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Abstract. Cardiac arrhythmia has been identified as a type of cardio-
vascular diseases (CVDs) that causes approximately 12% of all deaths
globally. The development of Internet-of-Things has spawned novel ways
for heart monitoring but also presented new challenges for manual ar-
rhythmia detection. An automated method is highly demanded to pro-
vide support for physicians. Current attempts for automatic arrhythmia
detection can roughly be divided as feature-engineering based and deep-
learning based methods. Most of the feature-engineering based meth-
ods are suffering from adopting single classifier and use fixed features
for classifying all five types of heartbeats. This introduce difficulties in
identification of the problematic heartbeats and limits the overall classi-
fication performance. The deep-learning based methods are usually not
evaluated in a realistic manner and report overoptimistic results which
may hide potential limitations of the models. Moreover, the lack of con-
sideration of frequency patterns and the heart rhythms can also limit
the model performance. To fill in the gaps, we propose a framework
for arrhythmia detection from IoT-based ECGs. The framework consists
of two modules: a data cleaning module and a heartbeat classification
module. Specifically, we propose two solutions for the heartbeat classifi-
cation task, namely Dynamic Heartbeat Classification with Adjusted Fea-
tures (DHCAF) and Multi-channel Heartbeat Convolution Neural Net-
work (MCHCNN). DHCAF is a feature-engineering based approach, in
which we introduce dynamic ensemble selection (DES) technique and de-
velop a result regulator to improve classification performance. MCHCNN
is deep-learning based solution that performs multi-channel convolutions
to capture both temporal and frequency patterns from heartbeat to as-
sist the classification. We evaluate the proposed framework with DHCAF
and with MCHCNN on the well-known MIT-BIH-AR database, respec-
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tively. The results reported in this paper have proven the effectiveness
of our framework.

Keywords: Internet-of-Things · ECG · Cardiac Arrhythmia Detection
· ResNet · Dynamic Ensemble Selection · Deep Learning

1 Introduction

Cardiac arrhythmia is a type of cardiovascular diseases (CVDs) that threatens
millions of people’s lives around the world. The easiest way to identify arrhyth-
mia is to perform a manual inspection on 24 to 72 hours electrocardiograms
(ECG). Traditionally, to have such long-term ECG recordings, patients need to
wear a Holter Monitor for a continuous time period, which is a very uncomfort-
able experience. The rapid growth of Internet-of-Things (IoT) techniques has
spawned novel ways, like Fitbit, Apple Watch, or Android Wear, for heart sta-
tus tracking [47]. In comparison to the Holter Moniter, the IoT-based devices
are more human-friendly because they have fewer cords and smaller-sizes, and
cause fewer disruptions to patient’s daily routines. However, on the other hand,
the prevalence of IoT-based devices has also resulted in a dramatic increase of
ECG data, posing a great challenge to the ECG interpretation. Manual inspec-
tions become time-consuming and error-prone, which is no longer possible. An
automated method is highly demanded to provide a cost-effective screening for
arrhythmia and allow at-risk patients to receive timely treatments.

Heartbeat classification plays a crucial role in identification of arrhythmia.
Basically, heartbeats can be classified into five classes: Normal(N ), Supra-ventricular
(S ) ectopic, Ventricular (V ) ectopic, Fusion (F ) and Unknown (Q) beats [6].
Particularly, most arrhythmias are found in S and V beats. Fig.1 presents a
sample ECG segment, where the problematic heartbeats are highlighted by cir-
cles. It can be seen that the S beat exhibits a great morphological similarity in
temporal dimension to the normal heartbeats. Since ECG recordings are mostly
dominated by normal heartbeats for the majority of patients [22], such similarity
bring a great difficulty in distinguishing the S beats from the normal ones.

Fig. 1. A sample ECG recording that contains N, S and V heartbeats. Note: RR-
intervals denote the time distance between two successive R peaks.
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Many research attempts have been made to provide solutions for automated
heartbeat classification. The existing methods are roughly divided as feature-
engineering based and deep-learning based methods. However, none of these
methods has achieved a clinical significance. Most feature-engineering methods
are facing a bottleneck of applying a standalone classifier and using a static
feature set to classify all heartbeat samples [11, 15, 16, 31, 50]. This has been
shown to cause huge impacts on identification of the problematic heartbeats.
The deep-learning based methods are commonly limited by learning temporal
patterns from the raw ECG heartbeats only. The frequency patterns and the RR-
intervals have not been well considered to assist the classification. Moreover,
to supply sufficient training data for driving the deep neural networks, many
works [2, 3, 26, 49, 51, 54] followed a biased evaluation procedure, in which they
synthesized heartbeat samples from the whole dataset and then randomly split
all heartbeats for model training, validation and test. Consequently, heartbeats
from the same patient are likely to appear in both the training and test datasets,
leading to an over estimation of the model performance. The overoptimistic
results may hide potential limitations of the neural networks.

