Skip to main content
Log in

Robust SVM with adaptive graph learning

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Support Vector Machine (SVM) has been widely applied in real application due to its efficient performance in the classification task so that a large number of SVM methods have been proposed. In this paper, we present a novel SVM method by taking the dynamic graph learning and the self-paced learning into account. To do this, we propose utilizing self-paced learning to assign important samples with large weights, learning a transformation matrix for conducting feature selection to remove redundant features, and learning a graph matrix from the low-dimensional data of original data to preserve the data structure. As a consequence, both the important samples and the useful features are used to select support vectors in the SVM framework. Experimental analysis on four synthetic and sixteen benchmark data sets demonstrated that our method outperformed state-of-the-art methods in terms of both binary classification and multi-class classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

  2. https://archive.ics.uci.edu/ml/index.php

  3. http://featureselection.asu.edu/datasets.php

References

  1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7 (11), 2399–2434 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Belousov, A.I., Verzakov, S.A., Von Frese, J.: Applicational aspects of support vector machines. Journal of Chemometrics: A Journal of the Chemometrics Society 16 (8-10), 482–489 (2002)

    Article  Google Scholar 

  3. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: COLT, pp 144–152 (1992)

  4. Boyd, S.: Convex optimization of graph laplacian eigenvalues. In: ICM, pp 1311–1319 (2006)

  5. Chang, C.-C., Lin, C.-J.: Libsvm: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  6. Chen, Y., Gupta, M.R., Recht, B.: Learning kernels from indefinite similarities. In: ICML, pp 145–152 (2009)

  7. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. J. Mach. Learn. Res. 2(12), 265–292 (2001)

    MATH  Google Scholar 

  8. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)

    Article  MathSciNet  Google Scholar 

  9. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the l 1-ball for learning in high dimensions. In: ICML, pp 272–279 (2008)

  10. Fan, Y., He, R., Liang, J., Hu, B.: Self-paced learning: An implicit regularization perspective. In: AAAI (2017)

  11. Gan, J., Wen, G., Yu, H., Zheng, W., Lei, C.: Supervised feature selection by self-paced learning regression. Pattern Recognition Letters (2018)

  12. Gill, P.E., Robinson, D.P.: A primal-dual augmented lagrangian. Comput. Optim. Appl. 51(1), 1–25 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gu, B., Quan, X., Gu, V.Y., Sheng, S., Zheng, G.: Chunk incremental learning for cost-sensitive hinge loss support vector machine. Pattern Recogn. 83, 196–208 (2018)

    Article  Google Scholar 

  14. Gunasekar, S., Woodworth, B.E., Bhojanapalli, S., Neyshabur, B., Srebro, N.: Implicit regularization in matrix factorization. In: NIPS, pp 6151–6159 (2017)

  15. Iranmehr, A., Masnadi-Shirazi, H., Vasconcelos, N.: Cost-sensitive support vector machines. Neurocomputing 343, 50–64 (2019)

    Article  Google Scholar 

  16. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NIPS, pp 1189–1197 (2010)

  17. Lafta, R., Zhang, J., Tao, X., Li, Y., Diykh, M., Lin, J.C.-W.: A structural graph-coupled advanced machine learning ensemble model for disease risk prediction in a telehealthcare environment. In: Big Data in Engineering Applications, pp 363–384 (2018)

    Google Scholar 

  18. Lei, C., Zhu, X.: Unsupervised feature selection via local structure learning and sparse learning. Multimed. Tools Appl. 77(22), 29605–29622 (2018)

    Article  Google Scholar 

  19. Lei, Y., Dogan, Ü., Zhou, D.-X., Kloft, M.: Data-dependent generalization bounds for multi-class classification. IEEE Trans. Inform. Theory, 65(5) (2019)

    Article  MathSciNet  Google Scholar 

  20. Liu, Z., Elashoff, D., Piantadosi, S.: Sparse support vector machines with l0 approximation for ultra-high dimensional omics data. Artif. Intell. Med. 96, 134–141 (2019)

    Article  Google Scholar 

  21. Meng, D., Zhao, Q., Jiang, L.: What objective does self-paced learning indeed optimize? arXiv:1511.06049 (2015)

  22. Mygdalis, V., Tefas, A., Pitas, I.: Learning multi-graph regularization for svm classification. In: ICIP, pp 1608–1612 (2018)

  23. Mygdalis, V., Tefas, A., Pitas, I.: Exploiting multiplex data relationships in support vector machines. Pattern Recogn. 85, 70–77 (2019)

    Article  Google Scholar 

  24. Nie, F., Huang, Y., Wang, X., Huang, H.: New primal svm solver with linear computational cost for big data classifications. In: ICML, vol. 32, pp 505–513 (2014)

  25. Paige, C.C., Saunders, M.A.: Lsqr: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    Article  MathSciNet  Google Scholar 

  26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, O., Grisel, B., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12(10), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Peng, H., Fan, Y.: A general framework for sparsity regularized feature selection via iteratively reweighted least square minimization. In: AAAI, pp 2471–2477 (2017)

  28. Pham, T., Tao, X., Zhanag, J., Yong, J., Zhang, W., Cai, Y.: Mining heterogeneous information graph for health status classification. In: BESC, pp 73–78 (2018)

