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Abstract We formalize networks with evolving structures as temporal net-
works and propose a generative link prediction model, Generative Link Se-
quence Modeling (GLSM), to predict future links for temporal networks. GLSM
captures the temporal link formation patterns from the observed links with
a sequence modeling framework and has the ability to generate the emerg-
ing links by inferring from the probability distribution on the potential future
links. To avoid overfitting caused by treating each link as a unique token,
we propose a self-tokenization mechanism to transform each raw link in the
network to an abstract aggregation token automatically. The self-tokenization
is seamlessly integrated into the sequence modeling framework, which allows
the proposed GLSM model to have the generalization capability to discover
link formation patterns beyond raw link sequences. We compare GLSM with
the existing state-of-art methods on five real-world datasets. The experimental
results demonstrate that GLSM obtains future positive links effectively in a
generative fashion while achieving the best performance (2-10% improvements
on AUC) among other alternatives.

Keywords Temporal link prediction, sequence modeling, recurrent neural
network, self-tokenization mechanism

1 Introduction

Many real-world applications could be modeled as link prediction problems.
For example, the recommendation system could be treated as a network sys-
tem learns to connect user nodes with product nodes [6]; the recommendation
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of friends in the social media is the prediction for the future links based on the
current social network structure [17]; even the financial risk could be discussed
through the link formation probabilities between the financial organizations
in an economic network [9]. Two mainstream categories in link prediction are
either based on the statistical patterns of the link formation behaviors of the
network [10,2,17] or the graph representation learning [31,33] methods which
embed nodes as vectors with respect to the network topological information.
Most of these methods are discriminative models that verify whether an un-
known link given during the test time is rational by training a classifier on
existing links and negative samples [19]. These methods show moderate per-
formance by learning the decision boundary between positive samples (usually
the observed links) and negative samples (usually random links between two
arbitrary nodes). The temporal information of how links appear in a chrono-
logical order, which embodies rich information and useful in practical applica-
tions, is completely ignored. To further improve the modeling ability, recent
works study the temporal link prediction [5] which improve the prediction per-
formance based on the temporal information captured by the time-dependent
methods [36]. However, since they do not consider the contextual relationship
[34] contained in the chronological link sequence, they hardly capture the ac-
curate network formation dynamics [8] (or link formation patterns) for the
future links. The ignorance of the chronological link sequence during the for-
mation progress of the evolving networks (e.g. the evolving social network [14]
and evolving economic network [13]) brings the following two challenges for
the temporal link prediction.

– Network dynamics. Most classic methods based on the node-level em-
pirical statistical rules [10,2] without considering the network formation
dynamics. This may result in the performance degradation when the sta-
tistical rules vary from time to time.

– Network model bias. Since it is difficult to model the link formulation
patterns, the graph representation methods model the general latent link
patterns from the observed network without considering the chronological
order for links they are observed. Therefore, they hardly capture the link
formation patterns directly and the network reconstructed by them with
the historical data may bias from the current network, while the structure
is already evolved with the new links added [36]. This hampers the accuracy
of the prediction results for the graph representation learning methods.

One way to solve the aforementioned challenges is to sort the links as a link
sequence in their emerging time order and learn the link formation patterns
based on the obtained link sequence. Inspired by the framework of the neural
language modeling [29] which studies the contextual relationship between ob-
served words and the succeeding word in NLP fields, we adopt the sequence
modeling techniques for temporal link prediction. By analogizing the idea of
neural language modeling in NLP to temporal link prediction in graph mining,
we formalize the link formation pattern as a conditional probability distribu-
tion and propose a neural network model (Generative Link Sequence Modeling,
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GLSM) to learn the temporal link formation patterns from the chronologically
ordered link sequences with an RNN [21] based sequence modeling framework.
Unlike previous discriminative counterparts, GLSM introduces a generative
perspective which not only models the existence of different links but also the
order that they are observed. It first learns the conditional probability distri-
bution between the preceding and succeeding sequences enumerated from the
observed link sequence and then predicts the future links with a generating
process to sample the potential future links based on the learned distribution.

However, simply adopting raw links for sequence modeling may lead to
several issues. Since a link is a tuple of nodes which contains the binary rela-
tionship between a source and a destination node, this relationship is discarded
when we directly encode the links as the unary tokens like the text tokens in
NLP models. Besides, too specific tokens, e.g. each one corresponding to a raw
link between every two nodes, break down the dependencies among links with
similar behaviors in the resulted token sequence. This may lead to the serious
overfitting problem and thus the RNN could hardly capture any useful con-
textual relationship. To obtain the suitable token sequence for the sequence
modeling framework, we propose a self-tokenization mechanism to control the
granularity of the obtained tokens and the degree of contextual correlation
in the resulted sequence automatically. The self-tokenization mechanism con-
sists of a clustering process to obtain the abstract aggregation token alphabet
and a mapping process to generate the tokens based on the resulted alpha-
bet. With a differentiable clustering distance function, the loss function of the
self-tokenization is incorporated into the loss function of the sequential mod-
eling so that the model not only learns to self-tokenize the raw link sequences
that preserve inter-link dependencies but also encode the temporal information
among self-tokenized sequences via sequential modeling.

