
Vol.:(0123456789)

https://doi.org/10.1007/s11280-022-01075-6

1 3

Optimizing subgraph matching over distributed knowledge
graphs using partial evaluation

Yanyan Song1 · Yuzhou Qin1 · Wenqi Hao1 · Pengkai Liu1 · Jianxin Li2 ·
Farhana Murtaza Choudhury3 · Xin Wang1 · Qingpeng Zhang4

Received: 28 February 2022 / Revised: 12 May 2022 / Accepted: 2 June 2022 /

© The Author(s) 2022

Abstract
The partial evaluation and assembly framework has recently been applied for processing
subgraph matching queries over large-scale knowledge graphs in the distributed environ-
ment. The framework is implemented on the master-slave architecture, endowed with out-
standing scalability. However, there are two drawbacks of partial evaluation: if the volume
of intermediate results is large, a large number of repeated partial matches will be gener-
ated; and the assembly computation handled by the master would be a bottleneck. In this
paper, we propose an optimal partial evaluation algorithm and a filter method to reduce
partial matches by exploring the computing characteristics of partial evaluation and assem-
bly framework. (1) An index structure named inner boundary node index (IBN-Index) is
constructed to prune for graph exploration to improve the searching efficiency of the partial
evaluation phase. (2) The boundary characteristics of local partial matches are utilized to
construct a boundary node index (BN-Index) to reduce the number of local partial matches.
(3) The experimental results over benchmark datasets show that our approach outperforms
the state-of-the-art methods.

Keywords Partial evaluation · Subgraph matching · RDF graph

1 Introduction

Knowledge graphs have become the important cornerstone of the research and develop-
ment of artificial intelligence technology. In recent years, the scale of knowledge graphs
has increased at an unprecedented rate, and data processing with millions of vertices (106)
and hundreds of millions of edges (108) has become commonplace [1]. Therefore, it is nec-
essary to consider how to perform distributed query processing to cope with the growing
demand for knowledge graphs.

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering
2021
Guest Editors: Hua Wang, Wenjie Zhang, Lei Zou, and Zakaria Maamar

 * Xin Wang
 wangx@tju.edu.cn

Extended author information available on the last page of the article

Published online: 8 July 2022

World Wide Web (2023) 26:751–771

http://orcid.org/0000-0001-9651-0651
http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-022-01075-6&domain=pdf

1 3

In the Semantic Web community, the Resource Description Framework (RDF) has
become a de-facto standard format for knowledge graphs and has been extensively applied
[1]. An RDF dataset consists of a set of triples 〈s, p, o〉 and can be transformed into a
graph where the resources denoted by s and o are vertices, and the attributes denoted by
p are labeled edges. SPARQL [2] is the standard graph query language on RDF graphs.
A SPARQL query can be regarded as the subgraph homomorphism problem [3], which is
recognized as an NP-complete problem [4, 5].

The efficient processing of subgraph matching queries over large-scale RDF graphs in a
distributed setting is a challenging problem. Recently, the partial evaluation technique [6]
has been applied to solve the problem of regular path queries on distributed environment
[7–9]. The queries Q are partially evaluated in parallel to obtain partial results on each
fragment of data Fi on each site Si, then all the partial results are transmitted to a master
site. Finally, assemble these partial results to get the final results of Q.

Based on partial evaluation technique, the partial evaluation and assembly framework
has been proposed to answer SPARQL queries [10]. However, a large number of partial
results can be generated during the partial evaluation phase, making the assembly phase
a computational bottleneck. To improve the efficiency of assembly phase, Peng et al. [11]
proposed the LEC feature-based optimization strategy to prune some unpromising inter-
mediate results. However, existing works only focus on the assembly phase of query pro-
cessing, while ignoring the partial evaluation phase, and efficient index-based methods are
not effectively utilized by the partial evaluation phase to speed up the search process. The
following example demonstrates the drawback of computing partial matching results by the
method in [11].

Example 1 As shown in Fig. 1a, given a distributed RDF graph G0, and a query Q = (?a,
spouse, ?s) ∧ (?a, director, ?b) ∧ (?b, country, ?c) ∧ (?c, capital, ?d), the query engine
traverses the dataset on Fi according to the query graph to obtain all the candidate sets
of query variables. In fragment Fi, the candidate sets of query is denoted as Bgi

 , where
the subscript gi is used to distinguish among different fragments. Based on the candidate
generation strategy, the candidates of internal query nodes of query Q are Bg1

