Skip to main content

Advertisement

Log in

LW-CoEdge: a lightweight virtualization model and collaboration process for edge computing

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Edge Computing is a novel paradigm that extends Cloud Computing by moving the computation closer to the end users and/or data sources. When considering Edge Computing, it is possible to design a three-tier architecture (comprising tiers for the cloud devices, edge devices, and end devices) which is useful to meet emerging IoT applications that demand low latency, geo-localization, and energy efficiency. Like the Cloud, the Edge Computing paradigm relies on virtualization. An Edge Computing virtualization model provides a set of virtual nodes (VNs) built on top of the physical devices that make up the three-tier architecture. It also provides the processes of provisioning and allocating VNs to IoT applications at the edge of the network. Performing these processes efficiently and cost-effectively raises a resource management challenge. Applying the traditional cloud virtualization models (typically centralized) to virtualize the edge tier, are unsuitable to handle emerging IoT application scenarios due to the specific features of the edge nodes, such as geographical distribution, heterogeneity and, resource constraints. Therefore, we propose a novel distributed and lightweight virtualization model targeting the edge tier, encompassing the specific requirements of IoT applications. We designed heuristic algorithms along with a P2P collaboration process to operate in our virtualization model. The algorithms perform (i) a distributed resource management process, and (ii) data sharing among neighboring VNs. The distributed resource management process provides each edge node with decision-making capability, engaging neighboring edge nodes to allocate or provision on-demand VNs. Thus, the distributed resource management improves system performance, serving more requests and handling edge node geographical distribution. Meanwhile, data sharing reduces the data transmissions between end devices and edge nodes, saving energy and reducing data traffic for IoT-edge infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Notes

  1. https://github.com/telefonicaid/fiware-figway

  2. https://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html

  3. https://github.com/Kjuly/iPokeMon

  4. https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

References

  1. Aazam, M., Huh, E.N.: Fog computing: the cloud-iot/ioe middleware paradigm. IEEE Potentials. 35(3), 40–44 (2016)

    Article  Google Scholar 

  2. Aazam, M., Khan, I., Alsaffar, A.A., Huh, E.N.: Cloud of things: integrating internet of things and cloud computing and the issues involved. In: Applied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference on, pp. 414–419. IEEE (2014)

  3. Alam, M.G.R., Hassan, M.M., Uddin, M.Z., Almogren, A., Fortino, G.: Autonomic computation offloading in mobile edge for IoT applications. Futur. Gener. Comput. Syst. 90, 149–157 (2019)

    Article  Google Scholar 

  4. Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., Savaglio, C.: Enabling IoT interoperability through opportunistic smartphone-based mobile gateways. J. Netw. Comput. Appl. 81, 74–84 (2017)

    Article  Google Scholar 

  5. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., et al.: A view of cloud computing. Commun. ACM. 53(4), 50–58 (2010)

    Article  Google Scholar 

  6. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  7. Basili, R.B., (1992). Software Modeling and Measurement: The Goal/Question/Metric Paradigm. Technical Report. University of Maryland at College Park, College Park, MD, USA.

  8. Bonomi, F.: Connected vehicles, the internet of things, and fog computing. In: The Eighth ACM International Workshop on Vehicular Inter-Networking (VANET), Las Vegas, USA, pp. 13–15 (2011)

  9. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)

  10. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Big Data and Internet of Things: a Roadmap for Smart Environments, pp. 169–186. Springer International Publishing (2014)

  11. Botta, A., De Donato, W., Persico, V., Pescapé, A.: On the integration of cloud computing and internet of things. In: Future Internet of Things and Cloud (FiCloud), 2014 International Conference on, pp. 23–30. IEEE (2014)

  12. Bouzeghoub, M.: A framework for analysis of data freshness. In: Proceedings of the 2004 International Workshop on Information Quality in Information Systems, pp. 59–67. ACM (2004)

  13. Byers, C. C., & Wetterwald, P. (2015). Fog computing distributing data and intelligence for resiliency and scale necessary for IoT: the Internet Of Things (ubiquity symposium). Ubiquity, 2015 (November), 4