In the experiment sections, we verify that GLSM captures the useful con-
textual relationship between the preceding and succeeding link sequences and
the generated future links cover the ground-truth positive links effectively in
five real-world temporal networks. We also compare GLSM with the state-of-
art methods on temporal link prediction tasks with different parameters, where
GLSM outperforms existing methods. What’s more, the experiment results in
the case study also indicates that the self-tokenization mechanism helps GLSM
capture the link formation patterns between the different communities of the
temporal networks.

In summary, this work includes the following contributions:

– We introduce temporal link prediction by a sequence modeling framework
to discover the conditional distribution (defined as the temporal link for-
mation pattern) between the preceding and the succeeding link sequences.

– We propose a self-tokenization mechanism to encode links as the tokens
with respect to the clusters obtained by a clustering process on the origi-
nal network while keeping the chronological order. This mechanism allows
our method to capture the correct network formation dynamics from the
observed network and thus alleviates the network model bias problem.
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– We propose a two-step sampling link generator to generate potential fu-
ture links based on the learned temporal link formation patterns from the
observed network.

– We compare GLSM with state of the art methods on five real-world tem-
poral network datasets and the results show that sequence modeling, along
with the proposed self-tokenization mechanism, could achieve the best per-
formance on the temporal link prediction tasks.

2 Preliminary

In this section, we formalize the related notations about the temporal network
and define the temporal link prediction problem with the sequence modeling
learning framework.

2.1 Temporal Network

We model the temporal network as a graph G = 〈V,E(T )〉 (T > 0) with a
fixed node set V and a link sequence E(T ). T is the observing time for G,
and the links in E(T ) are sorted in their emerging time order of the phys-
ical world and each link et (∀et ∈ E(T )) is a tuple (u, v) where u and v
are the nodes from the set V and t is the timestamp when et is emerging
between u and v (t ∈ [0, T ]). Figure 1 illustrates an example of the tempo-
ral network in this link sequence form, where V = {1, 2, 3, 4, 5, 6, 7, 8, 9} and
E(6) = {e1, e2, e3, e4, e5, e6}, E(8) = {e1, e2, e3, e4, e5, e6, e7, e8}.

1

2

4

3

6

9

8

7

5

e1
e2
e3

e4e5

e6
e7

e8

Time axis

Historical links Future links

E(6)={e1, e2, e3 ,e4, e5, e6} E(8)‐E(6)={e7, e8}

unknown

Now: T=6

Fig. 1 Example of the temporal network

In this setting, for not losing the generality, the newly emerging nodes
could be treated as an “unknown” node which is also included in the node set
V .
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2.2 Temporal Link Prediction

In the practical application scenario, the intuitive requirement to predict the
temporal links is to predict the potential future links given the historical links
(e.g. given the current purchasing records in an e-commerce system, how to
predict the future purchasing for users?). To solve the intuitive requirement in
this scenario, we divide the temporal link prediction into two steps. First, to
learn the temporal link formation pattern for the links from the historical link
sequence, and then to infer the future links based on the learned patterns.

Suppose the observed links for the temporal network are the link sequence
sorted in the chronological order, then the temporal link formation pattern
describes the probability to observe a succeeding link sequence based on a
preceding link sequence. We formalize the temporal link formation pattern in
Definition 1.

Definition 1 Temporal Link Formation Pattern. Given a temporal network
G(T ) = 〈V,E(T )〉 at time T , the temporal link formation pattern is defined as
the conditional probability distribution p(E(T )|E(0)) which means the emerg-
ing probabilities for the links in E(T ) based on the initial link sequence E(0).
This conditional probability is computed in the following way.

p(E(T )|E(0)) =

T∏
t=1

p(E(t)|E(t− 1)). (1)

With the definition for the temporal link formation pattern, the problem to
learn the temporal link formation patterns from the observation is formalized
as the following.

Definition 2 Temporal Link Formation Pattern Learning. Given a temporal
network G(T ) = 〈V,E(T )〉 at time T , the temporal link formation pattern
learning can be defined as the problem to estimate the conditional probability
distribution p(E(T )|E(0)) through the optimization of the following Equation.

arg min

T∑
t=1

−p(E(t)|E(t− 1)) log(p(E(t))), (2)

where p(E(t)|E(t− 1)) is the estimated probability for the link sequence E(t)
based on the preceding sequence E(t − 1); p(E(t)) is the probability of E(t)
which is measured from the observation.

