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Abstract

Road traffic prediction plays a vital role in real-time traffic management of an intelli-
gent transportation system (ITS). Many prediction models achieve fine results. However,
most ignore the intrinsic characteristics of traffic parameter data and do not consider the
spatiotemporal effects of road sections, which can reflect the situation of all road traffic.
Therefore, multi-section traffic prediction is still an open problem. In this paper, empirical
mode decomposition (EMD) is employed to decompose the information of traffic parame-
ters into many intrinsic mode function (IMF) components, which represent the original road
traffic information in periodic and random sequences. Then, by considering the superiority
of deep learning in multi-dimensional data processing, which can handle the spatiotempo-
ral effects, a prediction model based on a convolutional neural network (CNN) is proposed
to achieve the prediction of periodic and random sequences, whose results are combined to
obtain the final prediction. The dataset from the Caltrans Performance Measurement Sys-
tem is used to validate the model. The proposed prediction model is compared to several
well-known models, such as PCA-BP, Lasso-BP, and standard CNN. Experiments show that
the proposed prediction model achieves higher accuracy.

Keywords Intelligent transportation system - Traffic flow prediction -
Mode decomposition - Convolutional neural network

1 Introduction

Road traffic prediction is the task of mining traffic patterns and predicting traffic trends by
analyzing all kinds of traffic conditions of urban roads, including flow, speed, and occu-
pancy. It not only helps traffic managers improve road operation efficiency but provides
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important information on road conditions for travelers [16]. Therefore, many scholars are
committed to researching reliable and precise traffic prediction models [24]. The autoregres-
sive integrated moving average model (ARIMA) is one of the most widely used statistical
time series models [23], and improvements such as the seasonal ARIMA model [25] and
ARIMA-GARCH model [4] have been proposed. Although these models have good pre-
diction results, they do not consider spatiotemporal effects, which are a vital part of traffic
data. Traffic parameters in different sections of a road can obviously be regarded as describ-
ing space and time processes. Various detectors can be deployed on a road network, each
representing the state of a current traffic parameter. The status of these detectors can reflect
the traffic status of road sections, hence multi-section road traffic prediction can reflect the
future traffic status of entire road sections. It is a challenging task and a research hotspot
[1, 3, 7]. Yao et al. [26] considered the temporal and spatial correlation of traffic param-
eters of each section of a road. They established a multi-road-section traffic parameter
prediction model based on SVM and principal component analysis (PCA). Experimental
results based on this scheme are much better than those of a single road section. Jiang et al.
[11] considered the influence of multi-section, and established a prediction model of traf-
fic parameters based on Lasso, with the help of a nonlinear neural network. Experiments
showed that the Lasso-NN model has an overall lower error rate. Li et al. [10] thought there
was information redundancy and correlation between road sections. They proposed a road
traffic network prediction model based on rough set theory and SVM. The results showed
a relatively good prediction effect. The above models have accomplished the prediction of
road traffic parameters to a certain extent. However, they ignore the intrinsic characteris-
tics of traffic parameter data, which can optimize prediction models. Due to the stochastic
and nonlinear nature of traffic parameter data, they can be seen as a time series that can be
decomposed into different frequency components [29]. Huang et al. [9] introduced a method
called empirical mode decomposition (EMD) to decompose nonstationary signals into a set
of intrinsic oscillatory modes. Therefore, studying the internal characteristic information of
traffic parameter data may improve forecasting precision. Based on a single-section road
traffic prediction model [28] that considers the periodic and random characteristics of road
traffic parameters, this paper proposes a mode decomposition based deep learning model
for multi-section road traffic prediction, which not only captures the intrinsic characteristics
of traffic parameter data but shows superior capability for spatiotemporal effects.

The rest of this paper is structured as follows. Related studies of EMD and deep learning
methods on road traffic prediction are briefly described in Section 2. The method of EMD
of road section traffic is demonstrated in Section 3. Section 4 describes the proposed con-
volutional neural network (CNN)-based road section traffic prediction model. Experiments
and analysis are presented in Section 5. Section 6 discusses conclusions and suggestions for
future work.