 = {〈?a, (v2,
v5)〉, 〈?b, (v3, v4, v21)〉, 〈?c, (v8)〉} and Bg2

 = {〈?a, (v11, v15, v22)〉, 〈?b, (v13, v14)〉, 〈?c, (v9)〉}.
The internal query nodes denote the query nodes that have more than one edge (the nodes

v9
China

country

v13
The_Dark_Knight_Rises

v14
The_Hobbit:_An_Unexpected_Journey

director

director

v15
Peter_Jackson

v16
Fran_Walsh

v18
Jill_Tracy_Biden

v19
Xi_Jinping

v21
Saving_Private_Ryan

v22
Steven_Allan_Spielberg

director v23
Amy_Irving

S1 S2

v24
Tom_Hanks

v2
Feng_Xiaogang

v3

A_World_Without_Thieves

v4
Hero

v1
Zhou_Yun

v5

Zhang_Yimou

v11
Christopher_Johnathan_James_Nolan

v17
Joseph_Robinette_Biden

president

v6

Chen_Ting

spouse

v20
Peng_Liyuan

v12

Emma_Thomas

spouse

country

country

v10
Beijing

capital

starring

spouse

v7
Washington_D.C.

v8

United_States

v9
China

country

v13
The_Dark_Knight_Rises

v14
The_Hobbit:_An_Unexpected_Journey

director

director

v15
Peter_Jackson

v16
Fran_Walsh

v18
Jill_Tracy_Biden

v19
Xi_Jinping

v21
Saving_Private_Ryan

v22
Steven_Allan_Spielberg

director v23
Amy_Irving

S1 S2

v24
Tom_Hanks

v2
Feng_Xiaogang

v3

A_World_Without_Thieves

v4
Hero

v1
Zhou_Yun

v5

Zhang_Yimou

v11
Christopher_Johnathan_James_Nolan

v17
Joseph_Robinette_Biden

president

v6

Chen_Ting

spouse

v20
Peng_Liyuan

v12

Emma_Thomas

spouse

country

country

v10
Beijing

capital

starring

spouse

v7
Washington_D.C.

v8

United_States

Fig. 1 A distributed RDF graph G0 with candidates of query Q0 colored. (a) Before filtering candidates, (b)
After filtering candidates

752 World Wide Web (2023) 26:751–771

1 3

?s and ?d are not internal query nodes because there only exists one edge connected with
them in query graph Q). The candidate vertices are in yellow, green, and blue, respectively,
in Fig. 1a. When computing local partial matches on each site, each candidate vertex will
start a graph exploration, so that the search process will iterate six times on the first site
and six times on the second. To further explore, we can find that a graph exploration from
either v2 or from v3 can obtain the local partial match (〈?s, v1〉, 〈?a, v2〉, 〈?b, v3〉, 〈?c, v9〉,
〈?d, v10〉) on F1. As a result, this strategy can generate a large number of repeated local par-
tial results, leading to a degradation in the performance of partial evaluation.

To handle this problem, we propose an effective optimization strategy to accelerate the par-
tial evaluation phase by a constructed index named inner boundary node index which exploits
characteristics of partial evaluation and assembly framework (the formal definition will be
explained in detail in Section 4). For the example shown in Fig. 1, the following candidate sets
are generated after filtered by IBN-Index: Bg1

 = {〈?a, NULL〉, 〈?b, (v3, v4, v21)〉, 〈?c, (v8)〉},
Bg2

 = {〈?a, (v22)〉, 〈?b, (v13, v14)〉, 〈?c, (v9)〉}. These candidate vertices of ?a, ?b and ?c are
colored yellow, green and blue respectively in Fig. 1b. The size of the whole candidate sets
is much smaller than the candidates mentioned in Example 1. Furthermore, the local partial
match (〈?s, v1〉, 〈?a, v2〉, 〈?b, v3〉, 〈?c, v9〉, 〈?d, v10〉) will be only generated once which is
started from v3 on fragment F1.

Since the growing number of partial matches heavily influence the assembly stage, filtering
out part of the partial results becomes an effective way to speed up the query. Therefore, we
propose another method that utilizes constructed boundary node index (the formal definition
will be explained in detail in Section 5) to filter out part of the false local partial matches in
advance, reducing the cost of communication and centralized computation.

We summarize the contributions of the paper with the following three aspects:

• Based on partial evaluation and assembly framework, we propose an inner boundary node
index (IBN-Index) and a partial evaluation algorithm that utilizes IBN-Index to filter the
candidate sets of query nodes, which can significantly speed up partial evaluation phase.

• To reduce the number of local partial matches, the boundary node index (BN-Index) is
constructed by exploiting the characteristics of local partial matches. Furthermore, a BN-
Index-based filter algorithm is proposed.

• Extensive experiments on benchmark datasets have been conducted to verify the efficiency
and scalability of our method. The experimental results show that our method outperforms
the state-of-the-art method.

The rest of this paper is organized as follows. Section 2 reviews the related work. In Sec-
tion 3, we present the preliminaries and problem definition. An overview of the methods is
depicted in Section 4. In Section 5 and Section 6, we propose the inner boundary node index
and the boundary node index, with their corresponding algorithm, respectively. Finally, exper-
imental evaluations are presented in Section 7 and we draw conclusions in Section 8.

2 Related work

Due to performance, confidentiality, and security factors [12, 13], the cluster-based distrib-
uted data management architecture has become the inevitable research trend to deal with
the knowledge graph. In this section, we will review several distributed subgraph matching

753World Wide Web (2023) 26:751–771

1 3

research on large-scale RDF graphs, which can be classified into two categories, includ-
ing MapReduce-based graph systems, and specialized RDF systems. Furthermore, existing
works on partial evaluation and assembly and graph indexing methods are summarized.

