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Abstract
Developmental dysplasia of the hip (DDH) is one of the most common diseases in 
children. Due to the experience-requiring medical image analysis work, online auto-
matic diagnosis of DDH has intrigued the researchers. Traditional implementation of 
online diagnosis faces challenges with reliability and interpretability. In this paper, 
we establish an online diagnosis tool based on a multi-task hourglass network, which 
can accurately extract landmarks to detect the extent of hip dislocation and predict 
the age of the femoral head. Our method utilizes a multi-task hourglass network, 
which trains an encoder-decoder network to regress the landmarks and predict the 
developmental age for online DDH diagnosis. With the support of precise image 
analysis and fast GPU computing, our method can help overcome the shortage of 
medical resources and enable telehealth for DDH diagnosis. Applying this approach 
to a dataset of DDH X-ray images, we demonstrate 4.64 mean pixel error of land-
mark detection compared to the results of human experts. Moreover, we can improve 
the accuracy of the age prediction of femoral heads to 89%. Our online automatic 
diagnosis system has provided service to 112 patients, and the results demonstrate 
the effectiveness of our method.

Keywords Online automatic diagnosis · Developmental dysplasia of the hip · Multi-task 
hourglass network

1 Introduction

Medical data analysis provides convenient and high-quality services, which can be 
used for prescription recommendation, treatment planning, and online diagnosis 
for many diseases [1–3]. Developmental dysplasia of the hip (DDH) is one of the 
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most common skeletal system diseases in infants and children, which attacks with 
a global incidence ranging from 0.16% to 2.85% [4]. It is a developmental disease 
in the hip joint and can be diagnosed by observing bone morphology on an X-ray 
image [5, 6]. Six landmarks on the X-ray image are the key to the quantitative anal-
ysis of DDH as show in Figure 1(a),

The acetabular index can be calculated by their included angles based on these land-
marks. The rules for evaluating the acetabular index are shown in Figure 2(b), It is a 

Fig. 1  Figure (a) shows six landmarks that need to be detected. Landmark 1 6 represent tri-radiate cartilage 
center (right), tri-radiate cartilage center(right), acetabulum superolateral margin (right), tri-radiate carti-
lage center (left), tri-radiate cartilage center(left), acetabulum superolateral margin (left) respectively. Fig-
ure (b) shows the schematic diagram [5] of the clinical DDH diagnosis. We need to detect four landmarks 
(1, 2, 3, 4) to draw the Hilgenreiner line and Perkin line [5] to divide quadrants shown as I, II, III, IV. When 
landmark 5 and 6 are detected, the degree of DDH is determined. The yellow arrows denote the acetabu-
lar index, which is of significance in diagnosis. Figure (c) shows delayed development and calcification of 
femoral heads due to hip dislocation. The red areas denote the size of femoral heads

Fig. 2  Illustration of the proposed multi-task hourglass network. The backbone is default hourglass [19]. 
The overall architecture of this network mainly comprises two components, i.e. the feature extraction sec-
tion and landmarks and the age prediction section. We use a single network to predict landmarks and the 
age of femoral heads. Diagnostic results can be seen in the figure
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fundamental diagnostic metric for DDH in many respect [7, 8]. It measures the severity 
of DDH, uses for acetabular modeling, and indicates for DDH treatment [9–12]. In addi-
tion, predicting the age of the femoral head is significant. It can provide auxiliary infor-
mation for the diagnosis of DDH. As we can see in Figure 1(c), the calcification and 
development of these two femoral heads are different. Based on the development age of 
the femoral head and the patient’s actual age, we can further confirm the condition and 
give an appropriate treatment plan.

However, due to the shortage of professional doctors to diagnose DDH, many 
children do not receive timely treatment. Most highly trained experts are generally 
located in large urban hospitals, while children in rural areas and small cities are dif-
ficult to obtain a professional diagnosis [13]. Online automatic diagnosis for DDH has 
the potential to meet the challenge of insufficient professional treatment by perform-
ing medical image analysis. Despite its potential, the reliability and interpretability of 
online automatic diagnosis remain challenging. The traditional medical image analyz-
ing approach relied on hand-engineered features and multi-step landmark localization. 
Implementing and improving such an approach requires dedicated design and is com-
putationally expensive [14].