2 Related work

Several road traffic evaluation models using mode decomposition techniques have been
studied, their main goal being to decompose traffic information to obtain the most use-
ful information from their original data through so-called intrinsic mode functions (IMFs).
Chen et al. [5] introduced a hybrid short-term traffic flow prediction model based on EMD
and a recurrent neural network. The model was shown to deliver superior short-term traffic
flow predictions compared to other models. Duo et al. [6] employed EMD and GPSO-SVM
as a hybrid model to forecast short-term traffic flow. Experimental results showed a better
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effect and higher accuracy compared to other models. Tian et al. [21] proposed an EMD-
based model to predict short-term traffic flow. First, the original traffic flow sequence was
decomposed by EMD. Then, prediction models were established according to different ran-
domness of IMF components. Finally, multiple predicted results were added together to
obtain the predicted traffic flow. The results showed that the performance indices of the
proposed model exceeded those of classical prediction models. Zheng et al. [28] proposed
a mode decomposition based hybrid model that could analyze the characteristics of traffic
flow information and predict traffic flow. Due to the complexity of spatial and temporal
dependence, the above studies did not consider spatiotemporal effects. In fact, multiple
sensors are deployed along the road network to capture traffic data, which can represent
traffic information in space and time. Hence spatiotemporal effects can reflect the traffic
status of entire road sections, and to make full use of this dependence is the key to solving
multi-section road traffic problems.

With the availability of effective open-source libraries and frameworks to implement
basic learning algorithms, along with powerful and compact GPUs at affordable prices [17],
deep neural networks, also known as deep learning, become attractive. Li et al. [13, 14]
applied deep learning models in edge computing and fog computing to reduce network
traffic of information data from IoT devices to cloud servers and to optimize network perfor-
mance. They deployed IoT devices as an edge layer, which is one of the multilayer structures
of a deep learning model to improve the efficiency of processing image data. Experimen-
tal results showed that deep learning models such as CNNs outperform other optimization
methods.

CNN is one of many deep learning methods. Song et al. [19] used a CNN model for
traffic speed prediction. Experimental results show that the model could capture the local
dependencies of traffic data and had an advantage on space and time effects. Ma et al.
[15] proposed a CNN-based prediction model that converted spatial and temporal data to a
two-dimensional space-time matrix, and used the advantage of CNN in image processing
to predict traffic speed. Ratchanon Toncharoen [22] proposed traffic state prediction using
a CNN model to transform traffic data of 40 nodes along an expressway to spatiotemporal
matrices. Experiments have shown that prediction models based on CNN have an advantage
regarding spatiotemporal effects and good prediction accuracy. However, the above studies
ignored the intrinsic characteristics of traffic parameter data, which can further optimize the
prediction model. This paper proposes a traffic prediction model which not only considers
the intrinsic characteristics of traffic parameter data but the spatiotemporal effects.

3 Empirical mode decomposition of road section traffic

One can think of the evolution of traffic parameters as a temporal and spatial process by con-
sidering the traffic status parameters of flow, occupancy, and speed as a triplet. According
to traffic flow theory, speed, flow, and occupancy are all related [18]. Traffic speed is con-
sidered the mean speed of a traffic stream, and is typically expressed in kilometers or miles
per hour. Traffic flow can be considered a temporal measurement. It is typically expressed
as the number of vehicles per hour. Traffic occupancy is a parameter expressing the crowd-
ing of a section of a road. It is typically expressed as the number of vehicles per kilometer
or mile, or vehicles per road-section in each time interval. Therefore, the three parameters
of flow, speed, and occupancy are selected as input variables. Then, the traffic status of the

 observation location at the ¢ time 1nterva1 is denoted as ( ft s ot, st) At time T, the task
is to predict three traffic parameters ( ft iy o; ey s; +1) attime 7 + 1 based on the historical
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traffic status sequence FR = {f,i, oi, sfli eM,t =1,2,..., T}, where M is the full set of
observation location.

The goal of EMD is to empirically identify the intrinsic oscillatory modes by their
characteristic time scales in the data and then to decompose the data [9]. This complex sys-
tem analysis method is suitable to process nonlinear and non-stationary time series. EMD
assumes that any complex signal consists of simple IMF, and its basic idea is to divide an
original irregular signal into multiple single-frequency signals and residual waves. For the
input signal x(¢) and original signal f(z), s(¢), and o(¢) as three traffic parameters data
flow, speed and occupany. The procedure of the EMD algorithm is shown in Figure 1. The
process of EMD has four steps.