Besides, data quality also present challenges for an IoT-based arrhythmia
detection method. First, the IoT-based heart rate sensors may vary the rate of
measurement for battery preservation [7]. Second, the collected ECG recordings
are likely interrupted by background noises and baseline wonders (the effect that
the base axis (X-axis) of individual heartbeats appear to move up or down rather
than being straight all the time).

To solve these problems, we propose a framework for arrhythmia detection
from IoT-based ECGs. The framework consists of a data cleaning module and
a heartbeat classification module. Specifically, we provide two novel solutions
for the heartbeat classification task. The first one is a feature-engineering based
method, in which we introduce the Dynamic Ensemble Selection (DES) tech-
nique and specially design a result regulator to improve the problematic heart-
beats detection. The other one is a deep neural network that performs multi-
channel convolutions in parallel to manage both temporal and frequency pat-
terns to assist the classification. To remedy the impact brought by the lack
of consideration of heart rhythms, the proposed network accepts heart rhythms
(RR-intervals) as part of the input. In order to reveal the performance of the pro-
posed methods in real-world practices, we evaluate the models on the benchmark
MIT-BIH arrhythmia database following the inter-patient evaluation paradigm
proposed in [16]. The paradigm divides the benchmark database into a train-
ing and a test dataset at patient level, making the heartbeat classification a
significantly more difficult task.

The rest of this paper is structured as follows. Section 2 reviews current
methods in heartbeat classification. Section 3 presents the proposed framework
and the two embedded solutions for heartbeat classification. The experiment
results and discussion are presented in Section 4. Section 5 concludes this paper
and discusses the future work.
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Table 1. Comparison between Feature-engineering based and Deep-learning based
methods

Feature Engineering Deep Learning

Work flow Feature extraction, selection and
classifier determination

End-to-end processing

Commonly used features RR-intervals, higher-order
statistics, wavelet, signal energy
coefficients, etc.

Learned by networks, includ-
ing CNN, RNN, LSTM, etc.

Feature selection PCA, floating sequential search,
weighted LD model

N.A.

Commonly used classifiers SVM, nearest neighbors, artifi-
cial neural networks, weighted
linear discriminant, optimum-
path forest

N.A.

Training data Less More

Parameters Less More

Explainability High Low

Current limitations Use of fixed features for all heart-
beat types classification; Limita-
tion of static classifiers to han-
dle both intra- and inter patients
variations

Lack of considerations of fre-
quency patterns and heart
rhythms; A biased evalua-
tion is followed.

2 Related Work

This section provides a comprehensive review of current methods for heartbeat
classification. As mentioned before, the existing methods can be roughly allo-
cated to either the feature-engineering based or the deep-learning based category.
The differences between them are summarized in Table 1.

The feature-engineering based methods focus on signal feature extraction
and classifier selection. Commonly used features includes RR-intervals [4, 11, 52],
samples or segments of ECG curves [35], higher-order statistics [4, 17], wavelet
coefficients [15, 20, 37], and signal energy [50]. They are mostly extracted from
cardiac rhythm, or time/frequency domains. Feature correlation and effective-
ness are important concerns for this type of methods. To avoid negative im-
pacts of noisy data, techniques, like the floating sequential search [29] and the
weighted LD model [18], must be employed to reduce the feature space. Re-
garding the selection of classifiers, the support vector machine (SVM) is the
most widely used for its robustness, good generalization and computationally
efficiency [1, 14]. Besides, the nearest neighbors (NN) and artificial neural net-
works (ANN) are also frequently found in the literature. The performances of
current feature-engineering based methods are mainly limited by the application
of single classifiers and the use of fixed features to classify all heartbeat types.
On one hand, in consideration of the intra- and inter-subjects variations of the
feature values, it is difficult for a single classifier to well handle a wide region of
the feature space [53]. Although some ensemble methods, such as random forest
[4] and ensemble of support vector machine [24], have been employed to remedy
the disadvantages, the problem is still open because the diversity of the tradi-
tional ensembles is relatively low. On the other hand, using fixed features tends
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to make sporadically occurred S beats be wrongly classified as V beats because
both heartbeats types exhibits anomalies in heart rhythms.