  14. Carrol, J.M.: Five reasons for scenario-based design. In: Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers. 11-pp, IEEE (1999)

  15. Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M.: Modelling and simulation of opportunistic IoT services with aggregate computing. Futur. Gener. Comput. Syst. 91, 252–262 (2019)

    Article  Google Scholar 

  16. Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L., Tarricone, L.: An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2(6), 515–526 (2015)

    Article  Google Scholar 

  17. Cavalcante, E., Pereira, J., Alves, M.P., Maia, P., Moura, R., Batista, T., et al.: On the interplay of internet of things and cloud computing: a systematic mapping study. Comput. Commun. 89, 17–33 (2016)

    Article  Google Scholar 

  18. CentOS linux: https://www.centos.org/

  19. CEP: Complex Event Processing. Available in: https://en.wikipedia.org/wiki/Complex_event_processing (2017). Last accessed: 11/07/2017

  20. Cisco IOx: Available in: https://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html. Last accessed: 11/07/2017

  21. Delicato, F.C., Pires, P.F., Pirmez, L., Batista, T.: Wireless sensor networks as a service. In: Engineering of Computer Based Systems (ECBS), 2010 17th IEEE International Conference and Workshops on, pp. 410–417. IEEE (2010)

  22. Delicato, F.C., Pires, P.F., Batista, T.: The resource management challenge in IoT. In: Resource Management for Internet of Things, pp. 7–18. Springer International Publishing (2017)

  23. Distefano, S., Merlino, G., Puliafito, A.: Sensing and actuation as a service: a new development for clouds. In: Network Computing and Applications (NCA), 2012 11th IEEE International Symposium on, pp. 272–275. IEEE (2012)

  24. Docker: https://www.docker.com

  25. EdgeX Foundry: The Open Platform for the IoT Edge. Available in: https://www.edgexfoundry.org

  26. Endo, P.T., de Almeida Palhares, A.V., Pereira, N.N., Goncalves, G.E., Sadok, D., Kelner, J., et al.: Resource allocation for distributed cloud: concepts and research challenges. IEEE Netw. 25(4), (2011)

    Article  Google Scholar 

  27. FIWARE: https://www.fiware.org

  28. FIWARE IoT Agent for Ultralight 2.0 protocol: https://github.com/telefonicaid/iotagent-ul

  29. FIWARE Orion Context Broker, Release 4: http://fiware-orion.readthedocs.io/en/master/index.html

  30. Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M.: Agent-oriented cooperative smart objects: from IoT system design to implementation. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 99, 1–18 (2017)

    Google Scholar 

  31. Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., et al.: Edge-centric computing: vision and challenges. ACM SIGCOMM Computer Communication Review. 45(5), 37–42 (2015)

    Article  Google Scholar 

  32. Giang, N.K., Blackstock, M., Lea, R., Leung, V.C.: Developing iot applications in the fog: a distributed dataflow approach. In: Internet of Things (IOT), 2015 5th International Conference on the, pp. 155–162. IEEE (2015)

  33. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  34. GZIP: https://www.gzip.org/

  35. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile fog: a programming model for large-scale applications on the internet of things. In: Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing, pp. 15–20. ACM (2013)

  36. Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering. In: Proceedings of the Tenth Annual Symposium on Computational Geometry, pp. 332–339. ACM (1994)

  37. Java: https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html

  38. Johnston, W.M., Hanna, J.R., Millar, R.J.: Advances in dataflow programming languages. ACM Computing Surveys (CSUR). 36(1), 1–34 (2004)

    Article  Google Scholar 

  39. JSON: https://www.json.org/

  40. Khan, I., Belqasmi, F., Glitho, R., Crespi, N., Morrow, M., Polakos, P.: Wireless sensor network virtualization: a survey. IEEE Communications Surveys & Tutorials. 18(1), 553–576 (2016)

    Article  Google Scholar 

  41. Kokash, N.: An introduction to heuristic algorithms, pp. 1–8. Department of Informatics and Telecommunications (2005)

