
https://doi.org/10.1007/s11280-020-00838-3

Firmware code instrumentation technology
for internet of things-based services

Chen Chen1,2 · Jinxin Ma3 · Tao Qi1 · Baojiang Cui1 · Weikong Qi4 · Zhaolei Zhang2 ·
Peng Sun2

Received: 13 May 2020 / Revised: 14 June 2020 / Accepted: 31 August 2020 /

© The Author(s) 2020

Abstract
With the rapid development of electronic and information technology, Internet of Things
(IoT) devices have become extensively utilised in various fields. Increasing attention has been
paid to the performance and security analysis of IoT-based services. Dynamic instrumenta-
tion is a common process in software analysis for acquiring runtime information. However,
due to the limited software and hardware resources in IoT devices, most dynamic instrumen-
tation tools do not support IoT-based services. In this paper, we provide an analysis tool,
IoTDIT, to solve the current problem of runtime detection in IoT-based services. IoTDIT
employs static analysis and ptrace system calls to obtain dynamic firmware information,
which can aid in firmware performance analysis and security detection. We perform exp-
eriments to verify the performance and effectiveness of the proposed instrumentation tool.

Keywords IoT devices · Firmware testing · Instrumentation · Dynamic instrumentation

1 Introduction

With the rapid development of information technology and the Internet of Things (IoT),
IoT devices are increasingly applied in industry and social life [20, 28]. The performance

This article belongs to the Topical Collection: Special Issue on Intelligent Fog and Internet of Things
(IoT)-Based Services
Guest Editors: Farookh Hussain, Wenny Rahayu, and Makoto Takizawa

� Chen Chen
00152tenten@bupt.edu.cn

� Baojiang Cui
cuibj@bupt.edu.cn

1 Beijing University of Posts and Telecommunications, Beijing, China
2 Air Force Engineering University, Xi’an, China
3 China Information Technology Security Evaluation Center, Beijing, China
4 China Academy of Space Technology, Beijing, China

Published online: 26 September 2020

World Wide Web (2021) 24:941–954

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-020-00838-3&domain=pdf
http://orcid.org/0000-0002-9175-5526
mailto: 00152tenten@bupt.edu.cn
mailto: cuibj@bupt.edu.cn

and security of such devices must be analysed by technical means. The traditional analysis
of programs is mainly based on instrumentation tools, which include dynamic instru-
mentation and static instrumentation tools. Instrumentation tools are used to obtain the
value of the register at the specified instructions [23], catch interesting signals [2, 13] and
obtain the execution information of the basic blocks [21, 24]. Furthermore, other technolo-
gies, for example, symbolic execution [1, 11] and taint analysis [6–8, 12] , based on the
instrumentation are used for more complex dynamic analysis of binaries.

Traditional static instrumentation tools [9, 14, 18, 22] insert analytical code directly into
the target binary code. This method is complex and depends on the specified hardware
platform (x86, SPARC etc.), operating system (UNIX, ucLinux, VxWorks, Linux, uC/OS,
TinyOS etc.) and file type (PE, ELF, S-record, etc.); therefore, it is not suitable for IoT
devices.

Traditional dynamic instrumentation tools [3, 15, 19] use the software interfaces pro-
vided by the operating system to analyse the context environment of a program after
hijacking the execution stream. However, it is difficult for these tools to be employed IoT-
based services. The main reasons are as follows: First, running these tools requires the
support of operating system interfaces, such as dynamic memory allocation and thread con-
trol, which are not included in many IoT device operating systems [16]. Second, some of
these tools occupy a certain amount of memory when running, which may not be satisfied
for IoT devices due to hardware resources limitations.

Considering the lack of dynamic analysis technology for IoT-based services, this paper
applies static analysis technology and Linux ptrace system call to obtain dynamic firmware
information, including the execution time of functions, sample execution path, etc, at run-
time. This information can be applied to aid performance analysis [29] and dynamic security
detection [10, 17, 25, 27] for IoT-based services.

Our contributions are as follows.

(1) A simple and effective method is proposed for the instrumentation of IoT-based
services, which provides a new approach to firmware detection.

(2) We design and implement a prototype of the instrumentation tool for IoT-based
services.

(3) We compare the performance of IoTDIT with that of other instrumentation tools and
verify the feasibility of the proposed instrumentation tool for IoT-based services.