The estimated probability p(E(t)|E(t − 1)) also simplifies as p(E′(t)) in the
remaining part. Note that Equation (2) is a cross entropy function [4] to get
the difference between the estimated probabilities and the observed probabil-
ities. In this work, Equation (2) actually allows a model to learn the evolving
pattern between the sequence of estimated future links and the sequence of
historical links. Therefore, with the objective function in Equation (2), the
learned temporal link formation pattern captures both rules of the network
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formation dynamics and the evolving structure for networks and thus allevi-
ate the network model bias problem. This is a sequence modeling problem [29]
while RNN is good at dealing with such a problem. Therefore, we propose an
RNN based neural network model to solve it. After the training process of
the RNN, we enumerate the future links based on the learned temporal link
formation pattern.

3 Our Framework

In this section, we propose the Generative Link Sequence Modeling (GLSM)
to learn the temporal link formation pattern and generate the future links.
As shown in Figure 2, the GLSM consists of a training process to learn the
temporal link formation patterns and a generating process to generate the
future links. We will give the details of the GLSM in the remaining part.

{(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), …}

Sequence enumerator

E(t‐1)={16, 48, 44, 15, 20} E(t)={16, 48, 44, 15, 20, 15}

Embedding layer

RNN layer

Linear decode layer Cross entropy loss

Preceding sequence Succeeding sequence

Train the model with backpropagation

Original observed link sequence

Clustering

Mean distance

E(T)={16, 48, 44, 15, 20}

Equation (3)

Tokenization

Node set V

Cluster labels
Self‐tokenization mechanism

The RNN process

(a) Training process of GLSM

E(t‐1)={16, 48, 44, 15, 20}

Embedding layer

RNN layer

Linear decode layer

{20, 14}

1st‐sampling: get tokens

Seed={20 }

The RNN process

Token to link

{(3, 5), (4, 1)}

2nd‐sampling: get links

(b) Generating process of GLSM

Fig. 2 Framework of GLSM

3.1 Temporal Link Sequence Modeling via Self-tokenization

We introduce the training process in Figure 2 (a) which learns the temporal
link formation patterns with the sequence modeling framework in this section.
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The key to implement the temporal link prediction with the sequence mod-
eling framework is to convert the link sequences to a unary token sequence
fitted the input of RNN. We formalize this process in following definitions.

Definition 3 Basic link sequence tokenization. Given a temporal network
G(T )=〈V,E(T )〉, the target of tokenization is to establish a tokenization map
g:E(T )→A and result in a new sequence E={g(et)} (∀et∈E(T )), where A is
an alphabet containing all the tokens g(et) (∀et∈E(T )).

A naive tokenization method is to map every “node-to-node” link to a
unique token. It results in a |V |×|V | alphabet A which consists of all the
possible links between any two nodes in V . This leads to a serious problem:
since all the tokens in the tokenized sequence are different, when the RNN
is fed with such a sequence, it is easily overfitting and outputs the patterns
without any connection between the preceding and succeeding sequences. The
experimental results in Figure 4 verifies this analysis. To solve this problem, we
propose the self-tokenization mechanism which generates the token sequence
with a clustering process.

Definition 4 Self-tokenization Mechanism. Given a temporal network G(T )
= 〈V,E(T )〉, suppose C is the set of the obtained subgraphs (or communities)
in G(T ) after the clustering of G(T ) (∀c1,c2∈C, c1∩c2=φ). The target of self-
tokenization is to automatically establish a tokenization map g:C×C→A and
result in a unary token sequence E={g(et)} (∀et∈E(T ), ∀g(et) ∈ A), where A
is an alphabet containing all the tokens g(et) (∀et∈E(T )).

This tokenization method first applies a clustering to the network G(T ) to
the different subgraphs (communities) and then maps the source and des-
tination nodes of a specific link to the corresponding subgraphs (communi-
ties). This transforms the original “node-to-node” links to the “community-
to-community” links. By constructing and referring to the alphabet A with
all of the resulted “community-to-community” links, we finally obtain a unary
token sequence. For example, given a link sequence E(3) = {e0, e1, e2}, where
e0 = (1, 100), e1 = (95, 43) and e2 = (78, 25), suppose the clustering gener-
ates 3 communities. The nodes 1, 43 and 78 are in the 1-st community, the
node 95 is in the 2-nd community, and the node 25 and 100 are in the 3-rd
community, the original links can convert to g(e0) = (1, 3), g(e1) = (2, 1),
and g(e2) = (1, 3). Then the alphabet A = {1 : (1, 3), 2 : (2, 1)}. Finally, the
original link sequence is tokenized to E = {1, 2, 1} according to A.

This mechanism applies the hypergraph partitioning method [27] which
is effective in controlling the granularity of the graph for the graph mining
methods. Therefore, the resulted token sequence is coarser in granularity and
more general than the original link sequence. Furthermore, since the clustering
results in the non-overlapping communities which consist of similar nodes,
the resulted sequence also contains the network topological information. After
the clustering process, the “unknown” nodes can also be labeled as a single
community before the sampling process.
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With this setting, the number of the community |C| is used as a parameter
to control the size of the output alphabet A′ and thus determine the generality
of the resulted token sequence. With the special conditions, with |C| = |V |,
the self-tokenization mechanism can be reduced to the basic link sequence
tokenization in Definition 3.