By contrast, the deep-learning based methods are more straightforward and
integrated, in which features and classifiers are not concerns. They provide end-
to-end solutions to the heartbeat classification task. The existing deep learning
models are mainly extensions of convolution neural network (CNN) [2, 3, 26, 38]
or combinations of CNN and recurrent neural network (RNN) [49, 51]. However,
most of the CNN models are limited by the lack of consideration of frequency
patterns and the heart rhythm to assist the classification. Moreover, in order to
provide enough training data, many of them are evaluated in an ideal experi-
mental setting where heartbeats from the same patient are allowed to appear
in both training and test sets. The results can not reveal the true performances
of the models in real-world practices and also may hide potential limitations of
the methods. As compared to the feature-engineering based methods, both the
results and the intermediate process of deep neural networks are less explainable.
This is a potential impediment that prevents deep learning models from being
widely applied in practices because explainability is important for clinicians to
justify and rationalize the model outcome.

3 The Proposed Framework for Arrhythmia Detection

The proposed framework for arrhythmia detection from IoT-based ECGs is pre-
sented in this section. Fig 2 shows the framework architecture and the whole
life-cycle of arrhythmia detection from IoT-based ECGs. The framework con-
sists of a data cleaning module and a heartbeat classification module. It accepts
raw ECG signals that collected from different IoT devices as input and outputs
predictions for individual heartbeats.

To reduce the impact of noisy data on the prediction accuracy, the in-
put signals are performed a series of preprocessing, such as frequency calibra-
tion, baseline correction, and noise reduction, before heartbeat classification.
We propose two solutions, namely Dynamic Heartbeat Classification with Ad-
justed Features (DHCAF) and Multi-channel Heartbeat Convolution Neural Net-
work (MCHCNN), for the heartbeat classification task. DHCAF is a feature-
engineering based method, whereas MCHCNN is a deep-learning based method.

Details of the data cleaning module and two heartbeat classification solutions
are presented below.

3.1 Data Cleaning Module

Frequency Calibration To avoid the possible bias in sampling frequency
caused by different ECG collectors, we develop a frequency calibration com-
ponent to re-sample all incoming ECG recordings to 360 Hz at the input of the
system.
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Framework Architecture
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Correction
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Module
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Fig. 2. Architecture of the proposed framework. The whole life-cycle of arrhythmia
detection from IoT-based ECGs includes 4 phases: data collection, storage, analysis
and results notification. Specifically, ECG sensing network generates ECG recordings
for patients and transmits the produced data to the IoT cloud, where fast access storage
are conducted. The proposed framework is deployed in the IoT cloud to provide data
analysis. Results from the framework will be pushed to patients’ ends via Internet.

Baseline Correction To correct the baseline wanders, we process each ECG
recording with a 200-ms width median filter followed by a 600-ms median filter
to obtain the recording baseline, and then subtract the baseline from the raw
ECG recording to get the baseline corrected data.

Noise Reduction For noise reduction, we apply discrete wavelet transform
[39] with Daubechies-4 mother wavelet function to remove recordings’ Gaussian
white noise. The Daubechies-4 function has short vanishing moment, which is
ideal for analyzing signals like ECG with sudden changes. Concretely, in the
noise reduction component, the baseline corrected recordings are decomposed
to different frequency bands with various resolutions. The coefficients of detail
information (cDx) in each frequency band is then processed by a high-pass filter
with a threshold value

T =
√

2 ∗ log(n),

where n indicates the length of the input recording. Coefficients that blocked by
the filter are set to zero. Finally, the clean recordings are obtained by employing
inverse discrete wavelet transform on all the coefficients.

Heartbeat Segmentation The clean signals are segmented to individual heart-
beats by taking advantage of the R peak locations that detected by the Pan-
Tompkins algorithm [36]. For each R peak, 90 samples (250 ms) before R peak
and 144 samples (400 ms) after R peak are taken to represent a heartbeat, which
is long enough to catch samples to represent the re-polarization of ventricles and
short enough to exclude the neighbor heartbeats [4].
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3.2 Dynamic Heartbeat Classification with Adjusted Features

Architecture of the proposed DHCAF is shown in Fig 3. The model contains 4
processing stages: Feature Extraction, Classifier Pool Training, Classifier Selec-
tion and Prediction, and Result Refinement.