The remainder of this paper is structured as follows. Section 2 introduces related work.
Section 3 briefly introduces the basic knowledge of the ptrace system call, and Section 4
gives the design details of the prototype tool. Section 5 tests and analyses the prototype tool.
Section 6 discusses the limitations and shortcomings of this tool. Finally Section 7 presents
the conclusions.

2 Related works

Currently, dynamic instrumentation tools are widely used in software analysis, including
Pin, DynamoRIO, Valgrind, Strata, Vulcan and DTrace.

Pin [15] is a framework for the dynamic analysis of binary code; it intercepts the entry
point of the program, recompiles the instrumented code with the original instructions, gen-
erates a new code sequence and executes this sequence. When Pin encounters a branch, it
regains control, finds the conditional transfer instruction, and adds the instruction to the code

942 World Wide Web (2021) 24:941–954

sequence to continue execution. The tool supports Linux, Windows and OS X operating
systems, but only on the Intel platform, so use of the tool in IoT devices is difficult.

Valgrind [19] can be used for memory debugging, memory leak detection and perfor-
mance analysis; however, it does not provide a programming interface for users, and some
requirements of users cannot be met.

DynamoRIO [3] executes a target application by copying the application code into a
code cache, one basic block at a time. The code cache is entered via a context switch
from DynamoRIO’s dispatch state to that of the application. The cached code can then be
executed natively, which avoids emulation overhead.

Vulcan [26] provides an instrumentation technology across different instruction sets. It
reads the image of the target program from memory, transforms it into an abstract represen-
tation, modifies the code in this form, generates the instrumented code, and then redirects
the program to the modified code for execution.

DTrace [4] is an integrated instrumentation tool in the Solaris operating system. It uses a
high-level language to describe the operation at the stake insertion point. The tool supports
the operation at the user layer and the kernel layer.

Due to the difference in the technology adopted, the performance loss and dependence
on the OS interfaces of different instrumentation tools also differ. The Table 1 lists the
comparison of different tools in three aspects.

Pin, DynamoRIO and Valgrind are JIT-based tools. This kind of real-time compilation
has a great impact on the time cost. Vulcan and DTrace are probe based tools. In this way,
although multiple jump instructions contribute to performance loss, it will be smaller than
that of JIT-based tools. Different tools support different platforms. DynamoRIO, Valgrind
and Vulcan support different instruction sets, while Pin only supports the Intel architecture.
Additionally, these dynamic instrumentation tools need interfaces provided by operating
systems, such as multi-threading interfaces and dynamic memory allocation. However, these
interfaces do not exist in many IoT operating systems.

3 Ptrace system call

In order to obtain the dynamic information of firmware, we can use a debugger to start the
firmware program to be tested. However, we need to control the debugger to run; that is,
another process needs to interact with the debugger, which will cause three processes to
interact with each other during the test process and thus, slow down the test performance.

There are many different types of operating systems for IoT devices, including Linux,
ucLinux, uC/OS, and TinyOS. Although the implementation of the debugging functions in
these operating systems differs, the basic principles are the same. Here, we take the Linux
operating system as an example. The Linux debugger is based on a ptrace system call, and

Table 1 Comparison of dynamic
instrumentation tools Name of tools Performance loss Dependence on OS interfaces

Pin high heavy

DynamoRIO high heavy

Valgrind high heavy

Vulcan moderate moderate

DTrace moderate moderate

943World Wide Web (2021) 24:941–954

thus we can build the instrumentation tool on the ptrace system call interface; that is, only
two processes are needed to obtain dynamic information.

ptrace is a system call for process tracking provided by the Linux system; it provides
the parent process with ability to observe and control the execution of a child process,
and allows the parent process to check and replace the value of a kernel image (including
registers) in the child process. When a process is tracked with ptrace, all signals sent to the
tracked child process (except SIGKILL) are forwarded to the parent process, and the child
process is blocked. Then, the state of the child process is marked as TASK TRACED by the
system. When the parent process receives the signal, it can check and modify the stopped
child process, and control the child process. Notably, the parent process can continue to run
the child process.

The prototype ptrace system call in this paper is described as follows:
long ptrace(enum ptrace request request, pid t pid, void addr, void data).
In this case, ptrace has four parameters:

1) enum ptrace request request: indicates the command to be executed by ptrace;
2) pid t pid: indicates the process id that ptrace tracks;
3) void addr: indicates the memory address to be monitored;
4) void data: indicates the data memory address to which to read or write.