Despite the difficulty in diagnosing DDH automatically and effectively, 
the development of the convolutional neural network has allowed for training 
an end-to-end model to meet the challenges of medical images [15–18]. In our 
paper, we propose a multi-task hourglass network to detect the landmarks and 
predict the age on the hip X-ray image [19]. It is an encoder-decoder structure 
that can extract features effectively and accurately predict developmental age. 
First and foremost, our team constructs a professional DDH dataset with the 
experts’ annotations include 9369 hip X-ray images. Secondly, we train and eval-
uate the proposed multi-task hourglass network on our dataset to detect six land-
marks and predict the patients’ age. Finally, we deploy our method on the GPU 
server to provide services through the network for the public and continue to 
collect DDH data. In this way, our approach can realize a stable and interpreta-
ble service for online automatic DDH diagnosis. Therefore, our work shows that 
a multi-task hourglass network can learn the accurate location of the landmarks 
in the X-ray images and distinguish between different stages of development. 
Moreover, with precise image analysis and fast GPU computing, our method can 
help overcome the shortage of medical resources and enable telehealth for DDH 
diagnosis. The experiments show that our method achieves 4.64 mean pixel error 
in landmark detection and accuracy of 89% in age prediction. And our online 
service has successfully helped 112 children with DDH diagnosis.

In summary, the main contributions of this paper are as follows:

• We propose a novel multi-task hourglass network to investigate the online automatic 
diagnosis for DDH. Our method achieves accurate landmark detection and age predic-
tion on X-ray images with the powerful feature extracting capabilities and the end-to-
end framework, .

• To overcome the shortage of medical resources, we build an online DDH diagnosis 
platform based on the GPU server. To the best of our knowledge, it is the first work that 
provides an online service for automatic DDH diagnosis.

• We construct a DDH database with a considerable amount of X-ray images to train and 
evaluate our model. The success of online diagnosis demonstrates that our model can 
effectively learn the knowledge from the database.
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2  Related work

2.1  Developmental dysplasia of the hip

In 1985, Tonnis first proposed the current standard method to diagnose DDH on an 
X-ray image [5]. The core of Tonnis’s approach is detecting six landmarks (see Fig-
ure 1(a)) to estimate the dislocation degrees (see Figure 1(b)) of DDH. According to 
these landmarks, Hilgenreiner first described the acetabular index in 1986. It provides 
a direct measurement referred to as the acetabular index angle to diagnose DDH [6].

Many researchers have studied automatic diagnosis methods due to the high inci-
dence of DDH in children [20–23]. AI-Bashir et al. utilize Canny edge detection and 
Hough transform to detect the landmark on the X-ray image [20]. However, their 
methods are struggling to detect landmarks among different ages. Sahin et al. propose 
an object detection methods which uses the landmark as a template to match the tar-
get image [21]. However, this method requires massive computation because of the 
patch-by-patch searching for the best fitting patch. Liu et al. [22] and Bier et al. [23] 
utilize convolutional neural network to detect hip landmarks on the X-ray image. Yet, 
they ignore the significance of the age of the femoral head to assist DDH diagnosis. 
Therefore, the above DDH analysis methods are insufficient to realize an online DDH 
diagnosis which requires accurate and adequate analysis of the hip X-ray image.

In our work, we propose an end-to-end multi-task hourglass network to diagnose DDH 
effectively and provide service online, thereby realizing an earlier treatment for improved 
clinical outcomes.

2.2  Online diagnosis

The advances in computer networking enable online diagnosis as an alternative for 
medical treatment [13, 24–28]. Sublett et al. propose a distribution system that sup-
ports remote ultrasound examinations [13]. They achieve a real-time diagnosis under 
the limited bandwidth. Hollander et  al. suggest that telemedical innovations play a 
pivotal role in medical service especially during the Covid-19 pandemic [25]. This 
is because online automatic diagnosis can not only save medical resources but also 
avoid overexposure. Esteva et al. propose a deep-learning-based method to diagnose 
skin cancer [27]. They deploy their method on a mobile device to extend the reach 
of dermatologists outside of the clinic. Long et al. build the AI system with a cloud-
based platform for multihospital collaboration [28]. They design the platform to help 
patients with rare diseases and improve disease management for different hospitals. 
Their method demonstrates the capabilities of an online automatic diagnosis system 
to help both the patients and the hospitals.

To sum up, online diagnosis provides patients with a convenient and effective solution 
for health care. Our work proposes a novel multi-task hourglass network. It facilitates the 
online service with a GPU server to automatically diagnose DDH, the first work opened for 
public service.1

1 Online service can be found at http:// 202. 38. 69. 241: 30128/ ddh. php
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2.3  Multi‑task hourglass network

Recent years have witnessed the progress of the deep neural network, which has trig-
gered significant changes in the medical field [3, 29–34]. Newell et al. propose an hour-
glass network with an encoder-decoder architecture to generate the heatmap for land-
mark detection [19]. The hourglass network has been successfully applied to many areas 
such as pose estimation, face recognition and object detection [35–37]. Cai et al. utilize 
a multi-task hourglass network to expand receptive fields and reconstruct a frame for 
fall detection [31]. Their method demonstrates the multi-task hourglass network can 
complete the detection task in complex scenes. Kordon et  al. propose a deep-stacked 
multi-task hourglass network to jointly localize landmarks, predict a tangent line, and 
perform segmentation on the X-ray image [34]. Their work indicates that the multi-task 
hourglass network has sound performance in exploring bone morphology.