  29. Ren, Y., Zhao, P., Sheng, Y., Yao, D., Xu, Z.: Robust softmax regression for multi-class classification with self-paced learning. In: AAAI, pp 2641–2647 (2017)

  30. Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)

    Article  Google Scholar 

  31. Shawe-Taylor, J., Cristianini, N.: Support vector machines. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 93–112 (2000)

  32. Shen, F., Xu, Y., Liu, L., Yang, Y., Huang, Z., Shen, H.T.: Unsupervised deep hashing with similarity-adaptive and discrete optimization. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 3034–3044 (2018)

    Article  Google Scholar 

  33. Singh, D., Mohan, C.K.: Graph formulation of video activities for abnormal activity recognition. Pattern Recogn. 65, 265–272 (2017)

    Article  Google Scholar 

  34. Tang, F., Adam, L., Si, B.: Group feature selection with multiclass support vector machine. Neurocomputing 317, 42–49 (2018)

    Article  Google Scholar 

  35. Vapnik, V.: Pattern recognition using generalized portrait method. Autom. Remote. Control. 24, 774–780 (1963)

    Google Scholar 

  36. Wang, C., Ye, Q., Luo, P., Ye, N., Fu, L.: Robust capped l1-norm twin support vector machine. Neural Netw. 114, 47–59 (2019)

    Article  Google Scholar 

  37. Wu, J., Zhou, Z.: Sequence-based prediction of microrna-binding residues in proteins using cost-sensitive Laplacian support vector machines. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(3), 752–759 (2013)

    Article  Google Scholar 

  38. Xu, H., Xue, H., Chen, X., Wang, Y.: Solving indefinite kernel support vector machine with difference of convex functions programming. In: AAAI (2017)

  39. Xu, J., Nie, F., Han, J.: Feature selection via scaling factor integrated multi-class support vector machines. In: IJCAI, pp 3168–3174 (2017)

  40. Yuan, G.-X., Chang, K.-W., Hsieh, C.-J., Lin, C.-J.: A comparison of optimization methods and software for large-scale l1-regularized linear classification. J. Mach. Learn. Res. 11(11), 3183–3234 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, Y., Zhou, Z.: Cost-sensitive face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(10), 1758–1769 (2009)

    Article  Google Scholar 

  42. Zhang, D., Meng, D., Zhao, L., Han, J.: Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning. arXiv:1703.01290 (2017)

  43. Zhang, J., Tan, L., Tao, X.: On relational learning and discovery in social networks: A survey. Int. J. Mach. Learn. Cybern. 10(8), 2085–2102 (2019)

    Article  Google Scholar 

  44. Zheng, W., Zhu, X., Wen, G., Zhu, Y., Yu, H., Gan, J.: Unsupervised feature selection by self-paced learning regularization. Pattern Recognition Letters, https://doi.org/10.1016/j.patrec.2018.06.029 (2018)

    Article  Google Scholar 

  45. Zheng, W., Zhu, X., Zhu, Y., Hu, R., Lei, C.: Dynamic graph learning for spectral feature selection. Multimed. Tools Appl. 77(22), 29739–29755 (2018)

    Article  Google Scholar 

  46. Zhu, J., Rosset, S., Tibshirani, R., Hastie, T.J.: 1-norm support vector machines. In: NIPS, pp 49–56 (2004)

  47. Zhu, X., Li, X., Zhang, S., Xu, Z., Yu, L., Wang, C.: Graph pca hashing for similarity search. IEEE Trans. Multimed. 19(9), 2033–2044 (2017)

    Article  Google Scholar 

  48. Zhu, X., Gan, J., Lu, G., Li, J., Zhang, S.: Spectral clustering via half-quadratic optimization. World Wide Web. https://doi.org/10.1007/s11280-019-00731-8 (2019)

  49. Zhu, X., Zhang, S., Hu, R., He, W., Lei, C., Zhu, P.: One-step multi-view spectral clustering. IEEE Trans. Knowl. Data Eng. 31(10), 2022–2034 (2019)

    Article  Google Scholar 

  50. Zhu, X., Zhang, S., Li, Y., Zhang, J., Yang, L., Fang, Y.: Low-rank sparse subspace for spectral clustering. IEEE Trans. Knowl. Data Eng. 31(8), 1532–1543 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the China Key Research Program (Grant No: 2016YFB1000905); the Natural Science Foundation of China (Grants No: 61876046 and 61573270); the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; the Guangxi High Institutions Program of Introducing 100 High-Level Overseas Talents; the Strategic Research Excellence Fund at Massey University; the Marsden Fund of New Zealand (MAU1721); the Project of Guangxi Science and Technology (GuiKeAD17195062); and the Research Fund of Guangxi Key Lab of Multisource Information Mining and Security (18-A-01-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Computational Social Science as the Ultimate Web Intelligence

Guest Editors: Xiaohui Tao, Juan D. Velasquez, Jiming Liu, and Ning Zhong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Zhu, X., Zhu, Y. et al. Robust SVM with adaptive graph learning. World Wide Web 23, 1945–1968 (2020). https://doi.org/10.1007/s11280-019-00766-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00766-x

Keywords

Navigation