The first parameter request indicates the type of commands that system calls need to
execute, including tracking processes, reading data from memory, writing data to memory,
killing processes, and reading and setting registers. This parameter provides the most basic
control operation of the program to be tested.

We use ptrace to perform instrumentation as follows. We save the instruction to be anal-
ysed and set it as a breakpoint; then, ptrace is used to start the program and listen to the
signal sent by the target program. When the target program executes to the breakpoint, it
will pause running. At this time, ptrace is used to insert all kinds of analysis code; then, the
value of the instruction pointer register is reset to the address of the breakpoint, and ptrace
is used to continue running the program.

Some IoT devices employ Linux or tailored Linux as the operating system. Given that
ptrace usually exists as a basic component in these systems, it can be applied to perform
instrumentation for IoT-based services.

4 System design

4.1 Overall design

This paper applies ptrace to implement a dynamic instrumentation tool for IoT-based ser-
vices, IoTDIT, which includes 4 modules: code extraction, static analysis, instrumentation
and dynamic control. The overall architecture of IoTDIT is shown in Figure 1.

First, the target firmware is analysed by the code extraction module to obtain the exe-
cutable code data. IoTDIT extracts the control flow graph and function call graph from
the executable code and analyses and obtains the instruction positions according to the test
requirements. Then, the instructions at these locations in the original file are set as break-
points, and the location information and instruction information for each breakpoint are
saved. Last, IoTDIT monitors firmware execution and analyses the collected runtime infor-
mation. In this process, the firmware binary program will be suspended when it is executed
at a breakpoint. The monitor collects the runtime information at this breakpoint and then

944 World Wide Web (2021) 24:941–954

Figure 1 Overall architecture of IoTDIT

uses the original instructions saved beforehand to restore the breakpoint, so that the program
can continue to run.

4.2 Code extraction

The binary code for instrumentation is saved in the firmware. Currently, many binary
firmware codes are encapsulated in ELF file format. In ELF format, binary code is arranged
in files according to a certain organization scheme. An ELF file consists of four parts as seen
in Figure 2: ELF header, PHT (program header table), sections or segments (.text, .data,
.symtab, ...), and SHT (section header table).

The ELF header describes the organization of the whole file and defines the overall
attribute information of the file. The most important attributes are magic words, entry point
address, start of program headers, start of segment table, length and quantity, and size of
file header. The PHT describes various segments in the file and is used to tell the system
how to create process images. Segments describe ELF files from the perspective of running,
and a segment contains several sections. Sections describe ELF files from the perspective
of linking, and the SHT contains the attribute information of each section in the file. That
is, we can ignore the PHT to process this file in the linking phase and can ignore the SHT
in the running phase.

To extract binary code, we need to analyse the ELF file according to its format rules. This
process is shown in Figure 2. IoTDIT obtains the offset of the section header table from the
ELF header, and then obtains the offset and length of sections from the section header table.
The executable code is stored in the .text section, which is the target for instrumentation.
In the stage of static analysis, we should construct the control flow target by analysing the
executable code. Additionally, the function offset and function name information is stored
in the .symtab section, which is used to analyse the function call graph in the next stage.

4.3 Static analysis

The aim of static analysis is to build a control flow graph and function call graph for
firmware code. This information is used to obtain the code execution path, function exe-
cution sequence, function execution time, etc. IoTDIT disassembles the extracted code

945World Wide Web (2021) 24:941–954

Figure 2 The process of code extraction

to reduce the difficulty of analysing and operating the machine code. The disassembly
operation in IoTDIT is mainly achieved by the interfaces provided by Capstone [5].

The control flow graph is the directed graph D = 〈B, T rans〉, which is composed of the
node set B and directed edge set Trans. The node set B is composed of all basic blocks bi in
the program: B = {b1, b2, · · · bn}. The directed edge set a is composed of transfer relations
among all code basic blocks: T rans = {t1, t2, · · · tn|ti = (bk, bj), k �= j}. Therefore,
the process of building a control flow graph is the process of generating a basic block set
B and transfer relation set of basic code Trans. The basic block refers to the sequence of
statements executed in sequence. There is only one entry and one exit. The entry is the first
statement, and the exit is the last statement. A basic block only enters from its entry and exits
from its exit. The identification of the basic block depends on the transfer instruction; the
transfer address of the instruction is the starting position of a basic block, and the address of
the instruction is the end position of a basic block. These basic blocks {b1, b2, · · · bi} can
be extracted by one-time traversal in the firmware and form the set B, and then the transfer
relationship (bi , bj) between the basic blocks is established by the transfer instruction. All
transfer relationships form the set Trans to complete the construction of the control flow
graph.

