Skip to main content
Log in

Spatial crowdsourcing based on Web mapping services

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

With the rapid development of mobile Internet and smartphones, crowdsourcing marketplaces has extended to spatial crowdsourcing (SC), where crowd workers perform spatial tasks (i.e., tasks related to a location) in the physical world using their mobile phones. Currently, most of existing spatial crowdsourcing algorithms (e.g., task assignment) assume the underlying road network is given or simply base on Euclidean space. However, in fact, not every spatial crowdsourcing platform has enough resources to possess map data (e.g., the road network and live traffic information) by itself, especially for these that are small or startup companies, while the Euclidean distance is usually not accurate enough for SC processing. To overcome these limitations, we propose a spatial crowdsourcing system based on Web mapping services, i.e., the spatial crowdsourcing platform can subscribe distance, live travel time and detailed route information from Web mapping services through their APIs, and utilize these retrieved map data for SC processing; furthermore, workers and task requesters can also snap their real locations to the locations on the road for privacy protection through the APIs. As retrieving map data from Web mapping services is much more expensive than accessing local data, we take the advantage of the pruning and route sharing approaches to reduce the number of external requests to Web mapping services, and our experimental results have proved their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. https://developers.google.com/maps/documentation/roads/intro

  2. https://msdn.microsoft.com/en-us/library/mt814926.aspx

  3. https://developers.google.com/maps/documentation/roads/intro

  4. https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/calculate-a-distance-matrix

  5. https://developers.google.com/maps/documentation/directions/start

  6. https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/calculate-a-route

  7. https://developers.google.com/maps/terms?hl=en

References

  1. Alarabi, L., Eldawy, A., Alghamdi, R., Mokbel, M.F.: Tareeg: a mapreduce-based system for extracting spatial data from openstreetmap. In: ACM SIGSPATIAL, pp 83–92 (2014)

  2. Alarabi, L., Eldawy, A., Alghamdi, R., Mokbel, M.F.: Tareeg: a mapreduce-based Web service for extracting spatial data from openstreetmap. In: SIGMOD, pp 897–900 (2014)

  3. California Road Network and POI Data Sets: http://www.maproom.psu.edu/dcw/; http://www.usgs.gov/

  4. Cheng, P., Lian, X., Chen, L., Han, J., Zhao, J.: Task assignment on multi-skill oriented spatial crowdsourcing. IEEE Trans. Knowl. Data Eng. 28(8), 2201–2215 (2016)

    Article  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., Yu, T.: Differentially private spatial decompositions. In: ICDE, pp 20–31 (2012)

  7. Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker’s self-selected tasks in spatial crowdsourcing. In: ACM SIGSPATIAL, pp 324–333 (2013)

  8. Deng, D., Shahabi, C., Zhu, L.: Task matching and scheduling for multiple workers in spatial crowdsourcing. In: ACM SIGSPATIAL, p 21 (2015)

  9. Howe, J.: The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)

    Google Scholar 

  10. Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowdsourcing. In: ACM SIGSPATIAL, pp 189–198 (2012)

  11. Kazemi, L., Shahabi, C., Chen, L.: Geotrucrowd: trustworthy query answering with spatial crowdsourcing. In: ACM SIGSPATIAL, pp 314–323 (2013)

  12. Levandoski, J.J., Mokbel, M.F., Khalefa, M.E.: Preference query evaluation over expensive attributes. In: CIKM, pp 319–328 (2010)

  13. Li, Y., Yiu, M.L.: Route-saver: leveraging route apis for accurate and efficient query processing at location-based services. IEEE TKDE 27(1), 235–249 (2015)

    Google Scholar 

  14. Li, Y., Yiu, M.L., Xu, W.: Oriented online route recommendation for spatial crowdsourcing task workers. In: SSTD, pp 137–156 (2015)

  15. Liu, G., Wang, Y., Orgun, M.A., Lim, E.P.: Finding the optimal social trust path for the selection of trustworthy service providers in complex social networks. IEEE Trans. Serv. Comput. 6(2), 152–167 (2011)

    Article  Google Scholar 

  16. Liu, G., Zhu, F., Zheng, K., Liu, A., Li, Z., Zhao, L., Zhou, X.: Tosi: a trust-oriented social influence evaluation method in contextual social networks. Neurocomputing 210, 130–140 (2016)