Step 1:  Set the original signal f(¢), s(¢), and o(¢) as the input signal x(¢). Find all local
extrema of x(z); we can use cubic spline curve interpolation to separately obtain the
upper envelope x,,(¢) and lower envelope x;oy (t) of x(¢). The mean m(z) is estimated
as the average of the two envelopes,

xup(t) — Xlow ()

1) = 1
m(t) 5 (L
Step 2:  Substract the mean m(¢) from the input signal x(¢):

h(t) = x(t) — m(z). (2

Set original signal s(7) f(l‘) . 0(?) as input signal x(¢)

l

Construct the envelopes
Calculate the m1(t)

Subtract the mean Treat /i(t)

from the time series as input signal

h(t)=x{)—m(t) x(H)=h(r)
Treat 7() .
as input signal @
.\'(f) = I‘(f) Yes

Store IMF ¢(1)=h(t)
Subtract the IMF from the input signal

r(t)=x(t)—c(t)

Original signal decomposed into IMFs
and a residual

Figure 1 Flow Diagram of EMD for Road Traffic Parameters
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Step 3:  Repeat step 1 to calculate the new m(¢) and & (¢) until 4 (¢) meets the requirements
of IMF, after which it is designated c(¢), the first IMF component of x (), and the residual
of the signal r(¢) can be obtained as

r(t) = x(t) — c(?). (3)
Step 4:  Using r(¢) as the signal to be decomposed, repeat the process until the residual
signal satisfies the termination condition. The final result of EMD is
n
x() =) ) +r), “

i=1

where ¢; (¢) is the i"" IMF component and r(¢) is the residual wave. From this equation, we
see that EMD can decompose the original signal x (¢) into the sum of n frequencies of IMF
and the residual wave r(¢). According to the terminal constraints introduced in equation (4),
we can first obtain all the IMFs from traffic flow data, as shown in Figure 2. Figure 2a
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IMF3

@ Springer



2518 World Wide Web (2020) 23:2513-2527

shows the original time series of traffic flow, which is considered the input of the EMD. The
six decomposed IMF results of the traffic flow are shown in Figure 2b—g.

The results of the decomposition show that the fluctuation frequencies of IMF1, IMF2,
and IMF3 are higher, and belong to the random sequence. The fluctuation frequencies of
IMF4, IMF5, and IMF6 are stable, so they belong to the periodic sequence. With simi-
lar EMD processing in our experiments, the traffic speed and occupancy data can also be
decomposed into six IMFs.

4 CNN-based road section traffic prediction model

By considering the output from the EMD algorithm and the length invariance of data after
decomposition, the mode decomposition of multi-section road traffic must take spatial and
temporal information into account. However, since the traffic state of one section depends
greatly on nearby traffic sections in both the time and space aspects, the process is rela-
tively complex. Therefore, the ability to extract important local features from input data
makes CNN suitable for traffic state prediction. Also, the interaction of traffic flow, speed,
and occupancy in the traffic network affect the overall traffic status. Therefore, the task of
predicting traffic parameters should be considered comprehensively. When the three param-
eters are considered simultaneously, they are similar to the three primary colors red, green,
and blue (RGB) in the image domain, as shown in Figure 3.

In image processing, a CNN-based model has the advantages that it can capture local
dependencies and is less sensitive to noise in data [27]. This has enabled big advances using
CNN-based approaches in many research fields, including image- and activity-recognition
[12]. Therefore, in the prediction stage, this paper uses CNN for multi-section road traffic
prediction. CNN is one of many widely used deep learning models in image-processing,
whose examples include Google Net [20] and ResNet [8]. However, these models are more
suitable for image classification and may not work well with the unique characteristics
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Figure 3 Examples of the Expression of Three Traffic Parameters as RGB Channels
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of road traffic prediction. The convolution layer has many convolution filters, which can
extract and group lower features into higher and more abstract network traffic features. The
process can be defined as

C-1)
of = F(_ (W ol + b)), &)
j=1

where j and k are the indices of the convolutional filters; 05‘, 0{,_1 ) Wl] k, and bf‘ are respec-
tively the output, input, weights, and additive bias of the /' convolution layer; c(—1) is the
number of convolutional filters in the (/ — 1)*; and f is the activation function. In this
study, the rectifier linear unit (ReLU) is chosen as the activation function since it does not
squeeze the input, and it increases the speed of training. The ReLU function can be written

as
f(x) = max(0, x). (6)

We use the MaxPooling operation to reduce the number of parameters for training the
CNN, and this defines a spatial neighborhood. Therefore, 2 x 2 MaxPooling is used for the
pooling layer. The function can be described as

