
Evolutionary Algorithm-based Multi-Objective Task
Scheduling Optimization Model in Cloud Environments

Fahimeh Ramezania, Jie Lua, Javid Taherib, Farookh Khadeer Hussaina

a Decision Support and e-Service Intelligence Lab, Centre for Quantum Computation & Intelli-
gent Systems, School of Software, Faculty of Engineering and Information Technology, Uni-

versity of Technology, Sydney, NSW 2007, Australia
b Center for Distributed and High Performance Computing, School of Information Technolo-

gies, University of Sydney, NSW 2006, Australia
{Fahimeh.Ramezani,Jie.Lu,Farookh.Hussain}@uts.edu.au

javid.taheri@sydney.edu.au

Abstract. Optimizing task scheduling in a distributed heterogeneous computing
environment, which is a nonlinear multi-objective NP-hard problem, plays a
critical role in decreasing service response time and cost, and boosting Quality
of Service (QoS). This paper, considers four conflicting objectives, namely mi-
nimizing task transfer time, task execution cost, power consumption, and task
queue length, to develop a comprehensive multi-objective optimization model
for task scheduling. This model reduces costs from both the customer and pro-
vider perspectives by considering execution and power cost. We evaluate our
model by applying two multi-objective evolutionary algorithms, namely Multi-
Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic
Algorithm (MOGA). To implement the proposed model, we extend the Cloud-
sim toolkit by using MOPSO and MOGA as its task scheduling algorithms
which determine the optimal task arrangement among VMs. The simulation re-
sults show that the proposed multi-objective model finds optimal trade-off solu-
tions amongst the four conflicting objectives, which significantly reduces the
job response time and makespan. This model not only increases QoS but also
decreases the cost to providers. From our experimentation results, we find that
MOPSO is a faster and more accurate evolutionary algorithm than MOGA for
solving such problems.

Keywords: Cloud computing, Task Scheduling, Multi-Objective Particle
Swarm Optimization, Multi-Objective Genetic Algorithm, Jswarm, Cloudsim

1 Introduction

Cloud computing is a service-oriented computing paradigm that has significantly
revolutionized computing by offering three web-based services – Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [1].
SaaS and PaaS users generate several jobs in a cloud environment. To deliver these
services over the World Wide Web, jobs generated by users are submitted to schedu-

lers to be executed by a set of processors (cloud resources). Each job consists of sev-
eral dependent tasks described by a Directed Acyclic Graph (DAG)[2]. In the cloud
environment, the number of tasks in a workflow, as well as the number of available
resources, can grow quickly, especially when virtual resources are allocated. Calculat-
ing all possible task-resource mappings in the cloud environment and selecting the
optimal mapping is not feasible, since the complexity would grow exponentially with
the number of tasks and resources [3]. Therefore, the development of intelligent task
scheduling mechanisms that take into account the efficiency of all the cloud compu-
ting facilities, has become a critical part of current cloud optimization problems and
plays a key role in improving flexible and reliable systems. The main purpose is to
schedule tasks to adaptable resources in accordance with time, which involves estab-
lishing a proper sequence whereby tasks can be executed under transaction logic con-
straints [4].

There are several studies [1, 3-10] that mainly emphasize the minimization of job
makespan and task execution cost in their multi-objective optimization models by
applying evolutionary algorithms. However, these studies fail to consider the need to
minimize power consumption by the cloud infrastructure. Meanwhile, there is a con-
siderable amount of research work that focuses on reducing power consumption in
their proposed bi-objective task scheduling models by minimizing the value of their
developed predefined power consumption objective functions for multi-core proces-
sors and cloud environment [11, 12]. In addition, several studies have been underta-
ken in the area of energy-aware task scheduling by applying the Dynamic Voltage
Frequency Scaling (DVFS) technique [13-16].

To the best of our knowledge, reducing the task queue length of VMs has not
been investigated in proposed task scheduling optimization models. In addition, our
work is the first to minimize task transfer time, task execution cost, power consump-
tion, and task queue length concurrently in a task scheduling optimization model. A
longer task queue results in more waiting time for tasks and a longer response time. In
current task scheduling optimization models that apply evolutionary algorithms with
predefined objective functions, the optimal task scheduling schemas are suggested
based on task and VM properties. In such models, optimizing objective functions
usually occurs by assigning tasks to high performance VMs and neglecting low per-
formance VMs. This leads to the creation of a long task queue for some VMs, while
some other VMs remain idle. Although the properties of low performance VMs do
not optimize the value of objective functions, as they have the lowest number of
CPUs and smallest amount of memory, they can decrease response time by executing
waiting tasks in the queues.

To improve previous research work and address this shortcoming in the existing
literature, a multi-objective model for task scheduling in a cloud environment that
considers four aspects of optimizing cloud utilization is proposed in this study. The
model aims to enhance QoS based on the points of view of both cloud users and pro-
viders by minimizing service response time and price (to raise customer satisfaction),
and minimizing power consumption (to reduce providers’ expenditure). In addition,
we determine an objective function to achieve optimal load balance between re-
sources and control the length of task queues in a cluster. This objective function

3

considers changes in resource capacity (memory and number of CPUs) to avoid as-
signing multiple tasks to one VM’s processors and creating long task queues. To find
the optimal solution for the proposed model, an algorithm is developed based on Mul-
ti-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic
Algorithm (MOGA). Cloudsim toolkit [17] is extended by applying MOPSO and
MOGA as its task scheduling algorithms to implement and evaluate the proposed
model.

This paper focuses on scheduling highly parallel computations such as Bag-of-
Tasks (BoT) applications for SaaS in a cloud environment. In such applications, com-
pletion of one task does not affect the completion of other tasks, and only one task is
executed on a computer processor (CPU) at a time. BoT applications are used for data
mining, massive searches, parameter sweeps, simulations, fractal calculations, compu-
tational biology, and computer imaging [18, 19].

The efficiency of the proposed model is evaluated through different scenarios. Si-
mulation results show that the proposed model significantly increases QoS by consi-
dering more criteria for optimization, and has the ability to satisfy both users and
providers. In fact, the proposed model is able to determine trade-off solutions that
offer the best possible compromises among the optimization objectives, and not only
helps cloud providers to reduce the cost of power consumed, but also helps them to
maintain the expected level of QoS. It has also been found that MOPSO is a faster and
more accurate evolutionary algorithm than MOGA for solving such problems. The
contributions of the paper are summarized as follows:

1) Develop a multi-objective task scheduling model to minimize task transfer time,
task execution cost, power consumption, and task queue length.

2) Develop intelligent methods to estimate: (1) task transfer time, (2) task execution
cost, (3) power consumption based on the number of active Physical Machines
(PMs), and (4) task queue length based on the remaining resource capacity (memo-
ry and idle CPUs).

3) Develop a MOPSO/MOGA-based algorithm to solve the proposed multi-objective
task scheduling problem, and compare two evolutionary algorithms in different
scenarios.