Here we propose a novel method based on the hourglass network, which can accu-
rately detect landmarks to diagnose the degree of hip dislocation and predict the age of 
femoral head development. With a large-scale DDH dataset collected from Anhui Pro-
vincial Children’s hospital, the hourglass network can be adequately trained and appro-
priately evaluated for diagnosing DDH. Meanwhile, the online service can continue to 
collect extensive DDH data to asses and refine the multi-task hourglass network.

3  Method

3.1  Ethical approval statement

The Ethics Review Committee of Anhui Province Children’s Hospital of China has 
passed the review of this project. We have submitted the ethics review report as Support 
Documents. The ethics review report can be found in supplementary material. All data 
and images used in this study have been desensitized. These data and images used for 
research do not contain any patient’s private information and do not contain informa-
tion showing the patient’s identity. Moreover, these images and data are only used for 
academic research. This statement was presented by Yongdong Zhang and Jun Sun, who 
are the directors of this research at the University of Science and Technology of China, 
and director of the Ethics Committee of Anhui Province Children’s Hospital of China, 
respectively.

3.2  Confirming statement of parents or guardians

We have received written consent from parents or guardians of these children who par-
ticipated in this study. These data and images used in this study have been desensitized, 
and this study does not reveal any private information about children. These data and 
images for research are not intended for any commercial activity.
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3.3  Multi‑task hourglass network

We propose a novel multi-task hourglass network for online automatic DDH diagnosis. 
Figure 2 illustrates the overall framework for landmark detection and age prediction.

3.3.1  Network architecture

The proposed hourglass network is an encoder-decoder architecture, as shown in Fig-
ure 2. We follow the standard implementation of the hourglass network for the feature 
extraction section. In specific, to build a multi-task hourglass network, we first uti-
lize the convolutional block followed by the pooling layer to extract the features from 
images [38]. After four convolutional blocks and pooling layers, we obtain a feature 
map in a small shape with rich information:

where fi denotes the features of the i-th stage in the encoder, Conv and Pool represent the 
convolutional block and pooling layer. The stacked convolutional layers enlarge the recep-
tion field of the model and enable detection from a large perspective [39]. Then, we follow 
the network engineering of the hourglass network and fully convolution network [19, 40], 
the features are unpsampled and added to the output of former layers by skip connection:

where f̂i represents the features of the i-th stage in the decoder, Up denotes the upsampling 
layer. In this way, the model can combine the rich context information in the shallow layers 
with the adequate semantics in the deep layers for landmark detection. In the final stage, we 
use 1 × 1 convolutional layer to generate output for DDH diagnosis.

In our proposed multi-task hourglass network, there are three types of the output. 
First of all, the multi-task hourglass output the heatmap of the landmarks 1 to 4. The 
heatmaps indicate the probability of the location of these landmarks. Secondly, the 
model output the heatmap of the femoral head. Since the age of patients has an enor-
mous impact on the morphology of the femoral head, we use four different heatmaps to 
represent each femoral head in different age periods. Thus, the output of these heatmaps 
could indicate the age of the patients by the highest value. The third type of output is 
six offset maps for revising the location of the landmarks. Such creation can refine the 
location results by learning the difference between the heatmap and the ground-truth 
landmark.

3.3.2  Heatmap estimation

Based on the multi-task hourglass network, we utilize the heatmap to simultaneously pre-
dict the landmark and the age of the femoral head on the DDH X-ray image. Thus, heatmap 
estimation plays a pivotal role in landmark detection and age prediction. Suppose the input 
image is I ∈ RW×H. The proposed multi-task hourglass network predicts the heatmap Ŷ  from 
an image I. The following equation is used to generate the target heatmap according to the 
position of the ground truth landmark, we utilize the Gaussian kernel as following:

(1)fi+1 = Pool(Conv(fi))