To generate the suitable communities (or subgraphs) for this task, we in-
tegrate a self-clustering process [26] in the Equation (2) and result in the
following loss function.

arg min(1− α)

T ′∑
t=1

−p(E(t)|E(t− 1)) log(p(E(t)))

+α
∑
c∈C

∑
v∈c

d(v, u(c)),

(3)

where C is the set of communities, u(c) is the center node of the c-th commu-
nity, d(∗) can be any differentiable clustering distance function between two
nodes and α is the weight of the clustering loss. Note that the links in Equa-
tion (3) have already been transformed as the “community-to-community”
tokens which are different from the “node-to-node” links in Equation (2). As
it is illustrated in Figure 2 (a), where tokenization for the sequences is based
on the obtained communities from the clustering process, the temporal link
formation patterns and the clustering are learned simultaneously.

The pseudocode of the forward algorithm about the temporal link forma-
tion modeling, which corresponds to the training part indicated in Figure 2
(a), is listed in Algorithm 1. Line 4 clusters the nodes in K different clusters

Algorithm 1: Temporal link sequence modeling

Data: Temporal network G(T ) = 〈V,E(T )〉, cluster number K, clustering weight α,
epoch threshold N , chunk size H, stride s

Result: The trained RNN, the tokenization map g
1 begin
2 Initialize the hidden state h(0)
3 for epoch∈ [0, N ] do
4 Compute the map g and the average clustering distance d̄ for all v in V

with K center nodes
5 Generate the token sequence E given E(T ) and g (Def. 3.2)
6 Enumerate a chunk E(T ∗) from E with size H randomly
7 Get the preceding sequence E(t− 1) and the succeeding sequence E(t) from

E(T ∗) given s
8 Infer the conditional distribution p(E′(t)) by Eq. (4)
9 Compute the loss l given p(E′(t)), p(E(t)) by Eq. (2)

10 Compute the final loss L given l, d̄ and α by Eq. (3)

11 end
12 Output the final loss L, the tokenization map g

13 end

and Line 5 tokenizes the original link sequence to the unary token sequence
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with the self-tokenization mechanism. To learn the temporal link formation
patterns from the tokenized sequences, for each epoch, Lines 6 and 7 generate
a preceding sequence E(t− 1) and a succeeding sequence E(t) randomly from
the input sequence, where the stride s is a parameter to control the overlapped
portion between E(t−1) and E(t). After that, Line 8 computes the conditional
distribution E′(t) with the RNN by Equation (4).

p(E′(t)), h(t)← RNN(p(E(t− 1)), h(t− 1)), (4)

where h(t) is the hidden state value at time t. Line 9 computes the cross entropy
loss with p(E′(t)) and p(E(t)) by Equation (2). The final loss L is calculated
by Equation (3). Since Equation (3) incorporates the cross entropy and the
clustering loss (distance) together, this model trains the RNN and performs
the clustering simultaneously. The training applies the backpropagation with
the Adam optimizer [11]. What’s more, since the complexity of Algorithm 1
is proportional to the epoch threshold, its time complexity is O(N).

When the training process is complete, We obtain a trained RNN contain-
ing the temporal link formation patterns and the tokenization map g which
records the labels for all the nodes in V respectively. Since the obtained RNN
captures the network formation dynamics, we can generate the future possible
network structure as the prediction for the evolving network with it and this
alleviates the network model bias problem.

3.2 Generating Links with the Two-step Sampling Link Generator

Algorithm 2: Two-step sampling link generator

Data: a trained RNN and tokenization map g, the link sequence E(T ), generation
round R

Result: a set of predicted positive links ∆E
1 begin
2 Generate the token sequence E given E(T ) and g (Def. 3.2)
3 Randomly enumerate a 1-length sequence E(0) from E
4 Initialize the hidden states h(0)
5 for t ∈ [1, R] do
6 Infer the conditional distribution p(E′(t)) with E(t− 1) and h(t− 1) by Eq.

(4)
7 1st-sampling: draw the next token e from a multinomial distribution

experiment given p(E′(t))
8 2nd-sampling: draw the next link (u, v) given e
9 if (u, v) /∈ E(T )

⋃
∆E then

10 ∆E ← ∆E
⋃

(u, v)
11 end
12 E(t)← E(t− 1)

⋃
∆E

13 end
14 Output ∆E

15 end



10 Yue Wang1,4 et al.

With the trained RNN, we propose the two-step sampling link generator
to generate the new links and this process is shown in Algorithm 2. This corre-
sponds to the generating process in Figure 2 (b). Its basic idea is to sample the
links according to the conditional probabilities learned by the trained RNN.
Since the token obtained by the self-tokenization mechanism refers to the ab-
stract “community-to-community” link, Algorithm 2 consists of two sampling
steps to get the “node-to-node” links. The first sampling step is started with a
randomly chosen “seed” link sequence in Line 3. With the seed link sequence,
Line 6 iteratively infers the next probability distribution p(E′(t)) for all the to-
kens of the alphabet A. Line 7 generates the next token e according to p(E′(t))
with a multinomial distribution sampling without replacement.