The function call graph is also the directed graph H = 〈F,R〉, which describes the func-
tions and call relationship between two functions in firmware code. In graph H, F represents
the set of all functions in the firmware, and R consists of all function call relationships (f i ,
f j). Therefore, the process of building a function call graph is the process of generating the
set F and set R. The function f i in set F is obtained from the .symtab section. In this section,
the function name, address, length and other information are accessed to generate set F,
which is used to traverse the function call instructions in each function to establish the rela-
tionship between the current function and the called function (f i , f j). All of the function
call relations are then collected to generate R.

4.4 Instrumentation

Instrumentation is based on the actual test requirements to determine where to insert the
analysis points in a program. IoTDIT provides an analytical position selection scheme
at different scales, including the function level, basic block level and instruction level.

946 World Wide Web (2021) 24:941–954

Function-level position analysis is performed with the list of functions and location infor-
mation acquired in the static analysis stage. Basic block-level position analysis regards
the starting position of the node in the control flow diagram as the analytical position.
Instruction-level analysis regards a single instruction position as the analysis position by
querying all the instructions of interest in the code.

Breakpoint insertion is performed after the analysis points are determined, and the
instructions at the analysis points are changed to breakpoint instructions. In this process,
IoTDIT saves the overwritten instructions and their addresses, which will be stored for
subsequent breakpoint recovery.

4.5 Dynamic control

The dynamic control module collects and analyses the required information during the
dynamic execution of the program being test, including steps of performing breakpoint
control and runtime analysis.

4.5.1 Breakpoint control

Dynamic control in IoTDIT is based on the ptrace system call. The monitor starts the pro-
gram to be tested in debugging mode. The program is suspended at the breakpoints that
are written in the program. At this time, the monitor will take over the processing flow and
analyse the collected dynamic information according to the user-defined operation. After
processing the user-defined operation, the monitor restores the breakpoint instructions by
using the breakpoint information saved in the static analysis stage.

According to the different requirements of instrumentation, the methods of manipulating
breakpoints are also different, and mainly include two types: performing instrumentation
once for one point, and performing instrumentation many times for one point. In the first
case, after the breakpoint is triggered, the restored instruction is recovered to the breakpoint
instruction, and the operation continues to execute. In the second case, first, the breakpoint
instruction is recovered. Second, a single step is executed, and the recovered instruction is
changed to a breakpoint instruction again so that it can be paused again at the next time step.

4.5.2 Runtime analysis

IoTDIT performs different analysis operations according to the test requirements each time
at breakpoints; it records the information of executions for three levels: function level, basic-
block level and instruction level.

In the function layer, IoTDIT can obtain function execution times, function execution
sets, and function execution paths. In obtaining the executed times of a function, the func-
tion address obtained in the static analysis phase is associated with a variable; when the
firmware is executed to the function breakpoint, the variable is added with 1, and after the
execution is complete, the value of this variable is the number of times the function has been
executed. In the process of obtaining the function execution set, all concerned functions are
associated with Boolean variables; when the firmware is executed to the function break-
point, the variable is set to true, and after the execution is completed, functions related to
the variables with the value true constitute function execution sets. When collecting the exe-
cution path of a function, the function name will be added to a global queue every time the
function breakpoint is triggered. After the execution is completed, all functions in the queue

947World Wide Web (2021) 24:941–954

will form a function execution path according to their order. The functions implemented in
this layer are usually used for the comprehensiveness of the firmware function test.

In the basic-block layer, IoTDIT can analyse the basic-block set and the basic-block path
executed in the execution. Its implementation is similar to the principle of obtaining the
execution function set and the function execution path, but the unit analysed each time is
the basic block. In this layer, we usually do not analyse the number of basic-block execu-
tions because there is little demand for the number of basic-block executions. The functions
implemented in this layer can be used to guide fuzzing for an efficient security test.

In the instruction layer, IoTDIT can analyse the context environment information at a
certain instruction location. When the program runs to this location, it uses ptrace to acquire
all the register information and memory information, which can help the tester to analyse
some key variable values in the running application. In addition, ptrace can be utilised to
modify these values to observe the runtime changes of firmware, which can help to locate
and analyse problems.