(2)f̂i+1 = Up(Conv(f̂i)) + Conv(fi+1)
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where σ is an size-adaptive standard deviation, Yxyc represnets the heatmap of c-th channel, 
lxc and lyc represent the coordinate of the c-th landmark. If these Gaussian labels have 
overlaps, we select the element-wise maximum Mxyc = max

c=1,2,...,C
Yxyc . As mentioned above, 

we divide the left femoral head into four categories (0.1-2, 2-6, 6-12 and > 12) according to 
age information. We divided the patients into four groups based on the morphological 
characteristics of the femoral head at different ages. To decide the age period of the input 
X-ray image, the network output four heatmaps for landmarks 5 and 6 (the femoral head) to 
represent the age periods. The heatmap with the maximum value is the result of the age 
period. The same operation is applied to the right femoral head. Other landmarks (1, 2, 3, 
4) are 4 categories. Thus, the model output 12 different heatmaps for each X-ray image. 
The proposed model predicts the landmarks by generating Ŷ  and offset Ô . The network can 
predict different locations and categories of landmarks. We can use the predicted category 
of landmark to obtain the age of the femoral head.

When our trained model diagnoses a new X-ray image, we extract the peaks in the heat-
map for each category to obtain landmarks. We use the categories of these predicted peaks 
to obtain ages. All outputs are produced directly from the landmark estimation without 
the need for Non-Maximum Suppression or other post-processing. When using the trained 
model to detect landmarks and predict ages in an X-ray DDH image, the results are consist-
ent and stable. In the end, we can derive the predicted landmark from the heatmap:

where l̂x, l̂y represent the predicted landmark. And the age of femoral head can be derived 
by:

where A indicates the age range.

3.3.3  Loss function

The loss function plays a pivotal role in optimizing our model. Our model is essentially a 
one-stage detector. Therefore, we utilize focal loss [41] to optimize the detector and gener-
ate the target heatmap in different bone morphologies. The training loss can be formulated 
as follows:

where

and

(3)Yxyc = exp

(

−
(x − lxc)

2
+ (y − lyc)

2

2�2

)

(4)< l̂x, l̂y >= argmax
x,y

(Ŷ)+ < Ôx, Ôy >

(5)A = argmax
c

(Ŷ)

(6)Ll = −
1

N

∑

xyc

𝜓xyc(1 − Ŷxyc)
𝛼
log(Ŷxyc,

(7)Ŷxyc =

{

Ŷxyc
1 − Ŷxyc

if Yxyc = 1

otherwise

545World Wide Web (2023) 26:539–559



1 3

The hyper-parameters (α and β) are adopted in the focal loss [41], and N is the number of 
landmarks in an image I. We expect N to be 6. We adopt α = 2 and β = 4 [37, 42] in all 
experiments.

To recover the error caused by down sampling, we predict a local offset Ô for each land-
mark. We adopt L1 loss to optimize the offset map:

Finnaly, the overall training loss of the model is

where λo is a hyper-parameter to adjust the value of L1 Loss.

4  Experimental results and discussion

We test our trained model on the test dataset with 2119 DDH images and conduct a series 
of experiments to elaborate on the results of our method. These results contain predictions 
of landmarks, acetabular index angle, and age in detail.

4.1  Experimental setup

We apply the proposed method to the DDH dataset for landmark detection and age predic-
tion. The network is trained using the Pytorch framework [43] on a Ubuntu workstation 
equipped with an Intel i7-9700 CPU and an 11GB Nvidia GeForce 1080Ti GPU. During 
training, the mini batch size is set to 4. Adam grad optimizer is used for updating with the 
learning rate of 1.25e-4 [44, 45]. We set the total epoches in training as 30.

4.2  Dataset

Our dataset is collected in the clinical routine of Anhui Province Children’s Hospital of 
China and contains all common conditions in clinical cases in 2012-2019. The original 
medical images were collected from the PACS system of Anhui Province Children’s Hos-
pital of China. We converted the original DICOM files to JPG files for labeling. And we 
extracted children’s actual age information from these DICOM files. All landmarks of data-
set are labeled by fifteen professional doctors. These doctors are divided into three groups 
to label landmarks. Three of five doctors in each group label images and the other two doc-
tors check images labeled by these three doctors. If there is an inaccurately labeled image 
among these three doctors, the image will be re-labeled until it passes the check process. In 
this way, each image has been labeled three times, and we calculated the average of coordi-
nates of each landmark.

Patients are between 0.1-14 years old. The total number of DDH images is 9369, in 
which 7250 images are used for training, and the rest 2119 images are for testing.

(8)�xyc =

{

1

(1 −Mxyc)
�

if Yxyc = 1

otherwise.