Ypooling = max(x;;), i € {1,2}, j € {1,2} @)

The loss function is

E=) (o — p0)’, ®)
k

where o and pj are respectively the observation values and proposed model output val-
ues. There are two ways to implement the mode decomposition of a multi-section road
traffic algorithm by EMD. The first is to complete the mode decomposition directly in two-
dimensional space because of the relation between the spatial and temporal. The second is to
use EMD to achieve mode decomposition on single sections of road traffic and then synthe-
size the decomposition results of all sections. Then, we combine them into two dimensions
for spatial and temporal relations. This paper uses the second method to avoid the correla-
tion of road sections. The procedure of the proposed prediction model is shown in Figure 4,
and it has the following three steps.

Step 1: The EMD method is used to decompose the time series x(f) to obtain n
components of IMF and residual r(z).

Step 2:  CNN models are established to train the periodic and random sequences, and the
sub-prediction results are obtained. The implementation of the CNN model is presented
in Figure 7.

Step 3:  The sub-prediction results of the periodic and random sequences are aggregated
to obtain the final prediction results.

5 Experiments
We used traffic data collected by the Caltrans Performance Measurement System (PeMS)
[2] to train and test the proposed model. The data of 10 road sections along High-

way I80-E were selected for experimental study. The road sections were VDS-404885,
VDS-404886, VDS-404889, VDS-404891, VDS-404896, VDS404906, VDS-404908,
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Figure 4 Procedure of Mode Decomposition Based Deep Learning Model for Multi-section Traffic
Prediction

VDS-404910, VDS404921, and VDS-404923. Traffic parameters such as flow, occupancy,
and speed were collected every five minutes over 25 weeks (2018/2/4-2018/7/28). The first
23 weeks were used to train the model, and the last two weeks were used to test the perfor-
mance. Based on the periodicity of traffic parameters, the predicted time is still one week.
Therefore, the traffic state of a time interval was predicted using the data of the previous
week. We chose the average value of the traffic flow of 10 road sections to predict the traffic
state of the next time interval. To provide effective traffic information for travelers, the data
prediction cycle was selected as one week, nine prediction steps were forecast for the next
45 minutes, and the prediction data were updated with one interval or every five minutes.

Based on the PeMS data, an EMD model was first used to decompose the original
sequence in a cycle of one day, which consisted of 288 points with a five-minute time inter-
val. Through the results of data decomposition, the number of IMFs for traffic flow data
decomposition is 5, 6, 7, 8 and 9 through the analysis of 10 road sections, with a total of
1750 samples. IMF5, IMF6, IMF7, IMF8, and IMF9 had 48, 624, 938, 137, and 3 decom-
positions, respectively. The decompositions were concentrated in IMF6, IMF7, and IMFS.
Traffic, speed, and occupancy data had the same result. Next, the combination of a peri-
odic and random sequence was carried out through comparative analysis. The results of the
combined model are shown in Table 1.

Figure 5 compares the periodic and random sequences of the traffic parameters speed,
occupancy, and flow at a single location after six IMFs were selected. Data of the three
traffic parameters at a certain time point of 10 road sections were randomly selected, and
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Figure 5 Comparison of Periodic and Random Sequences of One Node

the parameters of each location were aggregated. The result of data aggregation of 10 road
sections is shown in Figure 6.

The average flow value of 10 road sections was selected to measure the traffic state of the
next time section, which can carry out the sub-prediction output of the network. The output
of the corresponding periodic and random sequences were obtained by mode decomposition
and mode combination. Statistical analysis showed that the number of IMFs is 5, 6, 7, and
8. The results are shown in Table 2.

Since a sensor collected traffic data every five minutes, it would collect 12 observations
in an hour, or 2016 in a week, for each of the 10 road sections. Therefore, the corresponding
matrix is 10 x 2016. Figure 7 shows the architecture of the proposed CNN model.

