Skip to main content
Log in

Utilizing extended geocodes for handling massive three-dimensional point cloud data

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Point clouds have become a primitive and fundamental material for manifold spatial representations. It can precisely render real-world environments as high-density points which include three-dimensional (3D) coordinates (x, y & z) and other features (color, intensity, and so on). Accordingly, various applications, including robot navigation and self-driving, make use of point clouds not only to detect near objects but to comprehend overall geospatial surroundings. However, it is challenging to exploit the point clouds in terms of spatial query processing in traditional database systems because of its enormous volume and nonstructural formats. In this paper, we propose an efficient method for the manipulation of 3D point cloud based on a Discrete Global Grid System (DGGS). As DGGS represents the Earth as hierarchical sequences of equal area/volume tessellations, it provides an accurate partitioning to integrate and analyze big geospatial data, unlike a base64 geohash representation. This study extends our previous DGGS-based encoding/decoding work to process 3D range queries with more than 64 bits for precise 3D coordinates of point clouds. In particular, we apply PH-tree as a multi-resolution tessellation storage and indexing structure for 3D bounding box queries. The experimental results show that our query processing significantly outperforms the baseline with a linear quadtree. Also, we present the encoding/decoding efficiency of converting large Morton codes from geographic coordinates by using the combination of bit interleaving and lookup tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Notes

  1. Apache Hadoop: Open-source software for reliable, scalable, distributed computing: https://hadoop.apache.org

  2. Apache Spark: Unified Analytics Engine for Big Data: https://spark.apache.org

  3. Apache HBase: Hadoop database, a distributed, scalable, big data store: https://hbase.apache.org

  4. MongoDB: The most popular database for modern apps: https://www.mongodb.com

  5. https://pointcloud.pref.shizuoka.jp/

  6. VisualVM: All-in-One Java Troubleshooting Tool: https://visualvm.github.io

  7. Java harness for building, running, and analysing nano/micro/milli/macro benchmarks: http://openjdk.java.net/projects/code-tools/jmh/

  8. Lightning-fast unified analytics engine: https://spark.apache.org

References

  1. Agarwal, P.K., Erickson, J., et al.: Geometric range searching and its relatives. Contemp. Math. 223, 1–56 (1999)

    Article  MathSciNet  Google Scholar 

  2. Amiri, A.M., Samavati, F., Peterson, P.: Categorization and conversions for indexing methods of discrete global grid systems. ISPRS Int. J. Geo-Inf. 4(1), 320–336 (2015)

    Article  Google Scholar 

  3. Baert, J., Lagae, A., Dutré, P.: Out-of-core construction of sparse voxel octrees. In: Proceedings of the 5th high-performance graphics conference, pp. 27–32. ACM (2013)

  4. Bentley, J.L., Friedman, J.H.: Data structures for range searching. ACM Comput. Surv. (CSUR) 11(4), 397–409 (1979)

    Article  Google Scholar 

  5. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv. (CSUR) 11(2), 121–137 (1979)

    Article  MathSciNet  Google Scholar 

  6. Decker, B.L.: World geodetic system 1984. In: Proceedings of the Fourth International Geodetic Symposium on Satellite Positioning, pp. 69–92 (1986)

  7. Gumhold, S., Kami, Z., Isenburg, M., Seidel, H.P.: Predictive point-cloud compression. In: ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05. ACM, New York. https://doi.org/10.1145/1187112.1187277 (2005)

  8. Houshiar, H., Nüchter, A.: 3D Point Cloud Compression Using Conventional Image Compression for Efficient Data Transmission. In: 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT), pp. 1–8. IEEE (2015)

  9. Huang, Y., Peng, J., Kuo, C.C.J., Gopi, M.: A generic scheme for progressive point cloud coding. IEEE Trans. Vis. Comput. Graph. 14(2), 440–453 (2008)

    Article  Google Scholar 

  10. Kim, J., Lee, W., Song, J.J., Lee, S.B.: Optimized combinatorial clustering for stochastic processes. Clust. Comput. 20(2), 1135–1148 (2017)

    Article  Google Scholar 

  11. Kim, T., Kim, K.S., Lee, J., Matono, A., Li, K.J.: Efficient Encoding and Decoding Extended Geocodes for Massive Point Cloud Data. In: 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), 1–8. IEEE (2019)

  12. Lee, K., Ganti, R.K., Srivatsa, M., Liu, L.: Efficient spatial query processing for big data. In: Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 469–472. ACM (2014)

  13. Lin, B., Zhou, L., Xu, D., Zhu, A.X., Lu, G.: A discrete global grid system for earth system modeling. Int. J. Geogr. Inf. Sci. 32(4), 711–737 (2018)