4) Extend the Cloudsim package to evaluate the model using MOPSO and MOGA.

The rest of the paper is organized as follows. In Section 2, related works are pre-
sented. Section 3 illustrates a multi-objective model for task scheduling optimization.
Section 4 presents a developed MOPSO/MOGA-based algorithm to determine the
optimal solution (task scheduling pattern) for the proposed multi-objective model.
The model is evaluated in Section 5. Lastly, the conclusion and future works are pro-
vided in Section 6.

2 Related Works

The task scheduling problem in distributed computing systems is an NP-hard op-
timization problem that also affects QoS in the cloud environment by optimizing ser-

vice cost and service response time. Therefore, the use of a heuristic algorithm en-
sures an acceptable runtime of the scheduling algorithm itself since it significantly
reduces the complexity of the search space. In this regard, Song et al. [5] proposed a
general job selection and allocation framework that utilizes an adaptive filter to select
jobs and a modified heuristic algorithm (Min-Min) to allocate them. Two objec-
tives—maximizing the remaining CPU capacity, and the utilization of resources—and
four criteria—the resource requirements of CPU, memory, hard-disk and network
bandwidth—were considered for the optimization problem. Li et al. [8] applied an
Ant Colony optimization approach to create a better scheduling result with shorter
total-task-finish time and mean-task finish time. Li et al. [6] took resource allocation
patterns into account and proposed a task and resource optimization mechanism. Tay-
al [4] proposed a fuzzy-GA based optimization approach to enhance the accuracy of
GA results for the job scheduling process, which makes a scheduling decision by
evaluating the entire group of tasks in the job queue. Juhnke et al. [3] proposed a mul-
ti-objective scheduling algorithm for cloud-based workflow applications to minimize
cost and execution time by applying the Pareto Archived Evolution Strategy, which is
a type of GA. Lei et al. [9] and Salman et al. [7] developed an optimization model to
optimize task execution time, and showed that the particle swarm optimization (PSO)
algorithm is able to obtain a better schedule than GA in grid computing and distri-
buted systems. Guo [10] also proposed a multi-objective task scheduling model to
minimize task execution time and cost using the PSO algorithm. Taheri et al. [1] con-
sidered the data-files required for jobs from public or private clouds and proposed a
bi-objective job scheduling optimization model to minimize job execution and data
file transfer time using PSO. These studies mainly emphasized the minimization of
the job makespan and task execution cost in their multi-objective optimization models
by applying evolutionary algorithms, and the reduction of power consumption is neg-
lected in such studies.

 Meanwhile, there are lots of works focus on reducing power consumption in their
proposed bi-objective task scheduling models by minimizing the value of their devel-
oped predefined power consumption objective functions for multi-core processors and
cloud environment [11, 12]. Different objective functions have been suggested in
these models for estimating energy consumption [19-21]. Shieh and Pong [11] de-
signed an energy- and transition-aware algorithm to schedule periodic tasks in multi-
core systems considering voltage transition overheads. They suggested an integer
linear programming model to find the optimal power-aware scheduling for specific
task set and core number. Wang et al. [12] developed an energy-aware multi-objective
bi-level programming model based on MapReduce. They considered energy con-
sumption in the data placement process, combined with a local multi-job scheduling
scheme. Their approach has three steps. First, they considered changes in energy con-
sumption along with the performance of servers. Then, their model dynamically ad-
justs data locality based on the current network state. In the last step, they developed
an integer bi-level programming model considering the fact that task-scheduling
schemas depend on data placement patterns.

Several investigations have also been conducted into developing energy-aware
task scheduling algorithms to optimize energy consumption by applying Dynamic

5

Voltage Scaling (DVS) technique [13-16]. In these works, the authors determined
task-slack time by considering critical and non-critical paths in job DAGs. They then
extended non-critical task execution times by scaling down the voltage frequency of
corresponding processors. In other works, energy is reduced by sending non-critical
tasks to the most cost efficient VMs [15].

Although a significant number of studies have been carried out in the area of pow-
er consumption reduction in a cloud/grid environment, the reduction of task queue
length in a cluster by considering the workload capacity of VMs has been neglected in
earlier multi-objective task scheduling models. Task queue length is an effective fac-
tor for reducing job makespan because it determines the wait and finish time of tasks.
In addition, the following four optimization objectives: (1) task transfer time, (2) task
execution cost, (3) power consumption, and (4) the task queue length of VMs, have
not been considered in the previous works to develop a comprehensive task schedul-
ing model.

3 Problem Formulation

A cloud environment dynamically receives a large number of tasks from its appli-
cations’ users in every portion of each second. These tasks accumulate in several
queues and are then sent to the task schedulers. The task schedulers are responsible
for allocating these tasks to VMs for execution. These VMs which are in turn allo-
cated to PMs (see Fig. 1), have different numbers of virtual CPUs and different mem-
ory size. The task schedulers apply optimization procedures to allocate task among
VMs to achieve optimal resource utilization in a cloud environment. The scheduling
process repeats dynamically to schedule every set of arrival tasks among VMs. Con-
sidering this fact that independent users arbitrarily send tasks to cloud environment,
the number and type of tasks in each queue may significantly change from one sche-
duling to another.

To create a higher level of resource utilization while minimizing cost and max-
imizing QoS, we develop a multi-objective model for optimizing task scheduling that
considers four aspects of the task scheduling optimization problem: task execution
cost, task transfer time, task queue length and power consumption. The variables that
are applied to formulate this multi-objective model are defined in Table 1.

Figure 1. Cloud objects and their relations

Table 1. Definitions of Variables

Symbol Definition

n The number of arrival tasks

T The set of arrival tasks = {t1, t2, …, tn}

DEik
The amount of data (MB) that task i assigns to VMk to be executed = (taski data length + taski
output size)

DTik The amount of data (MB) needing to be transferred = taski file size

tmj The amount of memory (MB) required for executing task j

tcj The number of CPUs required for executing task j

Texek The total task execution time on VMk

m The number of VMs

VMj Virtual Machine j, j={1, 2, …, m}

VMmk The amount of memory of VMk (MB ≈ 0.001 GB)

VMck The number of CPUs in VMk

Nk
aCPU The number of active CPUs on VMk

VMbwk The bandwidth of VMk (Mb/s)

VMk
mips VM computing speed (Million Instructions Per Second)

RVMmk
 The amount of available memory on VMk

RVMck The number of available CPUs on VMk

NPM The number of PMs in cloud

NaPM The number of active PMs in cloud

Svmz The set of VMs located on the zth PM = ��|VM� ϵ 	th PM, �	 ∈ �1,2, … , ���}}
cp The number of cloud providers

Cp Maximum capacity for provider p

SPp The set of VMs belonging to pth provider =�� | VM� ϵ �th Cloud provider, �� ∈ �1,2, … , "#}$
Pcostp The cost of one unit CPUs for pth provider (AUD/hour)

xij 1 if task i is assigned to VMk and 0, otherwise

Note: Task output size is the amount of data that each task produces during its execution and need to be
executed by its subsequent tasks

Task Scheduler

Application 1 Application 2 Application 3 Application n
Users

Arrival
Tasks

VMs

PMs

Scheduled
Tasks

Queue 1 Queue 2 Queue 3 Queue m

…

…

7

3.1 Tasks Transfer Time

We apply and improve the formula proposed in [10] to estimate the total task
transfer time as follows:

%&'()* = , , -./ ∗ 1%./

2345� ∗ (1
8)

9

.:;

<

/:;
 (1)

The coefficient 1/8 is used to convert Mb to MB.