SVM
KNN

Multi-layers 
Perceptron

Bayesian

Linear SVM

Decision Tree

Training Set

Validation Set

Wavelets 
Coefficients

RR-
Intervals HOS

Feature Extraction

Local Competence
Mesurement

Classifier Pool Training

Classifiers Selection 
and Prediction

C1

C2
C...

Test Sample

Result Refinement

SVM
(Exclude Heart Rythms)

Result Aggregation

Prediction

Fig. 3. Architecture of the proposed DHCAF.

Feature Extraction. In this stage, three types of features are extracted to
represent individual heartbeats: RR-intervals, higher order statistics and wavelet
coefficients.

As experimentally proven in [52], the RR-interval is one of the most indis-
pensable features for heartbeat classification and it has great capacity to tell
both the S and V beats from the normal beats. In this work, four types of
RR-intervals are extracted from ECG signals: pre RR, post RR, local RR and
global RR [30]. The RR-intervals can significantly vary with patients. To reduce
the negative impact of the variation, we normalize the RR-intervals in the way
below:

nomalized pre RR =
pre RR

mean(ds.pre RR)
(1)
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nomalized post RR =
post RR

mean(ds.post RR)
(2)

nomalized local RR =
local RR

mean(ds.local RR)
(3)

nomalized global RR =
global RR

mean(ds.global RR)
(4)

where ds.pre RR denotes the average of all pre RRs in the ds that the heartbeat
belongs to, and so on.

Regarding the higher order statistics (HOS), it is reported being useful in
catching subtle changes in ECG data [32]. In this work, the skewness (3rd order
statistics) and kurtosis (4th order statistics) are calculated for each heartbeat.
They can be mathematically defined as follows, where X1...,N denotes all the
data samples in a signal, X̄ is the mean and s is the standard deviation.

Skewness =

∑N
i=1(Xi − X̄)3/N

s3
(5)

Kurtosis =

∑N
i=1(Xi − X̄)4/N

s4
− 3 (6)

The wavelet coefficients provide both time and frequency domain information
of a signal, which is claimed to be the best features of ECG signal [30]. The
choice of the mother wavelet function used for coefficients extraction is crucial
to the final classification performance. In this work, the Haar wavelet function
is chosen because of its simplicity and that it has been demonstrated as the ideal
wavelet for short time signal analysis [50].

Classifier Pool Training. In this stage, a collection of classifiers, including
multi-layers perceptron, support vector machine (SVM), linear SVM, Bayesian
model with Gaussian kernel, decision tree, and K-nearest neighbors model, are
trained using the extracted features, to create an accurate and diverse classifier
pool.

Classifier Selection and Prediction. This stage plays a core role in the
model. The Dynamic Ensemble Selection (DES) [13] technique is introduced in
this stage to select the most competent classifiers for making predictions of the
test samples. It helps to solve both the intra- and inter-subjects variations of the
feature values.

In DES, the competence of a classifier in the pool is measured by its perfor-
mance over a local region of the feature space where the testing sample is located.
Methods for defining a local region includes clustering [28], k-nearest neighbors
[40], potential function model [44, 45] and decision space [9]. The criterion for
measuring the performance of a base classifier can be divided as individual-based
and group-based criterion. In the individual-based criterion, each base classi-
fier is independently measured by evaluation metrics such as ranking, accuracy,
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probabilistic, behavior [9], meta-learning [12]. In the group-based criterion, the
performance of a base classifier relates to its iterations with other classifiers in
the pool. For example, diversity, data handling [46] and ambiguity [19] are widely
used group-based performance metrics.

Once the candidates classifiers are selected, aggregation of results from these
classifiers is then performed to give a united decision. There are three main
strategies for results combination: static combiner, trained combiner and dy-
namic weighting. The majority voting scheme is a representative static combiner,
which is also commonly used in the traditional ensemble methods. In trainable
combiners, the outputs of the selected based classifiers are used as the input
features for another learning algorithm, such as [8, 33]. In dynamic weighting,
higher weight value will be allocated to the most competent classifier and then
the outputs of all the weighted classifiers are aggregated to give the united de-
cision.