(9)Lo =
1

N

∑

l

[

Ôl̃ −

(

l

S
− l̃

)]

1

(10)L = Ll + �oLo.
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The distributions of the training and test dataset are shown in Table 1. Because we need 
to learn the relationship between age and development of femoral heads, the femoral heads 
of the training dataset are all in the I quadrants. During the training process, we resize the 
input resolution to 512 × 512. At inference time, we recover the output to the original size 
to statistically analyze behaviors.

4.3  Landmark detection

We analyze pixel error of these detected six landmarks on the entire test dataset with 2119 
DDH X-ray images. The calculation method of pixel error is 
error =

√

(xi − xj)
2
+ (yi − yj)

2 . (xi,yi) denotes landmarks labeled by doctors, and (xj,yj) 
denotes landmark predicted by our network. As shown in Figure 3, the horizontal axis rep-
resents pixel error, and we divide the pixel error range into 10 intervals (0-2, 2-4, 4-6, 6-8, 
8-10, 10-12, 12-14, 14-16, 16-18, > 18 pixels, We can see in the figure that the pixel error 
mainly concentrates in 0-2, 2-4, 4-6 intervals. In addition, we can also see that the detec-
tion results of landmark 5 and landmark 6 are more concentrated in the low error interval 
(0-2, 2-4) than landmarks 1 to 4, which indicates that the overall detection accuracy of 
landmark 5 and landmark 6 are higher than other landmarks. In specific, landmarks 1 to 4 
have pixel errors around five while landmarks 5 and 6 have smaller pixel errors. It is 
because landmarks 5 and 6 locate at the center of the femoral head, which is more distin-
guishable. However, landmarks 5 and 6 have greater SD for localization. This is because 

Table 1  Distribution of test set 
(9369 images) in our database

0.1-2 year 2-6 year 6-12 year > 12 year

Left I 7352 1344 421 25
Left II 127 24 1 0
Left III 26 30 3 2
Left IV 3 11 0 0
Right I 7377 1356 419 25
Right II 96 21 1 0
Right III 23 23 5 2
Right IV 12 9 0 0

Fig. 3  Distribution the pixel error. The X-axis denotes landmarks mean pixel error interval of all landmarks 
in an image. The Y-axis represents the number of images. Six different colors denote six landmarks. Best-
viewedincolor 
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the femoral heads have different morphological shapes at different ages, which could affect 
the detection of the landmark.

In the test dataset with 2119 images, based on the label of fifteen professional doctors, 
there are 1892 images whose left femoral head center (landmark 6) locates in the I quad-
rant. There are 152 images whose landmark 6 are in the II quadrant. There are 61 images 
whose landmark 6 are in the III quadrant, and 14 landmark 6 are in the IV quadrant. For 
the right femoral head centers (landmark 5), 1927 images are in the I quadrant, 118 in 
the II quadrant, 53 in the III quadrant, and 21 in the IV quadrant. We compare pixel error 
in these different sub-test datasets, and the results are in Table 2. The comparison results 
included Mean±SD and median of pixel error. We can see that the average pixel errors of 
these six landmarks are 5.5, 5.6, 4.6, 5.5, 3.4, and 3.4, respectively. The overall pixel error 
is relatively low for these different sub-test datasets.

The test dataset with 2119 images can be roughly divided into four categories based 
on the age information collected from the Anhui Province Children’s Hospital of China. 
These results of landmark detection in different ages are in Table 2. On the whole, the pixel 
error of older age will be slightly larger. This is because as the age becomes larger, mainly 
at 6-12 and > 12, the degree of bone calcification becomes larger. The feature richness of 
landmarks in the image is reduced with higher age, thereby reducing the accuracy of land-
mark detection. Especially for images older than 12, pixel errors of landmark 1 and land-
mark 6 become larger, which is caused by two following reasons. The first is that degree of 
bone calcification becomes deeper. The second is that the amount of images older than 12 
is small in the training and testing dataset.

4.4  Acetabular index detection

Based on the landmarks predicted by the proposed network, we calculated the left and right 
acetabular index angles for every image in all test dataset with 2119 images. The results 
are shown in Table 3. The average error between the predicted and labeled left acetabu-
lar index angle is 2.759∘, and the median error is 2.175∘. The average error between the 
predicted and the labeled right acetabular index angle is 2.793∘, and the median error is 
2.211∘. We analyze the error of the acetabular index angle prediction in detail, as shown in 
Figure 3. It suggests that the angle error mainly concentrates at 0-2∘, 2-4∘, and 4-6∘. We also 
separately count the images of left femoral head center (landmark 6) at I, II, III, and IV, 
respectively. The number of images is 1892, 152, 61, and 14, respectively. The average and 
median error of these four types of images are shown in Table 3. Similarly, we also analyze 
angle error on images whose center of the right femoral head (landmark 5) locate in I, II, 
III, and IV.