3.2 Task Execution Cost

In this paper, the task execution cost (AUD per hour) for provider p is calculated

as follows:

=>->? = , �"@*&? ∗ %>->/
/∈A�B

 (2)

where, %>->/ is the estimated execution time of assigned tasks to VMk in hour, and
�"@*&? is the cost of one unit CPUs for pth provider in AUD per hour. In this formu-
la, the total task execution time in each VM belonging to provider p is calculated.
This value is then multiplied by the provider’s price for using unit CPU.

Total task execution time in VMk is calculated as follows:

%>->/ = 1
3600 ∗ , -./

9

.:;
∗ 1F./

VMGHIJ� (3)

We assume the same price for all CPUs in a VM; therefore, task execution se-
quence and scheduling schema in each VM, are not considered in this function. For
instance, in a VM with three CPUs, the cost of assigning three tasks to three different
CPUs will be the same as the cost of assigning the execution of three tasks to one
CPU.

Finally, the total task execution cost for all providers is determined as:

=>-> = , =>->?
K?

?:;
 (4)

3.3 Power Consumption

Reducing power consumption in large scale computing systems such as grid and
cloud environments has been investigated as an important contributor to the reduction
of operating costs and diverse environmental impacts.

Several researches have been completed in the area of power consumption reduc-
tion through the proposal of power-aware multi-objective task scheduling models for

multi-core processors, grid and cloud environments [11, 12]. In these models, a varie-
ty of linear and non-linear objective functions have been suggested to estimate power
consumption based on task scheduling patterns [19-21]. All these models have been
developed based on the fact that the energy will be reduced when the PM is either off
or in idle mode. It has also been proved by Buyya et al. [20, 22] that an idle server
consumes around 70% of the power compared to a fully utilized server. In a nutshell,
previous studies show that having fewer active CPUs and PMs leads to lower power
consumption in a cluster.

Considering this fact, instead of estimating total energy consumption—which can
be exactly determined in a real cluster after scheduling and executing tasks— in this
study we minimize the ratio of active PMs and CPUs to all available PMs and CPUs
to reduce power consumption. To do this, the optimization model avoids choosing
VMs on idle PMs as destinations for scheduled tasks and consequently reduces con-
sumed power in the corresponding cloud cluster. Equation 5 is then developed based
on this theory as an objective function for our optimization model. Using this, the
percentage of active PMs and CPUs is determined as a measure for reducing power
consumption as:

�@5>'= = (�M�� + µ ∑ �MQ�R/</:;)
(��� + µ ∑ VMc�)</:; (5)

where NVWXY� is the number of active CPUs in VM�. To calculate NVWXY� we consider
the fact that the number of tasks assigned to VM� may be less than the number of
CPUs in VM�, or may exceed the maximum CPU number in this VM. Therefore,
 NVWXY� is equal to the minimum value between the total number of tasks assigned to
VM� and the total number of CPUs in this VM as:

 �(=�Z� = min (∑ -./9.:; , VMc�) (6)

The number of active PMs in all iterations (NVX]) is estimated based on the num-
ber of active VMs on each PM. The number of activated VMs is calculated based on
the number of tasks assigned to them. If at least one task assigned to VM� is located
on PM^, this VM will be activated, thus its corresponding PM should be turned on and
activated as well. As a result, the number of active PM is determined using the fol-
lowing formula:

�M�� = , min(, -./

9

.:;
, 1) (7)

/∈A`<a

where ∑ -./9.:; is the number of tasks assigned to CPUs of VM�.

We also prove that minimizing Equation 5 reduces power consumption in the

cloud cluster. To achieve this, we firstly determine power consumption for each fully
utilized PM as follows based on this fact that the power consumed by PM increase by
the number of its active CPUs:

�5bcd(�3) = �50	 + e �=�Z 	 (8)

9

where �50	 is the amount of power that �3	 consumes when all its CPUs are
idle, �Q�Rf is the number of CPUs of �3	, and α is the amount of extra consumed
power above �50	 for every active CPU of �3	. Using this, the value of e is:

 e = �5hij(�3f) − �5lf

 �Q�Rf (9)

Since we have homogenous PMs in our cluster, all the PMs in this cluster have the
same value for e and �5l. Therefore, the total amount of consumed power in this
cluster can be determined as follows:

�5bcd(=dc*&>') = , �5bcd(�3)
��3

	=1
= , �50	

��3

	=1
+ e , �=�Z	 (10)

��3

	=1

then

�5bcd(=dc*&>') = �50	 ∗ ��3 + e ∗ �=�Z (11)

where �=�Z is the total number of CPUs in the cluster. On the other hand, �Q�R =
∑ VMc�</:; . Using this �5bcd(=dc*&>') is calculated as:

�5bcd(=dc*&>') = �50	 ∗ ��3 + e ∗ , VMck (12)
o

�=1

By applying the same logic, the value of consumed power by active PMs and CPUs in
this cluster is calculated as follows:

�5("&pq>(=dc*&>') = �50	 ∗ �(�3 + e ∗ , �(=�Z� (13)
o

�=1

Using Equations 12 and 13, the ratio of consumed power in the cluster for each task
scheduling pattern can be calculated as:

�5MKr.`s(=dc*&>')
�5hij(=dc*&>') = �5lf ∗ �M�� + e ∗ ∑ �MQ�R/</:;

�5lf ∗ ��� + e ∗ ∑ VMc�</:;
 (14)

=
�50	 (�(�3 + e

�50	
∗ ∑ �(=�Z�)o�=1

�50	 (��3 + e
�50	

∗ ∑ VMcko
�=1)

 (15)

= (�M�� + µ ∑ �MQ�R/</:;)
(��� + µ ∑ VMc�)</:; = �@5>'= (16)

where µ = t
�uva

 . For instance, for Altix XE320 with 16 number of CPUs,

�5bcd(�3) = 115�5, and �50 = 40�5 [23], µ is equal to 0.1.

3.4 Length of VM Task Queues

If, in a possible best solution of the multi-objective task scheduling pattern, the
number of tasks assigned to VMk exceeds the number of its CPUs, extra tasks will be
allocated to VMk’s task queue (see Fig. 2). In this model, we consider another objec-
tive function to optimize the task scheduling pattern by minimizing the length of VM
task queues. This will reduce the task makespan and response time, as fewer tasks
will be located in long queues and in waiting mode.