Currently, prevalent DES techniques that can be used in this stage include
DES-KL [45], DES-KNN [41], KNORA-E [27], KNORA-U [27], KNOP [9], DES-
P [45], DES-RRC [44], and META-DES [12]. Extensive experiments have been
done to evaluate these DES techniques in our previous work [21]. The results
showed that there is no significant difference of their performances. We adopt
the META-DES in this work since it has reported superior performances in a
wider range of datasets.

Result Refinement. The aggregated result from the previous stage will be re-
fine in this stage by our adjusted features strategy. Specifically, we train an SVM
classifier with only HOS and wavelet coefficients (the RR-intervals are removed)
to improve the results of S and V beats. The rationale of such a classification
strategy is that the sensitivities to certain feature varies with heartbeat types
[52] . For instance, the RR-intervals are indispensable to for identifying disease
heartbeats from the normal ones. However, the RR-intervals can also cause trou-
bles to make a distinction between different kinds of disease heartbeats, such as
S and V beats.

3.3 Multi-channels Heartbeat Convolution Neural Network

Architecture of the proposed Multi-channels Convolution Neural Network (MCHCNN)
is presented in Fig 4. The network accepts two inputs: raw ECG heartbeat and
heart rhythm (RR-intervals). As motivated by an electroencephalogram (EEG)
processing network [42] which uses different sizes of convolution filters to cap-
ture temporal and frequency patterns from EEG signals, the proposed MCHCNN
perform 3 channels of convolutions in parallel on the input ECG heartbeats to
extract the temporal and frequency information. The convolution filter size varies
with channels, where the smaller filter is used to capture temporal patterns and
the larger filter is used to capture frequency patterns. We denote the convolution
process as Conv(x, y) in Fig 4, where x is the convolution filter size and y is the
amount of the output feature maps. Each convolution operation is followed by a
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batch normalization and a ReLu activation. The batch normalization normalizes
the output of the convolution by subtracting the batch mean and dividing by
the batch standard deviation, which reduces the problem of internal covariate
shift [25] and overfitting. The introduction of a ReLu activation is to allow the
network to extract nonlinear features.

Every three stacked convolutions are wrapped into a building block and by-
passed by a shortcut connection. The learned features are added to the shortcut
at the end of each building block. Such a design helps to reduce the network
degradation problem [23]. Each channel contains 3 building blocks. Learned fea-
tures from the three channels are integrated by addition before a pooling layer.
The pooling layer is used to reduce feature dimensions, after which the learned
features are reduced to half-size. It helps to reduce the number of parameters in
the following fully connected layer and lower the risk of overfitting.

A Rhythm Integration layer is specially designed to concatenate the learned
features and the input heart rhythms. It reduces the impact brought by the lack
of consideration of heart rhythms on identification of disease heartbeats in many
existing network models.

Next, the dense layer is used to learn non-linear combinations of the learned
features. The softmax layer gives the probabilities of the each heartbeat type.

4 Evaluation

In this section, we evaluate the proposed framework equipped with DHCAF
and with MCHCNN, respectively. The MIT-BIH-AR database [34] is used as
the benchmark database. It is the most representative database for arrhythmia
detection and it has been used for most of the published research [16]. Details
of the database are given below.

4.1 The MIT-BIH-AR Database

The MIT-BIH-AR database contains 48 two-leads ambulatory ECG records from
47 patients (22 females and 25 males). Each record has approximately 30 minutes
in length. These recordings were digitized at 360Hz. For most of them, the first
lead is modified limb lead II (except for the recording 114). The second lead
is a pericardial lead (usually V 1, sometimes are V 2, V 4 or V 5, depending on
subjects).

In order to reveal the performance of the proposed framework, we follow the
evaluation paradigm proposed in [16] to divide the database into a training and
a test dataset. The paradigm avoids heartbeats of the same patient appearing
in both training and test stages, ensuring a fair evaluation. Table 2 shows the
division details, where DS1 is the training set and DS2 denotes the test set.

Noticing that DS1 is extremely imbalanced and dominated by N beats, we
apply the SMOTEENN technique [5, 10, 43] on DS1 to over-sample the minority
heartbeats ( S and V ) to the same amount of N beats.
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Table 2. Recording distributions and class proportions on DS1 and DS2.

