Skip to main content
Log in

Graph augmented triplet architecture for fine-grained patient similarity

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Electronic Health Records (EHRs) provide rich information for the research of multiple healthcare applications that improve chance of survival in Intensive Care Units (ICU), especially the case-based decision support system, which helps physicians make effective clinical decisions in the rapidly changing environment of ICUs according to similar historical patient records. Thus, an efficient approach being able to measure clinically similarities among patients is a fundamental and critical module for the decision support system. In this paper, we propose a novel framework that derives informative EHR graphs from patient records to augment information transmission in Recurrent Neural Networks (RNNs) for fine-grained patient similarity learning, named Graph Augmented Triplet Architecture (GATA). Specifically, GATA firstly derives Dynamic Bayesian Networks (DBNs) from EHRs to reveal correlations among medical variables, then it constructs graph augmented RNNs where each unit aggregate information from variables that it conditionally dependent in DBNs. After that, the specially designed RNNs will act as the fundamental components of the Triplet architecture to measure similarities among patients. GATA has been compared to different baselines based on a real-world ICU dataset MIMIC III, and the experimental results illustrate the effectiveness of GATA in fine-grained patient similarity learning, providing a promising direction for the research on clinical decision support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. https://github.com/yanda-wang/GATA

References

  1. Bajor, J.M., Lasko, T.A.: Predicting Medications from Diagnostic Codes with Recurrent Neural Networks. In: 5Th International Conference on Learning Representations (2017)

  2. Cai, X., Perez-Concha, O., Coiera, E., Martin-Sanchez, F., Day, R., Roffe, D., Gallego, B.: Real-time prediction of mortality, readmission, and length of stay using electronic health record data. J. Am. Med. Inform. Assoc. 23(3), 553–561 (2015)

    Article  Google Scholar 

  3. Chan, L., Chan, T., Cheng, L., Mak, W.: Machine Learning of Patient Similarity: a Case Study on Predicting Survival in Cancer Patient after Locoregional Chemotherapy. In: 2010 IEEE International Conference On Bioinformatics and Biomedicine Workshops (BIBMW), pp. 467–470. IEEE (2010)

  4. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 6085 (2018)

    Article  Google Scholar 

  5. Chen, W., Wang, S., Long, G., Yao, L., Sheng, Q.Z., Li, X.: Dynamic Illness Severity Prediction via Multi-Task Rnns for Intensive Care Unit. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 917–922. IEEE (2018)

  6. Cheng, Y., Wang, F., Zhang, P., Hu, J.: Risk prediction with electronic health records: a deep learning approach. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp. 432–440. SIAM (2016)

  7. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor Ai: Predicting Clinical Events via Recurrent Neural Networks. In: Machine Learning for Healthcare Conference, pp. 301–318 (2016)

  8. Choi, E., Bahadori, M.T., Searles, E., Coffey, C., Thompson, M., Bost, J., Tejedor-Sojo, J., Sun, J.: Multi-layer representation learning for medical concepts. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1495–1504. ACM (2016)

  9. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Medical concept representation learning from electronic health records and its application on heart failure prediction. arXiv:1602.03686 (2016)

  10. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 24(2), 361–370 (2016)

    Google Scholar 

  11. Choi, Y., Chiu, C.Y.I., Sontag, D.: Learning low-dimensional representations of medical concepts. AMIA Summ. Transl. Sci. Proc. 2016, 41–50 (2016)

    Google Scholar 

  12. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-Theoretic Metric Learning. In: ICML, pp. 209–216. Corvalis (2007)

  13. Esteban, C., Staeck, O., Baier, S., Yang, Y., Tresp, V.: Predicting Clinical Events by Combining Static and Dynamic Information Using Recurrent Neural Networks. In: 2016 IEEE International Conference on Healthcare Informatics (ICHI), pp. 93–101. IEEE (2016)

  14. Futoma, J., Hariharan, S., Sendak, M., Brajer, N., Clement, M., Bedoya, A., O’Brien, C., Heller, K.: An improved multi-output gaussian process rnn with real-time validation for early sepsis detection. arXiv:1708.05894 (2017)

  15. Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood Components Analysis. In: Advances in Neural Information Processing Systems 17, pp. 513–520. MIT Press (2005)

  16. Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    MATH  Google Scholar 

  17. Jagannatha, A.N., Yu, H.: Bidirectional rnn for medical event detection in electronic health records. In: Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting, vol. 2016, pp. 473–482. NIH Public Access (2016)

  18. Johnson, A.E., Pollard, T.J., Shen, L., Li-wei, H.L., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L.A., Mark, R.G.: Mimic-iii, a freely accessible critical care database. Sci. Data 3(160), 035 (2016)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a Method for Stochastic Optimization. In: 3Rd International Conference on Learning Representations (2015)

  20. Lee, J., Maslove, D.M., Dubin, J.A.: Personalized mortality prediction driven by electronic medical data and a patient similarity metric. PloS one 10(5), e0127,428 (2015)

    Article  Google Scholar 

  21. Lv, X., Guan, Y., Yang, J., Wu, J.: Clinical relation extraction with deep learning. IJHIT 9(7), 237–248 (2016)

    Article  Google Scholar 

  22. Ma, T., Xiao, C., Zhou, J., Wang, F.: Drug similarity integration through attentive multi-view graph auto-encoders. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp. 3477–3483 (2018)

  23. Marini, S., Trifoglio, E., Barbarini, N., Sambo, F., Di Camillo, B., Malovini, A., Manfrini, M., Cobelli, C., Bellazzi, R.: A dynamic bayesian network model for long-term simulation of clinical complications in type 1 diabetes. J. Biomed. Inf. 57, 369–376 (2015)