 Figure 2. A sample for task scheduling pattern among VMs

The following objective is proposed to minimize the number of tasks in queues
which would be created in any suggested possible optimal task scheduling pattern:

γ� = , -./ ∗ 1F./
(x23o�) ∗ (x23"�)

9

.:;
 (17)

where,

x23</ = 23o� − y∑ -z�pz=1 ∗ &oz{ (18)

 x23K/ = 23"� − y∑ -z�pz=1 ∗ &"z{ (19)

and y∑ -|/.|:; ∗ &o|{ and y∑ -|/.|:; ∗ &"|{ are the total amount of memory and number

of CPUs required to execute the task previously assigned to 23/.
To calculate γ�, the formula that was proposed in [10, 24] is improved by consi-

dering changes in the available capacity (CPU and memory) of the VMs after new
tasks have been assigned to them. Equation 17 indicates that scheduling the task i
to 23/—which not only yields increasing DEH�, but also reduces the amount of avail-
able CPU and memory of the corresponding VM— negatively affects 23/ ’s perfor-
mance and execution time of its tasks. We have applied this formula to control the
number of scheduled tasks to each VM and reduce the length of their task queue.

In Equation 17, 23o/ ≤ y∑ -|/.|:; ∗ &o|{ and/or 23"/ ≤ y∑ -|/.|:; ∗ &"|{ imp-
ly that there is no available memory or CPU in 23/ to execute extra tasks. In this
situation, if x23</ and/or x23K/ have a negative value, they will be multiplied to a
small value (-10-3), and if each of them is equal to zero, the value of 10-3 will be added
to them. Since the values of x23</ and x23K/ are multiplied by each other, this will
increase the value of γ� dramatically whenever one of them equals zero or has a nega-

t1
CPUs

VMs

t3 t5 t2 t4

t6

t11

t13

t7

t9

t8

t12

t10

t14

t15

Queues

11

tive value. Therefore, the probability of choosing this pattern as a possible optimal
solution will be decreased. This prevents the assignation of tasks to VMs without
available resources. In fact, coefficient γ� controls the number of tasks assigned to
VM� to avoid creating a queue of tasks to be executed on 23/, and maximizes its
performance. According to this, for all iterations, after tasks have been assigned to
VMs, the amount of memory of VMs that remains and the number of idle CPUs in
each VM, are calculated as the available capacity of VMs to execute arrival tasks. The
following formula is then used as an optimization objective in our proposed model to
minimize VM task queue length and optimize the load balance:

Γ = , γ�

<

/:;
 (20)

3.5 The Multi-Objective Problem

The multi-objective task scheduling optimization model is described in this section
based on predefined objective functions to minimize task transfer time, task execution
cost, power consumption and task queue length, as follows:

Problem:

op) b�.<s = %&'()* (21)
op) bQ��r = =>-> (22)
op) b��us�Qi9�i<?r.�9 = �@5>'= (23)
op) b�M�/�isis = Γ (24)

Subject to

, -./ = 1, ∀ p = 1, … ,)
G

/:;

-./ ∈ �0,1}, ∀p = 1, . . ,) & � = 1, … , o
0 ≤ '? ≤ =�? , ∀# = 1,2, … , "#
�M�� ≤ ���
�M�� , ��� ≠ 0

4 Multi-Objective Task Scheduling Solution

The preliminary definition and explanation of MOPSO and MOGA methods are
provided in this section. A MOPSO/MOGA-based algorithm for determining the op-
timal solution for our proposed model in Section 3 is also developed.

4.1 The Multi-Objective Particle Swarm Optimization Method

In majority of optimization problems, the objective functions are in conflict with
each other and there is not unique solution for them. Therefore, the goal is to find

good trade-off solutions that represent the best possible compromises among the ob-
jectives [25]. A multi-objective optimization problem is defined as follows:

Min F��(x��) = �f;(x��), f�(x��), … , f�(x��)� (25)

where �� = (-;, -�, … , -/) is the vector of decision variables; b.: x9 → x, p =
1, … , � are the objective functions. Let particle ��; = (-;, -�, … , -/) represent a solu-
tion to (1). A solution ��� dominates ��; if b|y��;{ ≥ b|y��� { for all j=1,..,k and

b|y��;{ > b|y��� { for at least one j=1,…,k. A feasible solution ��; is called Pareto

optimal (non-dominated) if there is no other feasible solution ��� that dominates it.
The set of all objective vectors �y��;{ corresponding to the Pareto optimal solutions is
called the Pareto front (P*). Thus, the aim is to determine the Pareto optimal set from
the set F of all the decision variable vectors (particles) [26-29].

In the PSO method, particles are flown through hyper-dimensional search space.
Changes to the position of the particles within the search space are based on the so-
cial–psychological tendency of individuals to emulate the success of other individu-
als. The position of each particle is changed according to its own experience and that
of its neighbors. Let ��.(&) denote the position of particle i, at iteration t. The position
of ��.(&) is changed by adding a velocity 2��.(& + 1) as follows:

X���H(t + 1) = X���H(t) + V���H(t + 1) (26)

The velocity vector reflects the socially exchanged information and, in general, is
defined in the following way:

V���H(t + 1) = WV���H(t) + C;r; �x��I��J�� − X���H(t) + C�r� �x��¡��J�� − X���H(t) (27)

where C1 is the cognitive learning factor and represents the attraction that a particle
has towards its own success; C2 is the social learning factor and represents the attrac-
tion that a particle has towards the success of the entire swarm; W is the inertia
weight, which is employed to control the impact of the previous history of velocities
on the current velocity of a given particle; x��I��J�� is the personal best position of the
particle i; x��I��J� is the position of the best particle of the entire swarm; and r;, r� ∈
�0,1� are random values [25]. In MOPSO all Pareto optimal solutions are stored in an
archive and x��¡��J�� is chosen from this archive.

4.2 The Multi-Objective Genetic Algorithm

A multi-objective genetic algorithm (MOGA) is concerned with the minimization
of multiple objective functions that are subject to a set of constraints. In this algo-
rithm, an initial population whose scale is N is first randomly generated. The first
generation child population is gained through non-dominated sorting and basic opera-
tions such as selection, crossover and mutation [30]. Then, from the second genera-
tion on, the parent population and the child population are merged and sorted based
on fast non-dominated solutions. The crowding distance between individuals on each

13

non-dominated layer is calculated. According to the non-dominant relationship and
crowding distance between individuals, appropriate individuals for forming a new
parent population are selected. Lastly, a new child population is generated through
basic operations of the genetic algorithm which iterates until the conditions of the
process end can be met [31].

