results in the simulation environment show tiet proposed optimization model
has the ability to determine the best trade-oftisohs compared to recent task sche-
duling approaches; it provides the best possiblapromise between objectives and
achieves the highest QoS. The experimental residts show that MOPSO is the
most efficient and reliable algorithm since it rotly determines the optimal task
scheduling pattern with highest QoS, but also olstétie solution in the shortest poss-
ible time. The multi-objective model could be mamt of the virtualization layer.
This would enable data center operators to makeofisieis model for optimal load
balancing. It would also give cloud providers thgportunity to boost their benefits
by optimizing their preferred goals based on tldeitermined objective weights in a



unique optimization model. They also have the gbtlh conduct sensitivity analysis
on the value of optimized objective functions byaebing their preferred weights.
This sensitivity analysis process helps them td fire model with the highest level of
benefit.

In future work, we will also consider task prioesi and types in our optimization
model, and cover more criteria of SLA. In additieve will implement the proposed
model in a real private cloud environment.
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