Data set N S V F Q Recordings (Patient ID)1

DS1 45808 943 3786 414 8 101, 106, 108, 109, 112, 114, 115, 116,
118, 119, 122, 124, 201, 203, 205, 207,
208, 209, 215, 220, 223, 230

DS2 44198 1836 3219 388 7 100, 103, 105, 111, 113, 117, 121, 123,
200, 202, 210, 212, 213, 214, 219, 221,
222, 228, 231, 232, 233, 234

1 Each recording is denoted by a 3-digits number and the numbers are originally
discontinuous.

4.2 Evaluation Metrics

Evaluation metrics used in this work are sensitivity (Se), positive predictive
value (+P ) and accuracy value (Acc),as formulated below,

Se =
TP

TP + FN
(7)

+P =
TP

TP + FP
(8)

Acc =
TP + TN∑ (9)

where TP , TN , FP and FN denotes true positive, true negative, false positive
and false negative, respectively, and

∑
represents the amount of instances in the

data set. According to the AAMI standard [16], penalties would not be applied
for the misclassification of F and Q beats, as they are naturally unclassifiable.

4.3 Results of the proposed framework

Confusion matrixs of the proposed framework with DHCAF and with MCHCNN
on DS2 are presented in Table 3. We summarized the results and compared our
framework with multiple state-of-the-art methods in Table 4. All results reported
in Table 4 are obtained under the same evaluation paradigm on DS2 of MIT-
BIH-AR database.

It is clear that the proposed framework with DHCAF achieves the best sen-
sitivity of both class S and V, and maintain a good performance in overall
accuracy and classification of class N. Shan’s model [11] obtains the highest ac-
curacy and class N sensitivity. However, it fails in the detection of class S, with
the sensitivity of class S being merely 29.5%, which limit the model’s practical
significance. The proposed framework with MCHCNN outperforms DHCAF in
terms of the overall accuracy, sensitivity of N beats, and the positive predictive
value of S beat, but its performance on sensitivity of S beat is less satisfied. In
fact, it can found that the positive predictive values of S beats for most listed
works in Table 4 are relatively low, as compared to other metrics. This is mainly
caused by some N beats being misclassified as S beats. As we mentioned in the
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Table 3. Confusion matrixs of DHCAF and MCHCNN on DS2.

Predicted class (DHCAF) Predicted class (MCHCNN)

N S V F Q N S V F Q

True class N 40698 2053 1199 0 119 42356 903 734 83 2

S 125 1472 157 0 0 669 686 396 3 0

V 102 103 3013 0 1 259 30 2924 6 0

F 263 2 122 0 1 381 1 6 0 0

Q 3 0 4 0 0 3 0 4 0 0

Table 4. Arrhythmia detection results of the proposed framework and the stat-of-the-
art methods on DS2

Method Type Acc
N S V

Se +P Se +P Se +P

Proposed (DHCAF) feature engineering 91.4 92.4 98.8 84.0 40.6 93.6 67.3

De Chazal [16] feature engineering 81.9 86.9 99.2 75.9 38.5 77.7 81.9

Ye C [48] feature engineering 86.4 88.5 97.5 60.8 52.3 81.5 63.1

Zhang Z [52] feature engineering 86.7 88.9 99.0 79.1 36.0 85.5 92.8

Shan C [11] feature engineering 93.1 98.4 95.4 29.5 38.4 70.8 85.1

Mariano L [29] feature engineering 78.0 78.0 99.0 76.0 41.0 83.0 88.0

Proposed (MCHCNN) deep learning 93.0 96.1 97.0 39.1 42.3 90.1 72.0

Sellami Ali [38] deep learning 88.3 88.5 98.8 82.0 30.4 92.0 72.1

Introduction section, the similar QRS complex and the data imbalance problem
have introduced a great difficulty in distinguishing the S from the N beats. We
compared proposed framework with MCHCNN to another deep-learning based
method by Sellami et al. [38], which reported model performance under the same
unbiased evaluation. The results show that Sellami’s work has achieved a promis-
ing performance on identification of both the problematic S and V beats, being
close to that of the proposed framework with DHCAF. However, this is at the
cost of the overall accuracy and sensitivity of normal beats. In real-world prac-
tices, the large amount of misclassification of normal heartbeats as the disease
heartbeats will result in an unnecessary waste in medical resources.