4.3 A MOPSO/MOGA-Based Algorithm

A MOPSO/MOGA-based algorithm is proposed to solve the proposed multi-
objective task scheduling problem presented in Section 3. In the task scheduling mod-
el, there are n tasks �&; �, &� , … , �&9 } that should be assigned to m VMs
�qo; �, qo� , … , �qo< } to be executed (Table 2). MOPSO and MOGA methods are
used to find the optimal task scheduling pattern, while minimizing task transfer time,
task execution cost, power consumption and task queue length. All optimal suggested
solutions (particle position/gene pattern) determined by MOPSO/MOGA techniques,
are illustrated as ��H = (-;, -�, … , -9) vectors with continuous values, but their corres-
ponding discrete values are needed to determine the ID of the VM chosen to execute
tasks. Therefore, these continuous vectors ��H are converted to discrete vectors
¢(��H) = (¢;, ¢�, … , ¢9) by applying the Small Position Value (SPV) rule [10].

Table 2. Task scheduling pattern.

Particle position (or gene pattern) in Table 2 are a possible solution, i.e., ¢(��.) =
(¢;, ¢�, … , ¢9) = (7, 4, 5, 7, 3, . . , o), after converting the continuous values to dis-
crete values. According to this, VMs: vm7, vm4, vm5, vm7, …, and vmm are chosen to
execute t1, t2, t3, t4, …, and tn, respectively. Considering this fact, every particle/gene
in our MOPSO/MOGA model has n dimensions to assign n tasks to m VMs. Every
particle/gene will be assessed considering the predefined objective functions and all
Pareto optimal solutions stored in an archive. In this paper, it is assumed that:

£@¤ y��.{ = − , ¥|b|y��.{
¦

|:;
, �∀ ��. ∈ Archive} (28)

where, q is the number of objective functions and Wj is the preference weight for
every objective function (b|y��.{). Pareto optimal solutions (archive members) are
then ranked on the basis of the number of functions they minimize, and the maximum
value of QoS. The top-ranking solution is chosen as the possible optimal solution
(��¨©s�rª).

The first population in evolutionary algorithms is usually initialized randomly. In
this paper, the first population is determined using VMs and task properties to accele-
rate the performance of MOPSO and MOGA. Evolutionary algorithms are therefore

Tasks t1 t2 t3 t4 t5 … tn

VM number = Particle position/gene
pattern

vm7 vm4 vm5 vm7 vm3 … vmm

expected to find the best solution faster because they start from the near best solution
pattern. To achieve this, we select the VMs with a greater number of CPUs and a
large amount of memory on active PMs as the new hosts for excess tasks. We apply
the roulette wheel technique as it is applied in [2] to produce the first population for
both MOPSO and MOGA. The Roulette Wheel selection method randomly selects a
given choice from several options, based on the value of their winning probability. In
this technique, the slots of a roulette wheel are first filled with the winning chance of
the options, then the wheel is spun and an option is selected [2]. Equations 29 and 30
are proposed to determine the probability of choosing a task, and a host VM respec-
tively. Then, based on the normalized winning chance, two roulette wheels are gener-
ated for tasks and VMs.

 =ℎ()">_23/ = 23<.?� + 23o/ + (­; ∗ 23"/) + (2345//­�) (29)

=ℎ()">_%(*�. = (1F.//­¯) + 1%./ (30)
where, coefficients ­;, ­�, and ­¯ have been determined based on the value of task
and VM properties to make the same impact for all properties in determining winning
chance. In this study, we have determined ­;= ­�=100 and ­¯=1000 based on the data
given in Tables 3 and 4. Fig. 3 shows a roulette wheel for VMs that is determined
based on the information in Table 3.

Figure 3. VM Roulette Wheel (Winning Probability)

After creating roulette wheels, a task and a VM are selected from the task and VM
roulette wheels respectively as ti and VMj . Then the selected task (ti) is deleted from
task set, and a new task roulette wheel is generated for the new set of tasks. In addi-
tion, VMj properties are updated by applying the following equations:

 °q(pd(4d>_o>o@'±²�³ = 23o| − &o. (31)

 °q(pd(4d>_=�Z²�³ = 23"| − &". (32)

If the value of °q(pd(4d>_o>o@'±²�³ or °q(pd(4d>_=�Z²�³ is less than zero, this

means VMj has no available capacity to execute additional tasks. This VM is therefore
deleted from the VM set and a new VM roulette wheel is generated for the new set of
VMs based on their available capacity. After selecting all VMs as the new host for
executing a set of tasks, and deleting those from the available set of VMs, all VMs are

32%

13%27%

14%

14% VMs 1-4

VMs 5-8

VMs 9-12

VMs 13-16

VMs 17-20

15

applied again to execute the remaining tasks. These tasks are allocated to the VM task
queues in waiting mode.
The corresponding steps for implementing the roulette wheel technique to initialize
the first population for MOGA and MOPSO are described in Steps 2 of the
MOPSO/MOGA-based algorithm, which is summarized as follows:

Step 1. Collect data and information about a possible set of host VMs and set of arriv-
al tasks

Step 2. Initialize population: Determine new population (position and velocity of par-
ticles in MOPSO, or genes’ pattern in MOGA) based on VM and task proper-
ties by applying roulette wheel technique as follows:
Step 2.1. Create the task and VM roulette wheels based on their properties by

applying Equations 29 and 30
Step 2.2. =@c)&²� = o
Step 2.3. For i=1 to n

Step 2.3.1. Select a task (ti) from task roulette wheel
Step 2.3.2. Select a VM (VMj) from VM roulette wheel
Step 2.3.3. Delete ti from the task set
Step 2.3.4. Create the task roulette wheel based on new task set and

their properties by applying Equation 30.
Step 2.3.5. Calculate available VM memory and CPU by applying

Equations 31 and 32
Step 2.3.6. If °q(pd(4d>_o>o@'±²�³ ≤ 0 or °q(pd(4d>_=�Z²�³ ≤ 0 then

{
Delete VMj from VM set,

 =@c)&²� = =@c)&²� − 1,
If =@c)&²� = 0 then

{
Create new VM roulette wheel using original VM
properties by applying Equation 29
=@c)&²� = o

}
}

else (if Step 2.3.6), create new VM roulette wheel based on avail-
able VM capacities by applying Equation 29

Next i
Step 3. Initialize an archive in which members are non-dominated solutions (n dimen-

sions particles/genes whose position/pattern is a Pareto optimal solution)

Step 4. Convert continuous values of vector ��. to discrete vector ¢(��.) using the SPV
rule to determine the VM allocated for every arrival task.

Step 5. Determine the value of 1F.|, 1%.|, 23o|, 23c|, �"@*&?, VMGHIJ� , �M��,

�MQ�R/ , x23</ , x23K/ and 2345| based on ¢(��.) to calculate the value of

every fitness function.