As children growing, their hips continue to develop, and the degree of bone calcification 
will gradually deepen. Children of different ages have different acetabular index angles. In 
order to detail the performance of angle prediction by the designed network, we analyze 
the statistical acetabular index angle error of different ages in the test dataset, as shown 
in Table 4. Overall, for children of different ages, the error between predicted and labeled 
acetabular index angle is about  3∘ to  4∘, which is relatively stable.

We use all the images in the test dataset for analysis of sensitivity/ specificity. We have 
unified situations that landmark 5 (landmark 6) is in these quadrants II, III, IV as DDH in 
left (right) hip, and in quadrant I as non-DDH. The statistical results are as Table 5 and 
Figure 5.
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Fig. 4  Distribution of acetabular index angle error of DDH X-ray images. X axis denotes mean acetabular 
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Two different colors denote left acetabular index and right acetabular index angle. Bestviewedincolor 

Table 3  Mean±SD and median 
error of acetabular index angle in 
left and right hips

 Left and right in table denotes left and right acetabular index angle of 
all test dataset with 2119 images. Left I in table represents sub-dataset 
which only contains images whose landmark 5 are in I quadrants. The 
similar explanation for other sub-dataset

Mean±SD Median

Left 2.759∘± 2.486∘ 2.175∘ 
Left I 2.603∘± 2.176∘ 2.094∘ 
Left II 3.398∘± 2.635∘ 3.012∘ 
Left III 6.098∘± 6.062∘ 3.993∘ 
Left IV 2.402∘± 1.836∘ 2.417∘ 
Right 2.793∘± 2.275∘ 2.211∘ 
Right I 2.644∘± 2.111∘ 2.132∘ 
Right II 4.126∘± 2.974∘ 3.637∘ 
Right III 4.821∘± 3.658∘ 4.087∘ 
Right IV 3.864∘± 2.486∘ 3.010∘ 

Table 4  Mean±SD and median 
error of acetabular index angle. 
0.1-2 Year in table represents 
sub-dataset which only contains 
images whose real ages are in 
0.1-2 years

 The similar explanation for other years interval

Left Acetabular index Right Acetabular index

Mean±SD Median Mean±SD Median

0.1-2 Year 2.631∘± 2.138∘ 2.146∘ 2.771∘± 2.227∘ 2.205∘ 
2-6 Year 2.916∘± 2.967∘ 2.088∘ 2.770∘± 2.291∘ 2.151∘ 
6-12 Year 3.452∘± 3.187∘ 2.622∘ 2.946∘± 2.269∘ 2.530∘ 
> 12 Year 7.583∘± 8.801∘ 4.343∘ 5.580∘± 5.930∘ 2.882∘ 
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4.5  Age prediction

While predicting landmarks in the DDH X-ray image, we also predict the age of the 
femoral head. Under normal circumstances, the development of bilateral femoral heads 
in children is roughly the same. However, when the left (right) hip joint dislocates, the 
development of the left (right) femoral head will lag behind the average developmental 
age.

By predicting the developmental age of the femoral head, we can analyze whether 
there is a delay in the femoral head in children. When the ages of the femoral heads 
on both sides are inconsistent, it can also assist doctors in confirming the situation of 
hip dislocation. We analyze the accuracy of the prediction of the femoral head ages on 
the left and right sides in Table 6. When the age of the femoral head predicted by the 
proposed network is consistent with the actual age, the prediction is considered to be 

Table 5  Analysis of sensitivity 
and specificity on test dataset 
with 2119 X-ray images

 Left in table denotes left hip. Right in table denotes right hip. 0.1-2 
denotes patients whose age are between 0.1-2 years old. Similar expla-
nations for other age intervals

Sensitivity Specificity

Left (0.1-2) 69/156 1394/1399
Right (0.1-2) 66/131 1421/1424
Left (2-6) 43/65 352/354
Right (2-6) 35/53 364/366
Left (6-12) 2/4 133/133
Right (6-12) 3/6 130/131
Left (> 12) 0/2 6/6
Right (> 12) 0/2 6/6

Fig. 5  Example landmark detection results of DDH. Landmarks and number represent the outputs of our 
method. Text on the left-top of the image is diagnostic report, include the information of left acetabular 
index angle, Left acetabular index angle, quadrant of landmark 5, quadrant of landmark 6, age of left femo-
ral head and age of left femoral head. Bestviewedincolor 
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accurate. From Table  6, we can see that the accuracy of the predicted age of the left 
femoral head is 89.5%, and the accuracy of the right femoral head is 89.1%.