2nd-sampling. Since e is actually the token of a specific “community-
to-community” link, to obtain a “node-to-node” link which may appear in
the original network, Line 8 samples the “node-to-node” link with a given
token e. The sampling is implemented through drawing source and destination
nodes from the two related communities of e respectively. Note that this 2nd-
sampling is a general process which could use any sampling method such as
the weighted random sampling, the greedy sampling, the beam sampling, etc.
The candidate link set is generated by enumerating a complete combination
of all the possible links between the nodes in the source community and the
destination community for a related token e. The linkage probabilities are
computed by Equation (5).

p(V1, V2) = f(V1) · f(V2)T , (5)

where V1 and V2 are the node sets of the source and destination communi-
ties related to e and f(∗) is the embedding layer of the nodes trained by the
clustering process in Algorithm 1. f(∗) contains the latent features for all the
nodes, and a multiplication of two embedding vectors in Equation (5) actually
computes all the linkage probabilities for the related nodes between the two
corresponding communities. This process prunes the search space for the link
probabilities of the next links and incorporates the temporal information into
the basic graph representing framework. We verifies that this method indeed
improves the quality of the generated links in the experiment. For each itera-
tion of Algorithm 2, a newly generated link which is not included in ∆E and
the existing link set E(T ) will be appended at the end of the link sequence
∆E and it is also used as the input for the next sampling. The complexity of
Algorithm 2 is O(R) which is positively proportional to the round number R.

4 Experiment and Discussion

4.1 Dataset

We compare our methods with the existing methods on five real-world datasets.
Their details are shown in Table 1.



Generative Temporal Link Prediction via Self-tokenized Sequence Modeling 11

CollegeMsg Movielens Bitcoin AskUbuntu Epinions

Total links 59,835 100,000 35,592 100,000 100,000
Source card. 1,350 944 4,814 10,016 6,718
Destiny card. 1,862 1,683 5,858 10,001 22,406
Node number 1,899 1,682 5,881 12,513 27,370
Edge density 0.024 0.126 0.0025 0.0020 0.0004
Rating range 0-1 0-5 0-20 0-1 0-5
Days covered 193 214 1,903 1,038 4,326
Start 2004.04 1997.09 2010.11 2001.09 1999.07
End 2004.10 1998.04 2016.01 2003.06 2011.05

Table 1 Dataset statistics

Our datasets cover the different applications on the recommendation sys-
tem and social network. “Movielens”1, “Netflix”2 and “Epinions” [30] are the
classic datasets to test the performance of link prediction or recommendation
models. “CollegeMsg” is a binary online social network from [24]. “Bitcoin” is
from [15] and it records the trust scores between the users from the Bitcoin
online marketplaces3 in the corresponding transactions. All dataset are in the
format of “source, destination, rating, timestamp”. All ratings are adjusted to
0 or 1 since our method can only deal with the binary prediction problem. The
node number is the number of different nodes after merging the same nodes
in source and destination position of the records.

Preprocessing for Temporal Link Prediction Task
To test the performance of temporal link prediction for all the methods,

we preprocess the datasets in the following way.

– To simulate the link formation in the real scenario, we first order the links
in each dataset in chronological order separately.

– Then, for each dataset, we divide the ordered links into N chunks with
equal time-span and conduct the training-and-testing within each chunk.
The links are also in chronological order in each chunk. The statistical
results across all chunks of a dataset produce the mean and stand-deviation
results for each method.

– We select a ratio, training ratio γ, of links as the training set (histori-
cal links) and leave the remaining links as the testing set (future links).
With this setting, we test the performance of state of the art methods in
predicting the real ground-truth future links.

4.2 Experiment settings and benchmark.

Comparison methods.
Our methods are compared with the state-of-the-art link prediction meth-

ods which are used in most related studies.

1 https://grouplens.org/datasets/movielens/
2 https://www.kaggle.com/netflixinc/netflixprizedata
3 https://bitcoinotc.com/
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– Jaccard Coefficient (JC) [17] and Adamic Adar (AA) [2]. JC and AA are
the classic link prediction methods based on the statistical similarity scores
[1]. They assume that, for a social network, two unconnected nodes with
the high statistical scores have the large probability to be linked together in
the future. Their similarities are computed based on the common neighbor
number [22] between two nodes in different forms.

– Matrix Factorization (MF) [20]. MF factorizes the adjacency matrix of
the network into two matrices with latent feature dimension. Since it’s
factorized matrices could easily be explained with the relationship between
the latent user features, it is applied in many real-world network systems
as the recommendation algorithm.