  42. Lewis, J., & Fowler, M. (2014). Microservices. Available in: http://martinfowler.com/articles/microservices.html. Last accessed: 27/09/2017

  43. Luan, T.H., Gao, L., Li, Z., Xiang, Y., Wei, G., Sun, L.: Fog computing: Focusing on mobile users at the edge. arXiv preprint. arXiv, 1502.01815 (2015)

  44. Maaroju, N., & Garg, D. G. (2009). Choosing the best heuristic for a NP-Problem. Masters of Engineering, Patiala, Thapar University, Faculty of Computer Science and Engineering. June 2009

  45. Madria, S., Kumar, V., Dalvi, R.: Sensor cloud: a cloud of virtual sensors. IEEE Softw. 31(2), 70–77 (2014)

    Article  Google Scholar 

  46. Mahmud, R., Kotagiri, R., Buyya, R.: Fog computing: a taxonomy, survey and future directions. In: Internet of Everything, pp. 103–130. Springer, Singapore (2018)

    Google Scholar 

  47. Morabito, R.: Virtualization on internet of things edge devices with container technologies: a performance evaluation. IEEE Access. 5, 8835–8850 (2017)

    Article  Google Scholar 

  48. Morabito, R., Cozzolino, V., Ding, A.Y., Beijar, N., Ott, J.: Consolidate IoT edge computing with lightweight virtualization. IEEE Netw. 32(1), 102–111 (2018)

    Article  Google Scholar 

  49. Morvaj, B., Lugaric, L., Krajcar, S.: Demonstrating smart buildings and smart grid features in a smart energy city. In: Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE), pp. 1–8. IEEE (2011)

  50. Munir, A., Kansakar, P., Khan, S.U.: IFCIoT: integrated fog cloud IoT architectural paradigm for future internet of things. arXiv preprint. arXiv, 1701.08474 (2017)

  51. Mutlag, A.A., Ghani, M.K.A., Arunkumar, N., Mohamed, M.A., Mohd, O.: Enabling technologies for fog computing in healthcare IoT systems. Futur. Gener. Comput. Syst. 90, 62–78 (2019)

    Article  Google Scholar 

  52. Naha, R.K., Garg, S., Georgakopoulos, D., Jayaraman, P.P., Gao, L., Xiang, Y., Ranjan, R.: Fog computing: survey of trends, architectures, requirements, and research directions. IEEE access. 6, 47980–48009 (2018)

    Article  Google Scholar 

  53. Nan, Y., Li, W., Bao, W., Delicato, F.C., Pires, P.F., Zomaya, A.Y.: Cost-effective processing for delay-sensitive applications in cloud of things systems. In: Network Computing and Applications (NCA), 2016 IEEE 15th International Symposium on, pp. 162–169. IEEE (2016)

  54. Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K.P., Rastogi, R.: Load balancing of nodes in cloud using ant colony optimization. In: Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on, pp. 3–8. IEEE (2012)

  55. Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., Liotta, A.: An edge-based architecture to support efficient applications for healthcare industry 4.0. IEEE Transactions on Industrial Informatics. 15(1), 481–489 (2018)

    Article  Google Scholar 

  56. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures--a technology review. In: Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on, pp. 379, 2015–386. IEEE (2015)

  57. Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., Bilbao, J.: Fog computing based efficient IoT scheme for the industry 4.0. In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), pp. 1–6. IEEE (2017)

  58. PubNub Staff. How Fast is Realtime? Human Perception and Technology. On-line publish. February 9, 2015. Available in: https://www.pubnub.com/blog/how-fast-is-realtime-human-perception-and-technology/. Last accessed: 05/09/2019

  59. Sahni, Y., Cao, J., Zhang, S., Yang, L.: Edge mesh: a new paradigm to enable distributed intelligence in internet of things. IEEE Access. 5, 16441–16458 (2017)

    Article  Google Scholar 

  60. Santos, I.L., Pirmez, L., Delicato, F.C., Khan, S.U., Zomaya, A.Y.: Olympus: the cloud of sensors. IEEE Cloud Computing. 2(2), 48–56 (2015)