    Article  Google Scholar 

  14. Lopes, E., Ascenso, J., Brites, C., Pereira, F.: Adaptive Plane Projection for Video-Based Point Cloud Coding. In: 2019 IEEE International Conference on Multimedia and Expo (ICME), pp. 49–54. IEEE (2019)

  15. Morton, G.M.: A computer oriented geodetic data base and a new technique in file sequencing. IBM Ltd. (1966)

  16. de Oliveira Rente, P., Brites, C., Ascenso, J., Pereira, F.: Graph-based static 3d point clouds geometry coding. IEEE Trans. Multimed. 21(2), 284–299 (2018)

    Article  Google Scholar 

  17. Pajić, V, Govedarica, M., Amović, M.: Model of point cloud data management system in big data paradigm. ISPRS International Journal of Geo-Information 7(7), 1–15 (2018)

    Article  Google Scholar 

  18. Pavlovic, M., Bastian, K.N., Gildhoff, H., Ailamaki, A.: Dictionary compression in point cloud data management. In: Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 45. ACM (2017)

  19. Psomadaki, S., Van Oosterom, P., Tijssen, T., Baart, F.: Using a space filling curve approach for the management of dynamic point clouds. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-2 W(1), 107–118 (2016)

    Article  Google Scholar 

  20. Purss, M.B., Gibb, R., Samavati, F., Peterson, P., Ben, J.: The Ogc®; Discrete Global Grid System Core Standard: a Framework for Rapid Geospatial Integration. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3610–3613. IEEE (2016)

  21. Sahr, K., White, D., Kimerling, A.J.: Geodesic discrete global grid systems. Cartogr. Geogr. Inf. Sci. 30(2), 121–134 (2003)

    Article  Google Scholar 

  22. Sirdeshmukh, N.: Utilizing a Discrete Global Grid System for Handling Point Clouds with Varying Locations, Times and Levels of Detail. Master’s thesis, Delft University of Technology (2018)

  23. Snyder, J.P.: An equal-area map projection for polyhedral globes. Cartographica: Int. J. Geograph. Inf. Geovisual. 29(1), 10–21 (1992)

    Article  Google Scholar 

  24. Van Oosterom, P., Vijlbrief, T.: The Spatial Location Code In: Proceedings of the 7Th International Symposium on Spatial Data Handling. Delft, The Netherlands (1996)

  25. Van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M., Geringer, D., Ravada, S., Tijssen, T., Kodde, M., Gonċalves, R.: Massive point cloud data management: design, implementation and execution of a point cloud benchmark. Comput. Graph. 49, 92–125 (2015)

    Article  Google Scholar 

  26. Vinkler, M., Bittner, J., Havran, V.: Extended morton codes for high performance bounding volume hierarchy construction. In: Proceedings of High Performance Graphics, pp. 9. ACM (2017)

  27. Wang, J., Shan, J.: Space filling curve based point clouds index. In: Proceedings of the 8th International Conference on GeoComputation, pp. 551–562 (2005)

  28. Zäschke, T., Norrie, M.C.: Efficient Z-Ordered Traversal of Hypercube Indexes. In: 17. GI-Fachtagung Datenbanksysteme für Business, Technologie und Web (BTW 2017). ETH Zürich (2017)

  29. Zäschke, T., Zimmerli, C., Norrie, M.C.: The ph-tree: a space-efficient storage structure and multi-dimensional index. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pp. 397–408. ACM (2014)

  30. Zhao, X., Bai, J., Chen, J., Li, Z.: A seamless visualizaton model of the global terrain based on the qtm. In: Advances in artificial reality and tele-existence, pp 1136–1145. Springer (2006)

  31. Zhou, J., Bruno, N., Lin, W.: Advanced Partitioning Techniques for Massively Distributed Computation. In: Proceedings of The 2012 ACM SIGMOD International Conference on Management of Data, pp. 13–24. ACM (2012)

Download references

Acknowledgements

This work was partially supported by the New Energy and Industrial Technology Development Organization (NEDO). Also, this research was supported by a grant(20NSIP-B135746-04) from National Spatial Information Research Program (NSIP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Sook Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Artificial Intelligence and Big Data Computing

Guest Editors: Wookey Lee and Hiroyuki Kitagawa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Lee, J., Kim, KS. et al. Utilizing extended geocodes for handling massive three-dimensional point cloud data. World Wide Web 24, 1321–1344 (2021). https://doi.org/10.1007/s11280-020-00783-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-020-00783-1

Keywords

Navigation