– Temporal Matrix Factorization (TMF) [36]. TMF uses the time-dependent
matrix factorization method to improve the temporal link prediction per-
formance from the original MF method.

– Graph GAN (GG) [33]. GG is a neural network model which is based on
the framework of the graph representing method and GAN [7]. With the
dynamic game between the generator and discriminator, this model could
reach higher performance than the previous methods such as LINE [31],
DeepWalk [25], etc. Therefore, we pick GG as the representative method
for the graph representation learning methods.

– Graph AutoEncoder (GAE) [12]. GAE applies the Graph Convolution Neu-
ral Network (GCN) to capture the topological information of graphs and
then represents the basic graph as feature vectors. When doing the link pre-
diction task, GAE reconstructs the graph with the obtained vectors and
checks the link possibilities between corresponding nodes. Since the GCN-
captured feature vectors collect more topological information than basic
graph embedding methods, GAE performs better than the basic methods.

– Link Prediction based on Graph Neural Network (LPGNN) [37]. LPGNN
first applies embedding methods to encode original graphs and then feeds
the obtained latent features into a GCN layer. This method also outper-
forms the GAE.

Experiment settings.

To make the comparison fair, we implement all these methods in our pro-
totype system with the GPU-version Pytorch and thus these methods are
compared with the same data and prediction task platform. In our system,
each method generates a link set with the corresponding emerging probabil-
ities for the links. For our method, GLSM, after it generates future positive
links, we also sample the negative future links for GLSM from the subtraction
set of the current non-existing links and the generated positive links. The set
of the negative links is set to the same size of the positive links.

During all the experiments, GLSM uses a Long Short-Term Memory neural
network (LSTM) [28] version of RNN with 128 hidden states and 2 layers.
We set the clustering weight α to 0.5 and use the k-means clustering for the
self-tokenization process. For the 2nd-sampling process of GLSM, we use the
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weighted random sampling since it is the easiest to implement. All results of
GLSM are generated after the training process with 20 epochs.

Our experiment is twofold. First, we compare all mentioned methods on five
real-world datasets with temporal link prediction tasks in different parameters.
Then, we perform two case studies to analyze the practical meaning of the
obtained clusters after training.

4.3 Effectiveness Experiment

In this experiment, we split each dataset into different windows, and test the
methods for all the windows. We first compare the prediction performances
of the mentioned methods on the different datasets, and then, we analyze the
hit ratios (measures the output quality) of the generated links for all methods
on all the datasets. Finally, we analyze the sensitivity of GLSM in different
parameters.

To further compare the prediction performance, we use the different train-
ing ratio γ to test the capabilities of the methods to get the correct future
links. Since the training ratio γ decides the ratio of the data to be used as the
training set (historical links) and the remaining data as the testing set (future
links), the smaller the training ratio γ is, the bigger the test set with the future
links is. This shows that how far into the future could these methods predict
with good performance.

Temporal link prediction performance
We compare the temporal link prediction performances of all the mentioned

methods with ROC-AUC and RMSE (since the result of GLSM is binary, we
set the weight to any link to 1 in RMSE test) on all the datasets with 10,000
link window size. ROC-AUC result shows the capabilities of the methods to
distinguish positive and negative links and RMSE result shows the accuracy
of the output linkage probabilities. Tables 2 and 3 illustrate the ROC-AUC
and RMSE results. We set the training ratio γ = 0.7 for all the datasets.

Model CollegeMsg Movielens Bitcoin AskUbuntu Epinions

GLSM 0.7132±0.0031 0.7521±0.0007 0.7509±0.0016 0.7508±0.0001 0.7504±0.0012
LPGNN 0.6773±0.0496 0.7109±0.0054 0.5796±0.0040 0.6762±0.0429 0.7109±0.0054
GAE 0.6634±0.0031 0.6931±0.0016 0.7372±0.0016 0.7241±0.0014 0.6591±0.0007
AA 0.5501±0.0003 0.7447±0.0006 0.6033±0.0002 0.6129±0.0023 0.5111±0.0000
MF 0.5395±0.0003 0.6055±0.0021 0.5854±0.0011 0.5717±0.0009 0.5123±0.0001
GG 0.5659±0.0006 0.5354±0.0006 0.5611±0.0013 0.5550±0.0018 0.5245±0.0003
TMF 0.5175±0.0001 0.5086±0.0001 0.5451±0.0002 0.5249±0.0002 0.5163±0.0002
JC 0.5390±0.0002 0.6748±0.0019 0.5791±0.0000 0.5960±0.0015 0.5110±0.0000

Table 2 AUC results with 10,000 link window

We observe from Tables 2 and 3, the GLSM achieves the best performance
of all the methods and its results are stable even on the sparse datasets with the
edge degree lower than 0.002. This indicates that GLSM captures the temporal
link formation pattern correctly, and the obtained patterns are indeed helpful
in generating the potential future links.