Step 6. Evaluate population according to defined fitness functions:

• Minimize task transfer time (Equation (21))

• Minimize task execution cost (Equation (22))

• Minimize power consumption (Equation (23))

• Minimize VM task queue length (Equation (24))
Step 7. Update the archive content by deleting dominated members from archive and

store the Pareto optimal (non-dominated) solutions in the archive.
Step 8. Sort archive members based on the number of minimized functions and the

maximum value of £@¤ y��{

Step 9. Produce new population using MOPSO:

Step 9.1. Choose ��¨©s�r from top sorted members in the archive

Step 9.2. Choose ��?©s�rªfor every particle: If the current position of the particle

dominates best position of the particle, use current position as new
best position for the particle

Step 9.3. Compute inertia weight and learning factors
Step 9.4. Compute new position of the particles and new velocity based on

MOPSO formulations (Equations (26) and (27))
Step 10. Produce new population using MOGA:

Step 8.1. Reproduce best individuals using crossover and mutation
Step 11. If maximum iteration is satisfied, then

Step 11.1. Output ¢(��¨©s�r) position for both MOPSO and MOGA as their

best task scheduling patterns
 Else

Step 11.2. Go to Step 3

5 Simulation Results

This section analyzes the efficiency of the proposed model. In Section 5.1 we first
describe the simulation environment. Then, in Section 5.2 we explain how the Cloud-
Sim package [17] is extended to implement the method, and lastly, the performance
and evaluation is presented in Section 5.3.

5.1 Environment Description

We design the simulation environment by assuming that we have 15 PMs (data
centers in CloudSim), 20 VMs, 3 cloud providers and 200 arrival tasks (cloudlets).
Data and information about VMs and tasks (cloudlets) are summarized in Tables 3
and 4:

17

Table 3. Properties of VMs.

VM Id MIPS
VM memory

(Ram)
Bandwidth

The number of
CPUs

VMM name

1-4 300 512 10000 4 Xen
5-8 200 256 1000 1 Xen
9-12 300 512 10000 2 Xen
13-16 200 256 1000 1 Xen
17-20 200 256 1000 1 Xen

Table 4. Properties of tasks.

Task Id Length File Size Output Size The number of required CPUs

1-20 250000 300 300 1
21-40 25000 200 300 1
41-60 250000 300 300 1
61-80 25000 200 300 1
81-100 250000 300 300 1
101-120 250000 300 300 1
121-140 25000 200 300 1
141-160 250000 300 300 1
161-180 250000 300 300 1
181-200 25000 200 300 1

5.2 Implementation

To implement the proposed method, we extend the Cloudsim toolkit [17] by using
the MOPSO (MO-Jswarm package [32]) and MOGA (NSGA-II [33]) algorithms as
the task scheduling optimization algorithms. The bindCloudletToVm() method in the
DatacenterBrocker class of Cloudsim is responsible for allocating tasks to VMs ac-
cording to the optimal task arrangement that results from the developed
MOPSO/MOGA-based algorithms.

The objective functions in the proposed multi-objective task scheduling model
are applied as the fitness functions in MOPSO and MOGA. In our model, we have
200 particles and the optimal results are obtained after the 2000th iteration of the
MOPSO/MOGA algorithms.

5.3 Evaluation

To evaluate the proposed method, we first perform the simulation under the envi-
ronment that we defined in Section 5.1. We evaluate our proposed multi-objective
method of solving task scheduling problems with conflicting objectives by consider-
ing optimization time, cost, power consumption and workload from the following
aspects:

� Compare the efficiency of the proposed four-objectives model with current bi-
objective models in terms of optimizing cloud utilization, QoS and Job makes-
pan.

� Compare the efficiency of MOPSO and MOGA in speed and reliability to find
the highest value of QoS in different iterations.

To make the first comparison, we compare our method with the optimization
methods proposed in previous works [10, 32, 34] in which just two aspects of QoS
optimization were considered: (1) task transfer time, and (2) execution cost. The VM
workload situation is also considered in this study to avoid multiple tasks being as-
signed to one VM, reducing its performance and increasing service response time.
Our optimization model also has the objective of reducing the number of active PMs
and busy CPUs to decrease power consumption and provider costs.

The graphs for task transfer time (fTime), task execution cost (fCost), power con-
sumption ratio (fPowerConsumption), and VM task queue length (fTaskQueue) obtained from
the MOPSO/MOGA-based algorithm in 2000 iterations are illustrated in Figs. 4 and
5. The values of the axis on the right show the range of values of fTaskQueue.

Figure 4. The value of objective functions: Task transfer time, task execution cost, VM task
queue length, and power consumption ratio using MOPSO

Figure 5. The value of objective functions: Task transfer time, task execution cost, VMs tasks
queue length, and power consumption ratio using MOGA

To estimate the QoS that results from every method, Equation 33 is utilized by as-
suming the same preference weight (w1= w2= w3=1) for time, cost and power con-
sumption. We assign preference weight (w4=10-3) or (w4=1) for a task queue determi-
nator function based on its value. As discussed in Section 3.4, a small value -10-3 is
multiplied by x23</ or x23K/ to increase the value of γ� when the required capacity
by arrival tasks exceeds the amount of available capacity in the target VM. This pre-
vents sending multiple tasks to a single VM. Therefore, in cases where a suggested

0

20

40

60

80

100

120

140

160

180

0

0.2

0.4

0.6

0.8

1

1.2

1

4
4

8
7

1
3

0

1
7

3

2
1

6

2
5

9

3
0

2

3
4

5

3
8

8

4
3

1

4
7

4

5
1

7

5
6

0

6
0

3

6
4

6

6
8

9

7
3

2

7
7

5

8
1

8

8
6

1

9
0

4

9
4

7

9
9

0

1
0

3
3

1
0

7
6

1
1

1
9

1
1

6
2

1
2

0
5

1
2

4
8

1
2

9
1

1
3

3
4

1
3

7
7

1
4

2
0

1
4

6
3

1
5

0
6

1
5

4
9

1
5

9
2

1
6

3
5

1
6

7
8

1
7

2
1

1
7

6
4

1
8

0
7

1
8

5
0

1
8

9
3

1
9

3
6

1
9

7
9

2
0

2
2

F1=Transfer Time (s) F2=Execution Cost (AUD/h) F3= Power Consumption Ratio F4=Task Queue Length

0

100

200

300

400

0

0.5

1

1.5

2

2.5

1

4
3

8
5

1
2

7

1
6

9

2
1

1

2
5

3

2
9

5

3
3

7

3
7

9

4
2

1

4
6

3

5
0

5

5
4

7

5
8

9

6
3

1

6
7

3

7
1

5

7
5

7

7
9

9

8
4

1

8
8

3

9
2

5

9
6

7

1
0

0
9

1
0

5
1

1
0

9
3

1
1

3
5

1
1

7
7

1
2

1
9

1
2

6
1

1
3

0
3

1
3

4
5

1
3

8
7

1
4

2
9

1
4

7
1

1
5

1
3

1
5

5
5

1
5

9
7

1
6

3
9

1
6

8
1

1
7

2
3

1
7

6
5

1
8

0
7

1
8

4
9

1
8

9
1

1
9

3
3

1
9

7
5

F1=Transfer Time (s) F2=Execution Cost (AUD/h) F3= Power Consumption Ratio F4=Task Queue Length