    Article  Google Scholar 

  24. Mueller, J., Thyagarajan, A.: Siamese Recurrent Architectures for Learning Sentence Similarity. In: Thirtieth AAAI Conference on Artificial Intelligence, vol. 16, pp. 2786–2792 (2016)

  25. Ni, J., Liu, J., Zhang, C., Ye, D., Ma, Z.: Fine-grained patient similarity measuring using deep metric learning. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1189–1198. ACM (2017)

  26. Pagana, K.D., Pagana, T.J.: Mosby’s diagnostic and laboratory test Reference-E-Book. Elsevier Health Sciences (2012)

  27. Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Moreno, R.G., Glocker, B., Rueckert, D.: Spectral Graph Convolutions for Population-Based Disease Prediction. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 177–185. Springer (2017)

  28. Pham, T., Tran, T., Phung, D., Venkatesh, S.: Deepcare: a Deep Dynamic Memory Model for Predictive Medicine. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 30–41. Springer (2016)

  29. Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J., Liu, X., Marcus, J., Sun, M., et al.: Scalable and accurate deep learning with electronic health records. NPJ Dig. Med. 1(1), 18 (2018)

    Article  Google Scholar 

  30. Razavian, N., Marcus, J., Sontag, D.: Multi-Task Prediction of Disease Onsets from Longitudinal Laboratory Tests. In: Machine Learning for Healthcare Conference, pp. 73–100 (2016)

  31. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling Relational Data with Graph Convolutional Networks. In: European Semantic Web Conference, pp. 593–607. Springer (2018)

  32. Shang, J., Xiao, C., Ma, T., Li, H., Sun, J.: Gamenet: Graph augmented memory networks for recommending medication combination. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1126–1133 (2019)

  33. Sun, J., Wang, F., Hu, J., Edabollahi, S.: Supervised patient similarity measure of heterogeneous patient records. ACM SIGKDD Explor. Newslett. 14(1), 16–24 (2012)

    Article  Google Scholar 

  34. Suresh, H., Hunt, N., Johnson, A., Celi, L.A., Szolovits, P., Ghassemi, M.: Clinical intervention prediction and understanding using deep networks. arXiv:1705.08498 (2017)

  35. Tran, T., Nguyen, T.D., Phung, D., Venkatesh, S.: Learning vector representation of medical objects via emr-driven nonnegative restricted boltzmann machines (enrbm). J. Biomed. Inf. 54, 96–105 (2015)

    Article  Google Scholar 

  36. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. W., Kavukcuoglu, K.: Wavenet: a Generative Model for Raw Audio. In: SSW, pp. 125 (2016)

  37. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is All You Need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

  38. Vincent, J.L., De Mendonċa, A., Cantraine, F., Moreno, R., Takala, J., Suter, P.M., Sprung, C.L., Colardyn, F., Blecher, S.: Use of the sofa score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Crit. Care Med. 26(11), 1793–1800 (1998)

    Article  Google Scholar 

  39. Wang, F., Hu, J., Sun, J.: Medical prognosis based on patient similarity and expert feedback. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 1799–1802. IEEE (2012)

  40. Wang, F., Lee, N., Hu, J., Sun, J., Ebadollahi, S.: Towards heterogeneous temporal clinical event pattern discovery: a convolutional approach. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 453–461. ACM (2012)

  41. Wang, M., Li, H., Tao, D., Lu, K., Wu, X.: Multimodal graph-based reranking for Web image search. IEEE Trans. Image Process. 21(11), 4649–4661 (2012)

    Article  MathSciNet  Google Scholar 

  42. Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., Wu, Y.: Learning fine-grained image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (2014)

  43. Wang, M., Fu, W., Hao, S., Tao, D., Wu, X.: Scalable semi-supervised learning by efficient anchor graph regularization. IEEE Trans. Knowl. Data Eng. 28(7), 1864–1877 (2016)

    Article  Google Scholar 

  44. Wang, M., Fu, W., Hao, S., Liu, H., Wu, X.: Learning on big graph: Label inference and regularization with anchor hierarchy. IEEE Trans. Knowl. Data Eng. 29 (5), 1101–1114 (2017)

    Article  Google Scholar 

  45. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. In: Advances in Neural Information Processing Systems 18, pp. 1473–1480. MIT Press (2006)

  46. Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145,301 (2018)

    Article  Google Scholar 

  47. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. In: Proceedings of the 15th International Conference on Neural Information Processing Systems, pp. 521–528. MIT Press (2002)

  48. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How Powerful are Graph Neural Networks?. In: 7Th International Conference on Learning Representations (2019)

  49. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph convolutional neural networks for Web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983. ACM (2018)

  50. Zhang, M., Chen, Y.: Link Prediction Based on Graph Neural Networks. In: Advances in Neural Information Processing Systems, pp. 5165–5175 (2018)

  51. Zhu, Z., Yin, C., Qian, B., Cheng, Y., Wei, J., Wang, F.: Measuring Patient Similarities via a Deep Architecture with Medical Concept Embedding. In: 2016 IEEE 16Th International Conference On Data Mining (ICDM), pp. 749–758. IEEE (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dechang Pi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Application-Driven Knowledge Acquisition

Guest Editors: Xue Li, Sen Wang, and Bohan Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, W., Pi, D. et al. Graph augmented triplet architecture for fine-grained patient similarity. World Wide Web 23, 2739–2752 (2020). https://doi.org/10.1007/s11280-020-00794-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-020-00794-y

Keywords

Navigation