Performance comparison in different parameters.
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Model CollegeMsg Movielens Bitcoin AskUbuntu Epinions

GLSM 0.20±0.10 1.96±0.72 9.37±0.03 0.03±0.01 2.53±0.43
GAE 0.25±0.00 2.60±0.04 9.97±3.46 0.31±0.01 2.56±0.20
AA 0.90±0.00 3.27±0.02 11.54±0.16 0.97±0.01 4.19±0.01
MF 0.58±0.00 3.02±0.03 11.09±0.24 0.56±0.01 3.71±0.01
GG 0.61±0.00 3.34±0.03 11.23±0.22 0.59±0.01 3.71±0.01
TMF 0.66±0.00 3.23±0.04 11.22±0.23 0.67±0.02 3.74±0.01
JC 0.98±0.00 3.57±0.05 11.76±0.19 0.99±0.00 4.20±0.01

Table 3 RMSE results with 10,000 link window

Figure 3 compares the ROC-AUC results of all the methods on the “Epin-
ions” data with different window sizes and the training ratios respectively.
The links in our datasets are ordered chronologically to simulate the temporal
link prediction task. Since most of the baselines can not directly capture this
information, they perform barely (with AUC around 0.5) in this experiment.
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Fig. 3 Comparison in different parameters

We observe from Figure 3 that GLSM performs the best on all the different
parameters. Figure 3 (a) indicates the sensitivities of the models to the different
window sizes, and from Figure 3 (a), GLSM could reach a relative high AUC
score even in the relatively small window size (2,000 links). Moreover, Figure 3
(b) demonstrates the abilities of the models to capture the future link patterns
based on a small ratio of training data. In figure 3 (b), GLSM predicts the
future links well with small training data ratio (under 0.5).

Hitting ratio analysis.

Since GLSM iteratively generates the future links which are different from
the prediction scoring of the other methods, we analyze the quality of GLSM’s
generated links in different iteration rounds. We provide a metric, the hitting
ratio, to measure the ratio of the captured real future links by the output of
GLSM. This experiment runs on all the datasets with 10,000 links window
size. The training ratio γ is set to 0.7. The results are listed in Table 4, where
pe is the edge density of the network constructed by the testing data. In this
setting, the hitting ratio for the random method equals to the corresponding
pe of a given dataset.
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Iteration CollegeMsg Movielens Bitcoin AskUbuntu Epinions

500 0.0054 0.0407 0.0061 0.0054 0.0007
1000 0.0063 0.0456 0.0049 0.0050 0.0019
1500 0.0075 0.0499 0.0042 0.0043 0.0016
2000 0.0053 0.0460 0.0035 0.0042 0.0017
2500 0.0044 0.0446 0.0025 0.0038 0.0009
3000 0.0043 0.0474 0.0030 0.0049 0.0006
pe 0.0041 0.0046 0.0015 0.0026 0.0002

Table 4 Comparison on hitting ratios in all datasets

From Table 4, we observe that the hitting ratios of the generated links by
GLSM significantly exceed the corresponding pe and the hitting ratios reach
the max within 1,500 iterations on all the datasets. This shows that the links
generated by GLSM cover the true positive future links well.

Sensitivity in different parameters.
We analyze the influence of different cluster and chunk numbers on the

AUC performance. This experiment is completed on the “Movielens” dataset
within the 1,000 link window which involves 586 nodes. We set the epoch to 20
and iteration round to 1,500. The result is shown in Figure 4. In this experi-
ment, GLSM reaches the best performance when the chunk number is between
50 and 100 and its performance degrades when the cluster number is under 50
or above 250. This addresses the discussion in 3.1 about the difference between
the basic tokenization and the self-tokenization mechanism. That is, when the
cluster number approximates the cluster number, the self-tokenization mech-
anism can be reduced to the basic method in Definition 3. What’s more, the
small cluster number leads to an alphabet with low generality which also de-
grades the prediction performance.
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Fig. 5 Case study

4.4 Case study: Early User More Popular

We analyze the clustering result obtained by the self-tokenization process of
GLSM on the one-mode network from the “CollegeMsg” dataset. In this study,
we order all users in “CollegeMsg” in the ascending order according to their
registered time. Thus the early user has the high rank and vice versa. Then, we
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compute the average user rank for each cluster after the training of GLSM. We
use the first 1,000 links of “CollegeMsg” network which relates to 237 users
and set the clustering number to 5. Based on the settings, we analyze the
relationship between the size of the cluster and the average user rank in the
corresponding cluster. We show the results after five independent trainings in
Figure 5. We observe that the average user ranks of the clusters are significantly
different and the average user rank has a strong trend to diminish with the
increase of the cluster size. Since the cluster size reflects the popularity for the
corresponding cluster (community), this result agrees with the conclusion in
[23] that the early users (with small average user rank) in the social network
are more popular. We further find that the variance of the average user rank
in each cluster is smaller than the variance of the average user rank for all
the users. This indicates that the registered time of the users in each cluster
is close to each other. Therefore, the clustering result of the self-tokenization
process helps GLSM capture the link formation patterns between the different
communities of users (or nodes) for the temporal network.