    Article  Google Scholar 

  61. Santos, I.L., Pirmez, L., Delicato, F.C., Oliveira, G.M., Farias, C.M., Khan, S.U., Zomaya, A.Y.: Zeus: a resource allocation algorithm for the cloud of sensors. Futur. Gener. Comput. Syst. 92, 564–581 (2019)

    Article  Google Scholar 

  62. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based cloudlets in mobile computing. IEEE pervasive Computing. 8(4), (2009)

  63. Sheng, X., Tang, J., Xiao, X., Xue, G.: Sensing as a service: challenges, solutions and future directions. IEEE Sensors J. 13(10), 3733–3741 (2013)

    Article  Google Scholar 

  64. Shi, H., Chen, N., Deters, R.: Combining mobile and fog computing: using coap to link mobile device clouds with fog computing. In: Data Science and Data Intensive Systems (DSDIS), 2015 IEEE International Conference on, pp. 564–571. IEEE (2015)

  65. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  66. Skarlat, O., Schulte, S., Borkowski, M., Leitner, P.: Resource provisioning for iot services in the fog. In: Service-Oriented Computing and Applications (SOCA), 2016 IEEE 9th International Conference on, pp. 32–39. IEEE (2016)

  67. Spring boot: https://spring.io/projects/spring-boot

  68. Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., Flinck, H.: Mobile edge computing potential in making cities smarter. IEEE Commun. Mag. 55(3), 38–43 (2017)

    Article  Google Scholar 

  69. Tan, L., Wang, N.: Future internet: the internet of things. In: Advanced Computer Theory and Engineering (ICACTE), 2010 3rd International Conference on(Vol. 5, Pp. V5–376). IEEE (2010)

  70. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)

    Article  Google Scholar 

  71. VMware: https://www.vmware.com/

  72. Wang, N., Varghese, B., Matthaiou, M., Nikolopoulos, D.S.: ENORM: a framework for edge node resource management. IEEE Trans. Serv. Comput. (2017)

  73. Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P.: Scenarios in system development: current practice. IEEE Softw. 15(2), 34–45 (1998)

    Article  Google Scholar 

  74. Xia, C., Li, W., Chang, X., Delicato, F., Yang, T., Zomaya, A.: Edge-based energy Management for Smart Homes. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 849–856. IEEE (2018)

  75. Xu, J., Palanisamy, B., Ludwig, H., Wang, Q.: Zenith: Utility-aware resource allocation for edge computing. In: Edge Computing (EDGE), 2017 IEEE International Conference on, pp. 47–54. IEEE (2017)

  76. Yang, L., Li, W., Ghandehari, M., Fortino, G.: People-centric cognitive internet of things for the quantitative analysis of environmental exposure. IEEE Internet Things J. 5(4), 2353–2366 (2017)

    Article  Google Scholar 

  77. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, vol. 2015. ACM (2015a)

  78. Yi, S., Hao, Z., Qin, Z., Li, Q.: Fog computing: Platform and applications. In: Hot Topics in Web Systems and Technologies (HotWeb). 2015 Third IEEE Workshop on, pp. 73–78. IEEE (2015b)

  79. Zhang, B., Mor, N., Kolb, J., Chan, D. S., Lutz, K., Allman, E., ... & Kubiatowicz, J. (2015). The Cloud Is Not Enough: Saving IoT from the Cloud. In HotCloud

Download references

Acknowledgements

This work is partially funded by FAPESP (grant 2015/24144-7). Professors Flavia C. Delicato and Paulo F. Pires are CNPq Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Pitanga Alves.

Additional information

This article belongs to the Topical Collection: Special Issue on Smart Computing and Cyber Technology for Cyberization

Guest Editors: Xiaokang Zhou, Flavia C. Delicato, Kevin Wang, and Runhe Huang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, M.P., Delicato, F.C., Santos, I.L. et al. LW-CoEdge: a lightweight virtualization model and collaboration process for edge computing. World Wide Web 23, 1127–1175 (2020). https://doi.org/10.1007/s11280-019-00722-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00722-9

Keywords

Navigation