    Article  Google Scholar 

  17. Liu, A., Li, Z.X., Liu, G.F., Zheng, K., Zhang, M., Li, Q., Zhang, X.: Privacy-preserving task assignment in spatial crowdsourcing. J. Comput. Sci. Technol. 32(5), 905–918 (2017)

    Article  MathSciNet  Google Scholar 

  18. Liu, B., Chen, L., Zhu, X., Zhang, Y., Zhang, C.: Protecting location privacy in spatial crowdsourcing using encrypted data. In: EDBT (2017)

  19. Liu, G., Liu, Y., Zheng, K., Liu, A., Li, Z., Wang, Y., Zhou, X.: Mcs-gpm: multi-constrained simulation based graph pattern matching in contextual social graphs. IEEE Trans. Knowl. Data Eng. 30(6), 1050–1064 (2017)

    Article  Google Scholar 

  20. Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in spatial crowdsourcing with worker and task privacy protection. GeoInformatica 22 (2), 335–362 (2018)

    Article  Google Scholar 

  21. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate gps trajectories. In: ACM SIGSPATIAL, pp 352–361 (2009)

  22. Musthag, M., Ganesan, D.: Labor dynamics in a mobile micro-task market. In: ACM CHI, pp 641–650 (2013)

  23. Pournajaf, L., Xiong, L., Sunderam, V., Xu, X.: Stac: Spatial task assignment for crowd sensing with cloaked participant locations. In: ACM SIGSPATIAL, p 90 (2015)

  24. Quattrone, G., Mashhadi, A., Capra, L.: Mind the map: the impact of culture and economic affluence on crowd-mapping behaviours. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work and Social Computing, pp 934–944 (2014)

  25. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrangement and its variant for online setting. IEEE TKDE 28(9), 2281–2295 (2016)

    Google Scholar 

  26. Singer, Y., Mittal, M.: Pricing mechanisms for crowdsourcing markets. In: WWW, pp 1157–1166 (2013)

  27. Singla, A., Krause, A.: Truthful incentives in crowdsourcing tasks using regret minimization mechanisms. In: WWW, pp 1167–1178 (2013)

  28. The Mashup Category of ProgrammableWeb: http://www.programmableweb.com/category

  29. Thomsen, J.R., Yiu, M.L., Jensen, C.S.: Effective caching of shortest paths for location-based services. In: SIGMOD (2012)

  30. To, H., Ghinita, G., Shahabi, C.: A framework for protecting worker location privacy in spatial crowdsourcing. Proc. VLDB Endow. 7, 919–930 (2014)

    Article  Google Scholar 

  31. To, H., Shahabi, C., Kazemi, L.: A server-assigned spatial crowdsourcing framework. ACM Trans. Spatial Algorithms Syst. 1(1), 2 (2015)

    Article  Google Scholar 

  32. To, H., Ghinita, G., Fan, L., Shahabi, C.: Differentially private location protection for worker datasets in spatial crowdsourcing. IEEE Trans. Mob. Comput. 16(4), 934–949 (2017)

    Google Scholar 

  33. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching in real-time spatial data: experiments and analysis. Proc. VLDB Endow. 9 (12), 1053–1064 (2016)

    Article  Google Scholar 

  34. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation in spatial crowdsourcing. In: ICDE, pp 49–60 (2016)

  35. Tong, Y., Chen, L., Shahabi, C.: Spatial crowdsourcing: challenges, techniques, and applications. Proc. VLDB Endow. 10(12), 1988–1991 (2017)

    Article  Google Scholar 

  36. Wong, R.C.W., Tao, Y., Fu, A.W.C., Xiao, X.: On efficient spatial matching. In: Proceedings of the VLDB Endowment, pp 579–590 (2007)

  37. Xiao, M., Wu, J., Huang, L., Cheng, R., Wang, Y.: Online task assignment for crowdsensing in predictable mobile social networks. IEEE Trans. Mob. Comput. 16(8), 2306–2320 (2016)

    Article  Google Scholar 

  38. Xiao, M., Ma, K., Liu, A., Zhao, H., Li, Z., Zheng, K., Zhou, X.: Sra: secure reverse auction for task assignment in spatial crowdsourcing. IEEE Trans. Knowl. Data Eng. (2019)