4.5 Case study: General Recommendation

We analyze the clustering result obtained by the self-tokenization process of
GLSM on the network from the “Movielens” dataset. In this study, we use the
first 500 links of the “Movielens” dataset which relates to 286 nodes (includ-
ing both the users and movies) and set the clustering number to 4. Since the
“Movielens” is a bipartite network and our model can not directly be applied
to the bipartite problem, we transform the bipartite network as a one-mode
graph by labeling the nodes in different sets with unique identities. To keep the
bipartite information, we retain the map between the obtained identities and
the original nodes. Based on this map, we further divide the clustering results
to the user communities and the movie communities. Therefore, we obtain 8
communities after the training process of GLSM. We highlight 2 user commu-
nities and 2 movie communities from the results in Figure 6 respectively. We
observe that the users or movies with similar network topological structures
are classified to the same communities. After the tokenization with this cluster-
ing results, in the generating process, the 1-st sampling process of Algorithm
2 will sample a token which is related to any two communities with different
types (e.g. community 1 and community 2) and the 2-nd sampling process of
Algorithm 2 will generate a specific “user-to-movie” link (recommendation)
based on the selected communities from the 1-st sampling. This shows that
the self-tokenization prunes the complete combination for all “user-to-movie”
links by utilizing the network topological structure to get the candidate link
set and then generate the specific links based on the obtained candidate link
set. Consequently, besides generating the abstract token sequence, the self-
tokenization mechanism also helps to improve the prediction performance for
GLSM with the network topological information.
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Community 1 
(user)

(a) Community 1
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(movie)
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(movie)
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Fig. 6 Recommendation among different communities. The red nodes are the highlighted
communities for each result.

5 Related works

Link prediction is an ubiquitous problem in recommendation system [6], social
media [9], medicine [18] and even finance [9]. Most of these methods are the
discriminative models to classify the unknown links as the existing or the non-
existing links for the target networks [19]. The mainstream methods for the
link prediction include the classic methods based on the statistical empirical
evidence and the machine learning methods. The classic methods [17] [2] [10]
measure the similarities for between couples of nodes through their common
neighbor numbers [22]. The power law distribution of the complex network
[3] helps these similarity scoring methods perform well on distinguishing the
positive and negative links statistically. However, since they lack the structure
to get the network formation dynamics, they could not capture the accurate
links for a real-world network when the statistical rules are not significant
enough. To make the accurate prediction for a single node, many machine
learning methods apply the matrix factorization [20] or the graph representa-
tion learning methods [25]. Their resulted latent representations for the users
improve the result of the prediction performance on the user-level. Some works
further improve the prediction performance by applying a GAN framework to
supervise the representing quality [33]. To increase the generality of the graph
representation learning methods, recent methods combine the graph convolu-
tion and the graph autoencoder (GAE) [12] to extend the embedding vectors
to a higher dimension latent space. Recent work also applies the graph neural
network to analyze the link prediction problem [37]. However, since most main-
stream methods ignore the temporal information in the evolving networks, it
is difficult for them to accurately distinguish the future positive and negative
links with the limit data in a relatively small window. To utilize the tempo-
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ral information, some work [36] uses the sliding-window style time-dependent
method to address the temporal link prediction issue. Furthermore, several
works discuss the related problems as the temporal graph mining [35] [16] by
considering the links as streams [32]. Whereas, the existing works ignore the
important information contained in the chronological order of the link emerg-
ing. We orders the links in the sequence with their emerging chronological
order to simulate the real scenario and applies the sequence modeling frame-
work [29] to capture the temporal link formation patterns. The experiments
show that this framework could capture the effective temporal link formation
patterns and result in the good performance in predicting the future links
based on the observed links.

6 Conclusion

In this work, we propose the Generative Link Sequence Modeling (GLSM)
to predict the future links based on the historical observation. GLSM com-
bines an RNN process to learn the temporal link formation patterns in the
sequence modeling framework and a two-step sampling link generation process
to generate the future links. To transform the temporal link prediction to the
framework of the sequence modeling, we propose the self-tokenization mech-
anism to convert the binary link sequence to the unary token sequence with
the proper granularity. The self-tokenization process incorporates a clustering
process which allows it generates the token sequence automatically. The clus-
tering process also helps the resulted token sequence to capture the network
topological information. The RNN process of GLSM learns the temporal link
formation pattern from the resulted token sequence. Since the RNN process
depends on the obtained token sequence from the self-tokenization process,
the RNN and self-tokenization process could be trained simultaneously. With
the learned temporal link formation pattern, GLSM generates the future links
with the two-step sampling link generation process. Experimental results show
that GLSM performs the best of all the mentioned methods on the real-world
temporal networks and this verifies the temporal information contained in
the chronological order for the links is useful in designing the link prediction
models.
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