Similarly, we also analyze the accuracy of the sub-test dataset of the femoral head 
center in different quadrants. Table 7 shows the accuracy for children of different ages. 
We can find that the accuracy of age prediction of children aged 0.1-2 is the highest, and 
the accuracy of the left and right sides is 96.1% and 96.6% respectively. The age predic-
tion accuracy of children aged 2-12 years is not high because the amount of images of 
this age interval in the training dataset is relatively small. We can see in the table that 
the accuracy of age greater than 12 years old is 0.0% and 12.5%. The reason is that 
images whose ages are older than 12 are scarce in the dataset.

To further illustrate the results of our network’s age prediction, we compare our pre-
dicted age to the actual developmental age of the femoral head. The results of the age 
prediction of the left and right femoral heads are shown in Figure 6. Taking the predic-
tion of the left femoral head as an example, we can find in Figure 4 that there are 1555 
children with true ages between 0.1-2, and the predicted results are 1495 cases within 
0.1-2 years old, and 60 images belong to 2-6 years old. To the 419 images with real ages 

Fig. 6  Distribution of age prediction of femoral heads on the test dataset (2119 images, The left figure indi-
cates the age prediction of left femoral head and vice versa. Numbers in figure denote number of images

Table 6  Accuracy of age prediction for both left and right femoral heads

 Numbers in table are expressed as a percentage of accuracy

Overall Left I Left II Left III Left IV Right I Right II Right III Right IV

Left 89.5% 90.6% 84.9% 72.1% 71.4% 90.4% 85.6% 73.6% 66.7% 
Right 89.1% 90.5% 86.8% 60.7% 42.9% 89.9% 87.3% 75.5% 66.7% 

Table 7  Accuracy of age 
prediction of left and right 
femoral heads in different age 
intervals

 Numbers in table are expressed as a percentage of accuracy

Age 0.1-2 Year 2-6 Year 6-12 Year > 12 Year

left 96.1% 82.8% 78.1% 0.0% 
right 96.6% 77.3% 82.5% 12.5% 
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of 2-6 years, 347 images are predicted to be consistent with real age. 56 images are pre-
dicted in 0.1-2 years and 16 images are belong to 6-12 years.

4.6  Compared to the traditional method

The traditional landmark detection method is represented by template matching [21]. This 
method can detect the landmarks, but it cannot predict bone age. Tables  8 and  9 show 
the template matching method results in landmark detection and acetabular index detec-
tion. We can see that our method outperforms the traditional method by a large margin. 
This phenomenon indicates the effectiveness of deep learning based approach for hip dis-
location detection. There are three reasons attributed to this phenomenon. First, multi-task 
hourglass network uses a large number of convolution kernels to extract features, which 
captures more details of the image. Second, the traditional method for landmark detection 
is unstable because the local diversity of the landmarks makes it challenging to describe 
with simple templates [46]. Third, deep neural networks are nonlinear and optimized with 
the gradient descent method which can effectively fit the target function (Table 10).

Table 8  Comparison between our proposed model and the template matching method of landmark (1, 2, 3) 
[21] on the test dataset (2119 images)

 The error of landmark detection is measured in pixels

lmk 1 lmk 2 lmk 3

Mean±SD Median Mean±SD Median Mean±SD Median

Our Method 5.5 ± 3.5 4.8 5.6 ± 3.6 5.0 4.6 ± 3.7 3.6
Template matching [21] 19.1 ± 79.4 5.4 22.9 ± 103.0 5.5 29.8 ± 100.2 8.5

Table 9  Comparison between our proposed model and the template matching method of landmark (4, 5, 6) 
[21] on the test dataset (2119 images)

 The error of landmark detection is measured in pixels

lmk 4 lmk 5 lmk 6

Mean±SD Median Mean±SD Median Mean±SD Median

Our Method 5.5 ± 4.3 4.4 3.4 ± 9.6 2.3 3.4 ± 7.1 2.4
Template matching [21] 45.0 ± 176.6 6.5 37.6 ± 95.4 7.8 33.9 ± 146.4 5.5

Table 10  Mean±SD and median error of acetabular index detection of our proposed model and template 
matching method [21] on the test dataset (2119 images)

 Error of acetabular index detection is measured in angle

Left Acetabular index Right Acetabular index

Mean±SD Median Mean±SD Median

Our Method 2.759∘± 2.486∘ 2.175∘ 2.793∘± 2.275∘ 2.211∘ 
Template matching [21] 4.754∘± 5.164∘ 3.415∘ 5.981∘± 6.503∘ 4.721∘ 

553World Wide Web (2023) 26:539–559



1 3

Using deep learning to detect landmarks in X-ray images is a new method to solve the 
challenge of insufficient professional doctors, especially in remote and poor areas. The 
method based on deep learning to diagnose DDH can help more children in the world. 
Typically, a professional doctor judges a DDH X-ray for about 5 minutes. And the template 
matching method consume near 30 seconds to process one image. Our proposed method 
can detect 20 X-ray images in 1 minute. Based on the deep learning method, the detection 
speed is very fast, and label errors by different doctors can be reduced.