In addition, to obtain the collected analysis information from IoT-based services, it is
necessary to provide a mechanism for transmitting real-time analysis data. According to
the test requirements, the user manually determines the instruction addresses for startup
analysis and end analysis. Every time firmware is executed involving the instruction at the
startup analysis address, it resets all information, such as the collected path information, the
number of execution times and the time of one execution. Each time the instruction at the
end analysis address is involved in execution, the collected information is sent to the test
client via the communication interface provided by the IoT device.

5 Implementation and testing

The construction of IoTDIT is based on ptrace system call and disassembly framework. IoT-
DIT uses a disassembly engine to analyse the instructions and determine the instrumented
position, and then uses ptrace to perform instrumentation at these locations. IoTDIT controls
the triggering of the instrumented points and the context analysis at runtime according to the
actual needs. The analysis results are returned via the hardware communication interface.
We employ C++ programming language to implement IoTDIT. The software framework
and hardware environment that we depend on in the process of building the tool are shown
in Table 2. IoTDIT is implemented in four classes, the function interfaces of which are listed
in Appendix.

The function of disassembly depends on Capstone, and the compiler of the program
is g++. We generate binary files of the target platform by cross-compilation. The target
platform includes the desktop platform and IoT platform. The desktop platform is used
to carry out a performance comparison test with other instrumentation tools, and the IoT
platform is used to test the availability of IoTDIT in actual IoT equipment. The process
of testing using IoTDIT is described as follows: put IoTDIT and the binary to be tested
in one hardware platform, run the binary and attach IoTDIT to it. IoTDIT will perform
instrumentation according to the test requirements and analyse the runtime information on
the instrumented points.

To verify the efficiency and effectiveness of IoTDIT, we designed two groups of exper-
iments. The first group tested the efficiency of IoTDIT by a specially designed program,
and the second group tested the availability of IoTDIT by employing a real home wireless
router.

948 World Wide Web (2021) 24:941–954

Table 2 Experimental parameters

Environment type Environment item Content

CPU i5-7267U CPU @ 3.10GHz

Desktop platform RAM 1GB

Operating system Ubuntu 16.04.5 LTS

Software Compiler g++ 5.4.0

Disassembly framework Capstone 3.0.5

IoT platform Wireless rooter AC1750

5.1 Instrumentation efficiency test

To verify the efficiency and availability of IoTDIT, we tested it in a desktop system. There-
fore, other tools could not run on the IoT devices. We compared the runtime wastage of
IoTDIT to the wastage for the three most commonly employed instrumentation tools in
desktop systems: Pin [15], Valgrind [19] and DynamoRIO [3].

From the perspective of application, the instrumentation on firmware in IoT devices can
be divided into three types. The first is single-point instrumentation with multiple times,
which is used to determine whether the function is abnormal by collecting the execution
times of a module in firmware. The second is multi-point instrumentation with one time,
which is often be used to analyse test comprehensiveness through instrumentation on func-
tions in firmware. The third is multi-point instrumentation with multiple times; it can be
used to guide fuzzing to find more vulnerabilities in firmware by collecting execution
path information. Additionally, more complex security detection tools can be built on the
instrumentation tools.

The first group of experiments is performed to accurately analyse the performance impact
by the instrumentation tools, including the impact of different numbers of instrumentation
times and different numbers of instrumentation points on the running time of the instru-
mented program. The basic structure of the program to be tested is a loop of m times in
which n if-statements are placed. The values of m and n can be set according to the needs
of the test. Moreover, m represents the execution times of the instrumentation point, and n

represents the number of instrumented points. To test the impact of instrumentation on the
program more clearly, the execution body of if-statement contains only one statement to
reduce the running time of the program itself.

We conducted three groups of experiments on the three discussed types and analysed
the effects of the four tools on the program execution efficiency. First, we set the values of
m and n according to the requirements of each experiment. Second, IoTDIT is applied to
perform instrumentation at the target location, and the instrumented binary is run. Finally,
the running time is collected for comparative analysis. The experimental parameters are
listed in Table 2.