19

possible optimal task scheduling pattern assigns multiple tasks to certain VMs, the
capacity required for executing the tasks assigned to those VMs would exceed the
capacity of the VMs, then the value of fTaskQueue would be more than 103. In these situ-
ations w4=10-3 will be used in Equation 33, otherwise w4=1. The value 10-3 for prefe-
rence weight of fTaskQueue is determined as an aligner to make its value coherent with
the other objective values and neutralize the effect of -10-3 coefficient in Equation 17.
As the optimal values of these conflicting objectives are independent of one another,
there is no need to normalize their weights in the QoS equation (Equation 28). How-
ever, as objective functions have different measurement units, we need to normalize
their values to be able to calculate the QoS. To do this, we convert the range of objec-
tive functions to (0,1). For instance, the maximum value for the objective function
b�.<s produced by MOPSO and MOGA is 2300 seconds (see Figs. 4 and 5). There-
fore, we convert b�.<s ranging (0, 2300) to (0,1). As a result, the normalized value of
b�.<s i.e. �b%po> for MOPSO is 0.11. The normalized value for all objective functions
is calculated as �b%po>, �bQ��r, �b�M�/�isis and �b��us�Q�9�i<?r.�9 for all scenarios to
determine the estimated value of QoS. In addition, considering the fact that we mi-
nimize the objective functions that have a negative impact on QoS, this method max-
imizes £@¤ y��{ as follows:

£@¤ y��{ = −�w; ∗ �b�.<s + w� ∗ �bQ��r + w¯ ∗ �b��us�Q�9�i<?r.�9 + wµ ∗ �b�M�/�isis� (33)

MOPSO and MOGA are applied to optimize both the four-objective model and
bi-objective model. In a bi-objective model, the optimal value of fTime and fCost is de-
termined by MOPSO and MOGA, then the corresponding value of fTaskQueue and fPower-

Consumption is calculated by applying the optimal pattern of distribution tasks over VMs
that results from these optimization algorithms. We run the algorithms 25 times for
each comparison section, and the results are almost the same. The optimal results of
all methods are summarized in Table 5.

Table 5. Comparison results.

M
od

el

A
lg

or
it

hm
s

T
ra

ns
fe

r
T

im
e

(s
)

E
xe

cu
ti

on
 C

os
t

(A
U

D
/h

)

P
ow

er
 C

on
su

m
p-

ti
on

 R
at

io

T
as

k
Q

ue
ue

 L
en

gt
h

C
oe

ff
ic

ie
nt

E
st

im
at

ed

Q
oS

M
ax

 E
xe

cu
ti

on

T
im

e
(M

ak
es

pa
n)

(s
)

It
er

at
io

n

N
um

be
r

of
 I

dl
e

V
M

s

4
ob

je
ct

iv
es

 MOPSO 260 71 42% 116.00 -1.82 4400 49 45%

MOGA 260 72 71% 117.18 -2.21 5100 992 40%

2
ob

je
ct

iv
es

 MOPSO 260 65 71% 156.2 -2.24 5400 148 40%

MOGA 260 65 71% 156.2 -2.24 5400 709 40%

As can be seen from the comparison results in Table 5, the estimated QoS in the
proposed model with four objectives achieves the highest QoS compared to bi-
objective models that apply both MOPSO and MOGA. In addition, in the four objec-
tive models, the MOPSO determines the highest QoS in the lowest number of itera-
tions (in 49th iteration) compared to MOGA, which determines its best possible solu-
tion in 992th iteration. MOPSO in bi-objective models is also faster than MOGA. As
can be seen, the optimal load balancing between resources determined by our model
also has the shortest makespan. This means the model has the ability to offer a task
scheduling pattern with the lowest response time. In addition, the proposed model
achieves lower power consumption and task queue length than the bi-objective mod-
els; however, the number of idle VMs in the cluster in all scenarios is almost the
same.

Better load balancing leads to the highest level of power consumption because op-
timal load balancing requires a higher number of active PMs and CPUs. In this case,
preference weights of the conflicting objectives fTaskQueue and fPowerConsumption can be
changed according to the Service Level Agreement (SLA) to determine optimal task
scheduling that satisfies the SLA criteria.

As a result, the proposed model that considers more aspects of task scheduling op-
timization, determines an optimal trade-off solution for the multi-objective task sche-
duling problem with objective functions that are in conflict with one another, and
results the best possible compromise between objectives based on SLA, thereby in-
creasing QoS.

6 Conclusion and Future Works

This study has developed a multi-objective model to optimize task scheduling
which considers four aspects of the task scheduling optimization problem: task trans-
fer time, task execution cost, power consumption, and task queue length (VMs’ work-
load). We have also designed a MOPSO/MOGA-based algorithm to find the optimal
solution for the proposed multi-objective task scheduling problem. To evaluate this
method we extended the Cloudsim toolkit by applying MOPSO and MOGA as its task
scheduling algorithms. The optimal solution determined by the MOPSO/MOGA-
based algorithm is applied by the bindCloudletToVm() method in the Datacenter-
Brocker class of Cloudsim to assign tasks to VMs in an optimal way. The experimen-
tal results in the simulation environment show that the proposed optimization model
has the ability to determine the best trade-off solutions compared to recent task sche-
duling approaches; it provides the best possible compromise between objectives and
achieves the highest QoS. The experimental results also show that MOPSO is the
most efficient and reliable algorithm since it not only determines the optimal task
scheduling pattern with highest QoS, but also obtains the solution in the shortest poss-
ible time. The multi-objective model could be made part of the virtualization layer.
This would enable data center operators to make use of this model for optimal load
balancing. It would also give cloud providers the opportunity to boost their benefits
by optimizing their preferred goals based on their determined objective weights in a

21

unique optimization model. They also have the ability to conduct sensitivity analysis
on the value of optimized objective functions by changing their preferred weights.
This sensitivity analysis process helps them to find the model with the highest level of
benefit.

In future work, we will also consider task priorities and types in our optimization
model, and cover more criteria of SLA. In addition, we will implement the proposed
model in a real private cloud environment.

Acknowledgment

The work presented in this paper was supported by the Australian Research Council
(ARC) under Discovery Project DP140101366. The Authors also would like to thank
Mr Chaosong Nie for his kind help in implementing the MOGA algorithm.