From Figure 7, because of an imbalance of data length and width, two convolution lay-
ers were followed by a pooling layer, and the convolution core convl and conv4 changed
the time dimension but not the corresponding spatial dimension. To reduce the number of
parameters, we used max pooling to reduce the corresponding time and spatial dimensions
by half. To effectively increase the data extraction ability, the channel parameters of the con-
volution core were designed with 4, 8, 16, and 32 filters. Moreover, to avoid overfitting, we
adopted dropout and regularization strategies. The network parameters are shown in Table 3.
It should be noted that to increase the training speed of the network, the ReLU activation
function was added after each convolution layer. Our proposed model was developed using
a TensorFlow framework based on the Adam algorithm and Xavier initialization.
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Figure 6 Comparison of Periodic and Random Sequences of Multi-section Road Traffic Parameters

Table2 Mode combination

results of output sequence IMF number

Periodic sequence Random sequence

0 3 N W

IMF5 IMF1-IMF4
IMF5 + IMF6 IMF1-IMF4
MF6 + IMF7 IMF1-IMF5
IMF6 + MF7 + IMF8 IMF1-IMF5
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Figure 7 Architecture of Proposed Convolutional Neural Network Model

To demonstrate the efficiency of the proposed prediction method, we chose standard
CNN, Lasso-BP, and PCA-BP as comparative models. Lasso-BP and PCA-BP are hybrid
models, where Lasso and PCA are used to reduce the data dimension, and BP for prediction
after dimension reduction is input, to realize multi-section data prediction. The standard
CNN prediction model was used as a comparison as well. Mean absolute percentage error
(MAPE), mean absolute error (MAE), and root mean square error (RMSE) were used for
performance evaluation. These are defined as follows:

1 m
1 & ri__ijlpj
MAPE (r, pi) = — Y | —"—=—— )
n- i
i=1
1 n 1 m
MAE (i, p) = 3 lri= 3 pj (10)
i=1 j=1
Table 3 Model network parameters
Layer Data Labels
Label Current layer parameters Current layer output
input - 10*2016*3
convl (3*16*3)*4(filters), 1*2(strides) 10*1008*4
conv2 (3*16*4)*8(filters), 1*2(strides) 10*504*8
maxpooling 2*2(strides) 5%252*8
conv3 (3*16*3)*16(filters), 1*2(strides) 5%126*16
conv4 (3*%16*4)*32(filters), 1*2(strides) 5%63%32
maxpooling 2*2(strides) 3%32%32
flatten/dropout - 3072
output 200(fully connected) 9
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where r; is a real observation value, p; is a predicted result, and n is the number of test
samples. We set m = 9 because the average of nine predicted values is regarded as the
predicted value of the current time node. After the output from mode decomposition, two
sub-prediction models were constructed. Considering that the prediction task is not mean-
ingful after midnight, the error rate of the model was calculated only from 6:00 a.m. to
midnight at 216 points. After sub-prediction results of periodic and random sequences
were aggregated, the final prediction results were obtained. The error rate was 0.06674 for
MAPE, 22.0999 for MAE, and 29.602 for RMSE. The comparison between predicted traffic
flow and real observations is shown in Figure 8.

To validate the effectiveness of the proposed model, the well-known prediction models
PCA-BP, Lasso-BP, and standard CNN were chosen for experimental comparison using the
same dataset as our proposed model. The results are shown in Table 4.

The experimental results in Table 4 clearly show that the accuracy rates of the four mod-
els are different. Because of the advantage of CNN-based prediction models in dealing with
multidimensional data, RMSE, MAPE, and MAE of our model are much smaller than for
other models. A higher value indicates less prediction efficiency. These outcomes show

Table 4 Model comparison

results Comparison Evaluation index
Model MAPE MAE RMSE
PCA-BP 0.1415 47.579 63.489
Lasso-BP 0.1428 44.336 54.941
CNN 0.0735 26.123 33.708
Proposed model 0.06674 22.0999 29.602
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that the proposed prediction model takes into account the intrinsic characteristics of traf-
fic parameters and delivers the advantages of a CNN, which can perform more powerful
prediction efficiency.

6 Conclusion

In this paper, a mode decomposition based deep learning model for multi-section road traf-
fic prediction was proposed for highway traffic prediction. First, with consideration of the
intrinsic characteristics of traffic parameters, the raw dataset was transformed to periodic
and random sequences by EMD. Next, a prediction model based on CNN was established
to complete the prediction of periodic and random sequences by considering the effect of
spatiotemporal information. Finally, two parts of the sub-prediction results were aggregated
to obtain the final prediction results. Experimental results show that the proposed predic-
tion model is more accurate than several popular models. Nevertheless, this study does not
consider other factors, such as weather conditions. Such factors will be considered in future
work to achieve higher prediction accuracy.
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