The first experiment was used to analyse the effect of single-point instrumentation with
multiple times on the runtime efficiency of the program. We repeatedly performed instru-
mentation on a specified code block address and collected the time consumption information
of program execution at different times of instrumentation. We recorded the time consumed
in instrumentation at one point repeated 10 times, 20 times, 30 times, 40 times, 50 times, 60
times, 70 times, 80 times, 90 times and 100 times. The results are shown in Figure 3a.

949World Wide Web (2021) 24:941–954

Figure 3 Time consumption of instrumentation using different tools

The second experiment analysed the effect of multi-point instrumentation with one time
on the runtime efficiency of the program. We recorded the time consumed by the pro-
gram after instrumenting several points in an execution path. The numbers of points in the
instrumentation were 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. The results are shown in
Figure 3b.

The third experiment analysed the effect of multi-point instrumentation with multiple
times on the runtime efficiency of the program. Experiments were conducted to collect
the time consumption information of instrumentation at multiple points on a single path at
multiple times. The results are shown in Figure 3c.

As shown in Figure 3a and b, among the four types of instrumentation tools, IoTDIT
consumes the least time and Pin consumes the most time. This result is due to the simple
structure design of IoTDIT; notably, there are no complex interactions between the dynamic
instrumentation tools and software to be tested. The results in Figure 3a and b indicate
that the consumption of time by single-time multi-point instrumentation and multiple-time
single-point instrumentation is comparatively equivalent for all tools except Pin, and thus
the effect of these two types of instrumentation can be treated as approximately equal.
The time consumption of single-point instrumentation and single-time instrumentation is
similar.

The time consumption values of IoTDIT, Valgrind and DynamoRIO in Figure 3c are
similar. Based on the conclusions in Figure 3a and b, the result for the 20*20 scenario in
Figure 3c is equivalent to instrumentation on 400 points. At less than 100 points, we observe
that IoTDIT yields the best effect. However, when the number of instrumentation points
increases gradually, the advantage of IoTDIT decreases gradually. As the firmware running
in the IoT system is relatively simple and relatively few instrumentation points are needed,
relatively complex software, such as httpd, triggers a maximum of 100 instrumentation
points when collecting executed functions. Therefore, IoTDIT is well-suited for IoT systems
in which the firmware is relatively small in scale.

5.2 Instrumentation effectiveness test

To verify the availability and performance of the instrumentation tool in the actual device,
we have carried out three different types of instrumentation operations on httpd (embedded
Web server) in the ac1750 wireless router and calculated the performance loss caused by the
instrumentation. The calculation formula of the performance loss is shown in formula (1)

l = ti − tu

tu
(1)

950 World Wide Web (2021) 24:941–954

l: performance loss;
tu: time from sending request to obtaining the response of un-instrumented httpd;
ti : time from sending request to obtaining the response of instrumented httpd

In the first experiment, we tested how many times the function f read string was exe-
cuted when visiting the login page. We instrument the point before the module, run the
httpd and collect the time from sending the request to obtaining the response 10 times. This
experiment belongs to single-point instrumentation with multiple times. Moreover, this type
of experiment is commonly performed to analyse whether the logic is normal by the number
of times the function is executed.

In the second experiment, we tested which functions in httpd are executed when logging
in. We instrument all the functions in httpd, run the httpd and collect the time from sending
the request to obtaining the response 10 times. This experiment belongs to multiple points of
instrumentation with one time. This type of experiment is commonly performed to analyse
which module is not executed or to assess the comprehensiveness.

In the third experiment, we tested the executed path in the function f read string in
httpd when visiting the login page. We instrument all the basic blocks in this function, run
the httpd and collect the time from sending the request to obtaining the response 10 times.
This experiment belongs to multiple points of instrumentation with multiple times. This
type of experiment is commonly performed to guide the fuzzing tool to improve the path
coverage.

The results of the experiments are shown in Figure 4. In the first experiment, the function
of counting executed times was executed with a performance loss of (−0.3)−3.4. If the
performance loss value is less than zero, the access time after instrumentation is less than
that without instrumentation, which shows that the access time is unstable, and the impact
caused by instrumentation is greater than that caused by the instability in access. Thus, the
impact of instrumentation in this experiment is small.

In the second experiment, the function of collecting executed functions was executed
with a performance loss of 3.2–8.2. It can be seen that the performance loss caused by
instrumentation is relatively obvious, which is mainly due to the breakpoints inserted in each
function position in the experiment. A large number of breakpoints are triggered during the
execution of the instrumented program, which causes performance loss.