  39. Yiu, M.L., Mouratidis, K., Mamoulis, N., et al.: Capacity constrained assignment in spatial databases. In: SIGMOD, pp 15–28 (2008)

  40. Zhai, D., Sun, Y., Liu, A., Li, Z., Liu, G., Zhao, L., Zheng, K.: Towards secure and truthful task assignment in spatial crowdsourcing. World Wide Web 22(5), 2017–2040 (2018)

    Article  Google Scholar 

  41. Zhang, D., Chow, C.Y., Li, Q., Zhang, X., Xu, Y.: Efficient evaluation of k-NN queries using spatial mashups. In: SSTD, pp 348–366 (2011)

  42. Zhang, D., Chow, C.Y., Li, Q., Zhang, X., Xu, Y.: SMashQ: spatial mashup framework for k-NN queries in time-dependent road networks. Distrib Parallel Databases 31(2), 259–287 (2013)

    Article  Google Scholar 

  43. Zhang, D., Chow, C.Y., Li, Q., Zhang, X., Xu, Y.: A spatial mashup service for efficient evaluation of concurrent k-NN queries. IEEE Trans. Comput. 65 (8), 2428–2442 (2016)

    Article  MathSciNet  Google Scholar 

  44. Zhang, D., Chow, C.Y., Li, Q., Liu, A.: Efficient evaluation of shortest travel-time path queries in road networks by optimizing waypoints in route requests through spatial mashups. In: APWeb (2016)

  45. Zhang, D., Liu, Y., Liu, A., Mao, X., Li, Q.: Efficient path query processing through cloud-based mapping services. IEEE Access 5, 12963–12973 (2017)

    Article  Google Scholar 

  46. Zhang, D., Chow, C.Y., Liu, A., Zhang, X., Ding, Q., Li, Q.: Efficient evaluation of shortest travel-time path queries through spatial mashups. GeoInformatica 22(1), 3–28 (2018)

    Article  Google Scholar 

  47. Zhao, Y., Shang, S., Wang, Y., Zheng, B., Nguyen, Q.V.H., Zheng, K.: Rest: A reference-based framework for spatio-temporal trajectory compression. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 2797–2806 (2018)

  48. Zheng, B., Zheng, K., Xiao, X., Su, H., Yin, H., Zhou, X., Li, G.: Keyword-aware continuous knn query on road networks. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp 871–882 (2016)

  49. Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient clue-based route search on road networks. IEEE Trans. Knowl. Data Eng. 29 (9), 1846–1859 (2017)

    Article  Google Scholar 

  50. Zheng, B., Zheng, K., Jensen, C.S., Nguyen, Q.V.H., Su, H., Li, G., Zhou, X.: Answering why-not group spatial keyword queries. IEEE Trans. Knowl. Data Eng. (2018)

  51. Zheng, K., Zhao, Y., Lian, D., Zheng, B., Liu, G., Zhou, X.: Reference-based framework for spatio-temporal trajectory compression and query processing. IEEE Trans. Knowl. Data Eng. 1–1 (2019)

  52. Zhu, J., Jiang, W., Liu, A., Liu, G., Zhao, L.: Effective and efficient trajectory outlier detection based on time-dependent popular route. World Wide Web 20(1), 111–134 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Project 61702227, 61802344, 61632016, 61572335 and 61602214, in part by Zhejiang Provincial Natural Science Foundation of China with No.LY16F030012, in part by Humanities and Social Science Foundation of Ministry of Education of China with No.16YJCZH112, in part by the Natural Science Research Project of Jiangsu Higher Education Institution (No. 17KJA520003), in part by the Natural Science Foundation of Jiangsu Province under Project BK20160191, in part by the Ningbo Natural Science Foundation under Grant 2017A610118, and in part by the Ningbo Innovative Team project under Grant 2016C11024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiting Wen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Trust, Privacy, and Security in Crowdsourcing Computing

Guest Editors: An Liu, Guanfeng Liu, Mehmet A. Orgun, and Qing Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Wen, S., Chen, F. et al. Spatial crowdsourcing based on Web mapping services. World Wide Web 23, 631–648 (2020). https://doi.org/10.1007/s11280-019-00708-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00708-7

Keywords

Navigation