From the above analysis, the proposed framework with DHCAF is believed
to be a more appropriate choice than other listed works for cardiac arrhyth-
mia detection, because it achieves the best identification performance on disease
heartbeats while maintaining a good overall accuracy and classification perfor-
mance on the normal heartbeats.

4.4 Ablative analysis

We perform ablative analysis for the proposed DHCAF and MCHCNN to demon-
strate the effectiveness of the model architectures. The results are summarized
in Table 5 and Table 6, respectively.

Two baselines are used in the ablative analysis for DHCAF. One is DHCAF
with the result refinement stage removed. The other one is DHCAF with the



14 Jinyuan He et al.

Table 5. Ablative analysis of DHCAF

Method Acc
N S V

Se +P Se +P Se +P

Proposed (DHCAF) 91.4 92.4 98.8 84.0 40.6 93.6 67.3

Proposed (DHCAF) without Result Refinement 90.8 92.4 98.8 63.6 36.1 95.0 60.8

Proposed (DHCAF) with SVM Ensemble 82.8 82.9 99.4 72.3 30.9 96.7 36.8

Table 6. Ablative analysis of MCHCNN

Method Acc
N S V

Se +P Se +P Se +P

Proposed (MCHCNN) 93.0 96.1 97.0 39.1 42.3 90.1 72.0

Proposed (MCHCNN) without Heart Rhythms 92.1 97.5 95.0 10.3 20.1 73.8 86.0

dynamic ensemble selection classification of DHCAF replaced by ensemble of
SVM classification. It is apparent that the result regulator has made unique
contributions to DHCAF, with which the overall accuracy, sensitivity of class S,
and positive predictive of class S and V are visibly increased. On the other hand,
the poor classification performance of the SVM ensemble has demonstrated the
importance of the introduction of dynamic ensemble selection to the proposed
method.

As discussed in Section 1 and 2, many existing deep neural network mod-
els have not taken the heart rhythms into account for heartbeat classification,
but this limitation is hidden by the over-optimistic results obtained in a biased
evaluation paradigm. In the ablative test of MCHCNN, we want to know the
actual impact of heart rhythms on model performances. Therefore, we construct
a baseline MCHCNN which only take raw ECG heartbeats as input. The results,
as seen in Table 6, indicate that heart rhythm (RR-intervals) are necessary for
identification of the disease heartbeats. Without consideration of heart rhythm,
the baseline can hardly detect S beats. The detection on V beats is also affected.
The outcome is in line with the medical fact. As we can see in Fig 1, most V
beats present a huge morphological difference with other heartbeats. That is
why the baseline can still maintain 73.8% sensitivity on V beats. However, for
S beats, the heart rhythm is essential for distinguishing them from the normal
heartbeats.

Although heartbeat rhythms has been part of the input to the proposed
MCHCNN, the S beats detection performance is still less satisfied. This indicates
that the raw heartbeat rhythms provide limited assistance to our MCHCNN in
identification of S beats. A possible explanation is that the heartbeat rhythms
are not integrated well to the network and also easily affected by other learned
features. A future study is needed to investigate this issue.
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5 Conclusion

Millions of people around the world are suffering from cardiac arrhythmia. In
this work, we propose a framework for automated arrhythmia detection from
IoT-based ECGs. The framework consists of two modules: a data cleaning mod-
ule to tackle the challenges presented by IoT-based ECGs, and a heartbeat
classification module for identification the disease heartbeats. Specifically, we
proposed two solutions, DHCAF and MCHCNN, for the heartbeat classifica-
tion task. DHCAF is a feature-engineering based method which introduces the
dynamic ensemble selection techniques and uses an adjust-feature strategy to
assist disease heartbeats identification. By contrast, MCHCNN is an end-to-end
solution that performs multi-channel convolutions to capture both the temporal
and frequency information from the raw heartbeats to improve the classifica-
tion performance. We evaluate the proposed framework on the MIT-BIH-AR
database under the inter-patient evaluation paradigm. The results show that
the proposed framework with DHCAF is a qualified candidate for automated
arrhythmia detection from IoT-based ECGs. Besides, although the S beats de-
tection performance of MCHCNN is less satisfied, the network still provide some
insights to our future study.

This work is a first step to provide a solution for the automated arrhythmia
detection in the era of Internet-of-Things. In our next study, we aim to inves-
tigate a more effective way for integration of the heart rhythms into a neural
network.
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