In the third experiment, the function of collecting executed paths was executed with
a performance loss of (−0.6)−1.4. It can be seen that the impact of instrumentation on

Figure 4 Performance loss of instrumentation in three scenarios

951World Wide Web (2021) 24:941–954

performance is not very stable, which is similar to the first experiment. For IoT-based
services that do not consider latency, this kind of performance loss, below 10, can satisfy
the requirements of instrumentation.

6 Limitations and shortcomings

The use of IoTDIT requires some preconditions; for example, IoTDIT needs to analyse the
firmware that is being tested before it is run, but it is difficult to obtain firmware in some
devices. In addition, IoTDIT needs to work in the target IoT device in the process of dynamic
analysis. However, some devices do not have the operational interface to store external
programs in the device. There are some techniques and methods for acquiring firmware and
adding it to programs, but they are beyond the scope of this paper.

IoTDIT is built on the basis of the ptrace system call. To simplify the operating system
in real IoT devices, some devices have a tailored system call. In these cases, IoTDIT will
not be able to run. IoTDIT currently supports only 32-bit x86/ARM architecture and ELF
files, but it can easily be extended to other types of file formats on embedded device and
sensor platforms.

7 Conclusions

Due to the limitations of software and hardware resources in IoT devices, traditional
dynamic instrumentation tools cannot be employed for analysing IoT-based services, which
causes low efficiency of function and security detection for the firmware. In this paper,
we design and implement a light-weight dynamic instrumentation tool, IoTDIT, which per-
forms the instrumentation that is only based on the ptrace system call. It extracts the control
flow chart, obtains the analytical instruction location through static analysis, and then instru-
ments firmware and performs the dynamic analysis at the instrumented points. By two
groups of experiments, we verify that IoTDIT is more suitable for IoT devices in which the
firmware is relatively small in scale than other dynamic instrumentation tools, and verify
the effectiveness of IoTDIT for an actual wireless router.

Funding This research was funded by Jinxin Ma of the National Natural Science Foundation of China,
grant number 61872386.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

952 World Wide Web (2021) 24:941–954

http://creativecommonshorg/licenses/by/4.0/

Appendix

Table 3 Core class and function interfaces of IoTDIT

Class Functions Description

ElfParse IsElfFile determine whether the target is an ELF file

ParseElfHead obtain the data in ELF head

ParseElfSectionHead obtain the data of SHT

SetStringTable obtain the data of string table section

SectionHeadOfIndex get the section header by index

SectionHeadOfName get the section header by name

SectionDataOfName get the section data by name

SectionLengthOfName get the section length by name

ReplaceSection replace the data of the section

WriteFile rewrite the data from memory to file

OutPutElfHead print out the data of ELF Header

Disassembler SizeOfDisasm get size of the instruction

AddrOfDisasm get address of the instruction

LengthOfOpString get the length of operation string

LengthOfMnemonic get the length of mnemonic

Disasm disassemble the instruction

ParseBasicBlocks get the basic blocks in the code

CreateCFG build control flow graph

Stub SetINT3At set the instrumentation point at specific location

IsJumpInstruction determine whether the instruction is jump instruction

GetStubSectionSize get the size of instrumented section

GetStubSection get the data of instrumented section

Controller InitStubInfo initialize the data for instrumentation

ResumeStub restore code to the status before instrumentation

MonitorTarget distribute tasks according to program signals

References

1. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing symbolic execution with veritesting. In:
Proceedings of the 36th International Conference on Software Engineering, pp. 1083–1094 (2014)

2. Babić, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic automated test genera-
tion. In: Proceedings of the 2011 International Symposium on Software Testing and Analysis, pp. 12–22
(2011)

3. Bruening, D.: DynamoRIO: dynamic instrumentation tool platform. http://www.dynamoRIO.org/
Accessed 26 Feb 2020

4. Cantrill, B., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of production systems. In:
USENIX Annual Technical Conference, pp. 15–28 (2004)

5. Capstone. http://www.capstone-engine.org Accessed 26 Feb 2020
6. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing MAYHEM on binary code. In: 2012 IEEE

Symposium on Security and Privacy, pp. 380–394 (2012)

953World Wide Web (2021) 24:941–954

http://www.dynamoRIO.org/
http://www.capstone-engine.org

7. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: 2015 IEEE Symposium on
Security and Privacy, pp. 725–741 (2015)