References

[1] J. Taheri, A. Y. Zomaya, H. J. Siegel and Z. Tari. Pareto frontier for job execution and data
transfer time in hybrid clouds. Future Generation Computer Systems, 2014, vol. 37, pp. 321-
334.
[2] J. Taheri, A. Y. Zomaya, P. Bouvry and S. U. Khan. Hopfield neural network for
simultaneous job scheduling and data replication in grids. Future Generation Computer
Systems, 2013, vol. 29, pp. 1885-1900.
[3] E. Juhnke, T. D¨ornemann, D. B¨ock and B. Freisleben. Multi-objective scheduling of
BPEL workflows in geographically distributed clouds. In 4th IEEE International
Conference on Cloud Computing, 2011, pp. 412-419.
[4] S. Tayal. Tasks Scheduling optimization for the Cloud Computing Systems. International
Journal of Advanced Engineering Sciences and Technologies, 2011, vol. 5, no. 2, pp. 111-115.
[5] B. Song, M. M. Hassan and E. Huh. A novel heuristic-based task selection and allocation
framework in dynamic collaborative cloud service platform. In 2nd IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2010, pp. 360-367.
[6] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin and Z. Gu. Online optimization for scheduling
preemptable tasks on IaaS cloud systems. Journal of Parallel and Distributed Computing,
2012, vol. 72, no. 5, pp. 666-677.
[7] A. Salman, I. Ahmad and S. Al-Madani. Particle swarm optimization for task assignment
problem. Microprocessors and Microsystems, 2002, vol. 26, no. 8, pp. 363-371.
[8] J. Li, J. Peng, X. Cao and H.-y. Li. A task scheduling algorithm based on improved ant
colony optimization in cloud computing environment. Energy Procedia, 2011, vol. 13, pp.
6833-6840.
[9] Z. Lei, C. Yuehui, S. Runyuan, J. Shan and Y. Bo. A task scheduling algorithm based on
PSO for grid computing. International Journal of Computational Intelligence Research, 2008,
vol. 4, no. 1, pp. 37-43.
[10] L. Guo, S. Zhao, S. Shen and C. Jiang. Task Scheduling Optimization in Cloud Computing
Based on Heuristic Algorithm. Journal of Networks, 2012, vol. 7, no. 3, pp. 547-553.

[11] W.-Y. Shieh and C.-C. Pong. Energy and transition-aware runtime task scheduling for
multicore processors. Journal of Parallel and Distributed Computing, 2013, vol. 73, no. 9, pp.
1225-1238.
[12] X. Wang, Y. Wang and Y. Cui. A new multi-objective bi-level programming model for
energy and locality aware multi-job scheduling in cloud computing. Future Generation
Computer Systems, 2014, vol. 36, no. 0, pp. 91-101.
[13] N. B. Rizvandi, J. Taheri and A. Y. Zomaya. Some observations on optimal frequency
selection in DVFS-based energy consumption minimization. Journal of Parallel and
Distributed Computing, 2011, vol. 71, no. 8, pp. 1154-1164.
[14] A. Mahabadi, S. M. Zahedi and A. Khonsari. Reliable energy-aware application mapping
and voltage–frequency island partitioning for GALS-based NoC. Journal of Computer and
System Sciences, 2013, vol. 79, no. 4, pp. 457-474.
[15] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang and J. Wang. Cost-efficient task scheduling
for executing large programs in the cloud. Parallel Computing, 2013, vol. 39, no. 4–5, pp. 177-
188.
[16] L. Wang et al. Energy-aware parallel task scheduling in a cluster. Future Generation
Computer Systems, 2013, vol. 29, no. 7, pp. 1661-1670.
[17] R. N. Calheiros, R. Ranjan, C. A. F. De Rose and R. Buyya. Cloudsim: A novel
framework for modeling and simulation of cloud computing infrastructures and services. Arxiv
preprint arXiv:0903.2525, 2009.
[18] W. Cirne et al. Labs of the world, unite!!! Journal of Grid Computing, 2006, vol. 4, no. 3,
pp. 225-246.
[19] A. Tchernykh, J. E. Pecero, A. Barrondo and E. Schaeffer. Adaptive energy efficient
scheduling in Peer-to-Peer desktop grids. Future Generation Computer Systems, 2014, vol. 36,
no. 0, pp. 209-220.
[20] B. Priya, E. S. Pilli and R. C. Joshi. A survey on energy and power consumption models
for Greener Cloud. In Advance Computing Conference (IACC), 2013 IEEE 3rd International,
2013, IEEE, pp. 76-82.
[21] Y.-w. Zhang and R.-f. Guo. Power-aware scheduling algorithms for sporadic tasks in real-
time systems. Journal of Systems and Software, 2013, vol. 86, no. 10, pp. 2611-2619.
[22] R. Buyya, A. Beloglazov and J. Abawajy. Energy-efficient management of data center
resources for cloud computing: A vision, architectural elements, and open challenges. arXiv
preprint arXiv:1006.0308, 2010.
[23] Top 500 Supercomputing Sited, [Online], Available:
http://www.top500.org/system/176223.
[24] F. Ramezani, J. Lu and F. K. Hussain. Task-Based System Load Balancing in Cloud
Computing Using Particle Swarm Optimization. International Journal of Parallel
Programming, 2013, vol. 42, no. 5, pp. 739-754.
[25] M. J. Mahmoodabadi, A. Bagheri, N. Nariman-zadeh and A. Jamali. A new optimization
algorithm based on a combination of particle swarm optimization, convergence and divergence
operators for single-objective and multi-objective problems. Engineering Optimization, 2012,
vol. 44, no. 10, pp. 1-20.
[26] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, vol. 6, no. 2, pp.
182-197.

23

[27] M. J. Alves. Using MOPSO to solve multiobjective bilevel linear problems. Heidelberg:
Springer, 2012.
[28] Y. Gao, G. Zhang, J. Lu and H.-M. Wee. Particle swarm optimization for bi-level pricing
problems in supply chains. Journal of Global Optimization, 2011, vol. 51, no. 2, pp. 245-254.
[29] J. Lu, G. Zhang and D. Ruan. Multi-objective group decision making: methods, software
and applications with fuzzy set techniques. London: Imperial College Press, 2007.
[30] N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation, 1994, vol. 2, no. 3, pp. 221-248.
[31] Y. Zhang, C. Lu, H. Zhang and J. Han. Active vibration isolation system integrated
optimization based on multi-objective genetic algorithm. In IEEE 2nd International Conference
on Computing, Control and Industrial Engineering (CCIE), 2011, pp. 258-261.
[32] F. Ramezani, J. Lu and F. Hussain. Task scheduling optimization in cloud computing
applying multi-objective particle swarm optimization. International Conference on Service
Oriented Computing (ICSOC), 2013, pp. 237-251.
[33] D. Hadka. MOEA Framework A Free and Open Source Java Framework for
Multiobjective Optimization, [Online], Available: http://www.moeaframework.org/.
[34] H. Liu, A. Abraham, V. Snášel and S. McLoone. Swarm scheduling approaches for work-
flow applications with security constraints in distributed data-intensive computing
environments. Information Sciences, 2012, vol. 192, no. 0, pp. 228-243.