4.7  Performance of online service

The online service of automatic diagnosis is illustrated in Figure 7. In our online web sys-
tem, we use a server with the setting of CPU Intel Xeon E5-2630 @ 2.2GHz and GPU 
Titan XP 12GB. The operating system is Ubuntu 18.04, and apache2 is used to support the 
web application. The storage of the database is 1TB. The workflow of the online diagnos-
ing is: (1) the user uploads the image to the server via the web address, (2) the server reads 
the image and sends it to the model, (3) the proposed multi-task hourglass network process 
the image and output the results, (4) the database collects the image and the results, (5) the 
user gets the interpretable diagnostic results from the website.

We have collected 112 DDH cases from our website. Noted that all of the collected data 
have been desensitized and only used for academic purposes. We compare the performance 
between the images that collected from our web service platform and the images from the 
test set as shown in Table 11. We can see that our method has a similar performance in 
both sets. This phenomenon demonstrates that the proposed hourglass network can gener-
alize the new data.

Meanwhile, we illustrate the performance of online diagnosis in Table 12. It shows the 
results of acetabular index detection of the online diagnosis. The results suggest that our 
method increased the mean angle error by around 0.3∘ when measuring online data. Thus, 
our approach can still perform well in measuring the acetabular index for the online data.

There are two potential social impacts of the proposed services. From a positive point 
of view, the online system could accelerate the diversification of diagnostic modes. Our 
system provides another way for patients to learn about their health conditions. From 
an opposing point of view, online diagnosis can also lead to misdiagnosis and may bear 

Fig. 7  Illustration of the online service of our method. When potential patients upload their hip X-ray image 
for DDH diagnosis, the GPU server is processing the image immediately. The model provides comprehen-
sive evaluation by our multi-task hourglass network and saves the image in the database. If the result from 
our platform is phase I to IV, a notification is triggered and an a notification is sent to the users. Thus, 
patients are informed that their condition and get an early diagnosis
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more criticism than a doctor because the online diagnosis system is open for public use, 
which could amplify the influence of the mistake. Nevertheless, the widespread use of 
our model in the future will continue to expand the DDH database. At the same time, 
we will carry on refining and evaluating our method for better performance for online 
automatic diagnosis.

5  Conclusion

We propose a novel approach based on the multi-task hourglass network to detect hip 
dislocation. Online Diagnosing X-ray images of hip dislocation based on deep learning 
is a new attempt. We design a novel network that simultaneously predicts the locations 
of six landmarks in the X-ray image and predicts the age of the femoral head. The detec-
tion of landmarks is of great significance for medical diagnosis, and accurate medical 
diagnosis requires precise landmarks localization. The proposed network achieves an 
average pixel error of the six landmarks are 4.64. The prediction of the developmen-
tal age of the femoral head is equally important. Under normal circumstances, the age 
of femoral head development is nearly the same as the child’s actual age. Experiments 
show that the accuracy of the proposed network is 89.3% for the femoral heads.

For the future work, there are some weaknesses in our algorithms that need to be 
improved.

1) The pixel error should be minor for accurate DDH diagnosis. Although the average pixel 
error of these six landmarks is small, the pixel error of some images is significant. The 
reason is that the diversity of bone morphology in these X-ray images is complex.

2) There are very few patients older than 12 years in the database. Therefore, the trained 
model cannot thoroughly learn the bone age information in these images. With the 
expansion of online data in the future, we will add images of children older than 12 
years to improve the accuracy of age prediction.
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Table 12  Mean±SD and 
median error of acetabular index 
detection of our proposed model 
on the test dataset (2119 images) 
and online diagnosis (112 
images)

 Error of acetabular index detection is measured in angle

Left Acetabular index Right Acetabular index

Mean±SD Median Mean±SD Median

Test dataset 2.759∘± 2.486∘ 2.175∘ 2.793∘± 2.275∘ 2.211∘ 
Online Diagnosis 3.188∘± 2.807∘ 2.710∘ 3.026∘± 2.913∘ 2.295∘ 
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