8. Chen, J., Diao, W., Zhao, Q., et al.: IoTFuzzer: discovering memory corruptions in IoT through app-
based fuzzing. NDSS (2018)

9. Eustace, A., Eustace, A.: Atom: a system for building customized program analysis tools. PLDI, pp.
196–205 (1994)

10. Gan, S., Zhang, C., Qin, X., et al.: Collafl: path sensitive fuzzing. In: IEEE Symposium on Security and
Privacy (SP), pp. 679–696 (2018)

11. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. SIGPLAN Not. 40(6),
213–223 (2005)

12. Höschele, M., Zeller, A.: Mining input grammars from dynamic taints. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, pp. 720–725 (2016)

13. Kargén, U., Shahmehri, N.: Turning programs against each other: high coverage fuzz-testing using
binary-code mutation and dynamic slicing. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pp. 782–792 (2015)

14. Laurenzano, M.A., Tikir, M.M., Carrington, L., Snavely, A.: Pebil: efficient static binary instrumentation
for linux. ISPASS, pp. 175–183 (2010)

15. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., Hazelwood,
K.: Pin: building customized program analysis tools with dynamic instrumentation. ACM SIGPLAN
Not. 40, 190–200 (2005)

16. Muench, M., Stijohann, J., Kargl, F., Francillon, A., Balzarotti, D.: What you corrupt is not what you
crash: challenges in fuzzing embedded devices. NDSS (2018)

17. Nagy, S., Hicks, M.: Full-speed fuzzing: reducing fuzzing overhead through coverage-guided tracing.
In: IEEE Symposium on Security and Privacy (SP), pp. 787–802 (2019)

18. Nanda, S., Li, W., Lam, L.C., Chiueh, T.C.: Bird: binary interpretation using runtime disassembly. CGO,
pp. 358–370 (2006)

19. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation.
ACM SIGPLAN Not. 42, 89–100 (2007)

20. Nordrum, A.: The internet of fewer things [news]. IEEE Spectr. 53(10), 12–13 (2016)
21. Pak, B.S.: Hybrid fuzz testing: discovering software bugs via fuzzing and symbolic execution. School of

Computer Science Carnegie Mellon University (2012)
22. Pani, P.: Measuring code coverage on an embedded target with highly limited resources. Master’s Thesis.

Graz University of Technology (2014)
23. Rawat, S., Jain, V., Kumar, A., Bos, H.: VUZzer: application-aware evolutionary fuzzing. Network and

Distributed System Security Symposium (2017)
24. Rebert, A., Cha, S.K., Avgerinos, T., Foote, J., Warren, D., Grieco, G., Brumley, D.: Optimizing seed

selection for fuzzing. USENIX Security, pp. 861–875 (2014)
25. She, D., Pei, K., Epstein, D., et al.: NEUZZ: efficient fuzzing with neural program smoothing. In: IEEE

Symposium on Security and Privacy (SP), pp. 803–817 (2019)
26. Srivastava, A., Edwards, A., Vo, H.: Vulcan: binary transformation in a distributed environment.

Technical Report msr-tr-2001-50. Microsoft Research (2001)
27. Srivastava, P., Peng, H., Li, J., et al.: Firmfuzz: automated IoT firmware introspection and analysis. In:

Proceedings of the 2nd International ACM Workshop on Security and Privacy for the Internet-of-Things,
pp. 15–21 (2019)

28. Xu, Y., Ren, J., Wang, G., Zhang, C., Yang, J., Zhang, Y.: A blockchain-based nonrepudiation network
computing service scheme for industrial IoT. IEEE Transactions on Industrial Informatics 15(6), 3632–
3641 (2019)

29. Zhao, Q., Koh, D., Raza, S., Bruening, D., Wong, W., Amarasinghe, S.: Dynamic cache contention
detection in multi-threaded applications. ACM SIGPLAN Not. 46(7), 27–38 (2011)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

954 World Wide Web (2021) 24:941–954

	Firmware code instrumentation technology for internet of things-based services
	Abstract
	Introduction
	Related works
	Ptrace system call
	System design
	Overall design
	Code extraction
	Static analysis
	Instrumentation
	Dynamic control
	Breakpoint control
	Runtime analysis

	Implementation and testing
	Instrumentation efficiency test
	Instrumentation effectiveness test

	Limitations and shortcomings
	Conclusions
	Appendix A
	References