2.1 MapReduce‑based graph systems

SHARD [14], a MapReduce-based triple store for RDF graphs, is able to process SPARQL
queries, which decomposes the query graph into a set of triples (a triple containing varia-
bles) and binds variables to the vertices of the data graph by iterating on the triple patterns.
Meanwhile, it is necessary to satisfy all the constraints in the query. For example, each
round of the MapReduce operation adds only one query clause through the join operation.
Likewise, the smallest decomposition unit of the query graph in HadoopRDF [15] is also
the triple pattern, and it also utilizes the MapReduce framework to divide the RDF triples
into multiple small files based on the predicate. However, both methods mentioned above
ignore the structural information of the query graph, require multiple MapReduce itera-
tions, and require a large number of join transactions, resulting in high query cost.

2.2 Specialized RDF systems

Trinity.RDF [16], a distributed in-memory key-value store, stores RDF data in the native
form, with vertex identifiers as keys and adjacent lists of vertices as values. Trinity.RDF
finds the optimal exploration plan and reduces the number of intermediate results using
the graph exploration instead of join operations, while the final results need to be obtained
using a single thread on the master node. In addition, systems based on partial evaluation
and assembly framework have also been extensively and deeply studied in recent years.

The method of partial evaluation and assembly is first applied in distributed XML data
management by Peter et al. [17]. The key idea is to transmit the whole query graph to each
site that is partially evaluated in parallel, and after each node computes the partial results
of the query, the results are transmitted as compact Boolean functions to the master node,
which are combined to obtain the result. Fan et al. [7, 18, 19] subsequently propose a series
of algorithms based on partial evaluation and assembly framework to deal with XQuery on
distributed XML data, reachability query and graph simulation on distributed graph. Peng
et al. [10, 11] design a subgraph matching query algorithm based on partial evaluation and
assembly framework to process SPARQL queries on distributed RDF data and propose rel-
evant optimization strategies.

However, the huge overhead caused by repeated partial matches during partial evalu-
ation is not handled in aforementioned methods. Furthermore, when the number of inter-
mediate results obtained in the local computation phase is extensive, the aforementioned
methods may suffer from a performance bottleneck in the assembly phase.

2.3 Graph indexing

As a classic space-for-time strategy, graph indexing has been researched extensively and
deeply in the past years. Graph indexing methods can be classified into value-based index-
ing and structure-based indexing.

754 World Wide Web (2023) 26:751–771

1 3

Through value-based methods, a graph index is usually constructed on one or more
properties of an entity. SB-Tree [20] is a variant of B-Tree, which has a better perfor-
mance on dynamic data. Hexastore [21] and RDF-3X [22] index the RDF data in six pos-
sible ways. Based on S-Tree [23], gStore [24] proposed VS-Tree to prune the search space
efficiently.

Structure-based methods focus on mining the features of a graph, such as a path, sub-
tree, or other substructure, indexing them to filter the search space and accelerate the query
process. Closure-Tree [25] proposed graph closure, which is a generalized graph that rep-
resents several graphs, and based on it to organize graphs as a tree. Both subgraph queries
and similarity queries can benefit from this method. SPath [26] takes the shortest paths
around the vertex neighborhood as the basic process unit and decomposes the query into a
set of shortest paths to exploit its indexing. K-path-bisimulation [27] is a path-based index,
the path with identical length and the same edge label sequence is divided into the same
catalog, and the query is decomposed into a set of paths.

In this paper, the features of partial evaluation and assembly framework are exploited
profoundly, and two kinds of indexes are constructed to compensate for the shortcomings
of previous methods. Although the proposed index-based methods are value-based, the
structural information of the graph is also included in the indexes.

3 Preliminaries

Let U and L be the disjoint infinite sets of URIs and literals. Then, a tuple in the form of
〈s, p, o〉 ∈ U × U × (U ∪ L) is called an RDF triple, where s is the subject, p the predicate,
and o the object. Given an RDF dataset as a finite set of triples, it can be converted to its
corresponding RDF graph. In this paper, we focus on the problem of subgraph matching
query over a distributed RDF graph. This section will present preliminaries for distributed
RDF graphs and subgraph matching queries. Table 1 lists the notations frequently used in
this paper.

Definition 1 (RDF Graph) Given an RDF dataset as a finite set of triples in the form
〈s, p, o〉, its corresponding RDF graph is G = (V, E, Σ), where the set of vertices V is the
union of all s and o. For each 〈s, p, o〉, there is a directed edge e ∈ E from the vertex s to
the vertex o, where p is the label of that edge e. Here, Σ is the set of all labels, i.e., Σ = {p
∣ 〈s, p, o〉 ∈ G}.

Table 1 Frequently used notations

Notation Description Notation Description

Q and G Query graph and data graph Ve

i
 The set of boundary nodes on Fi

V, E, Σ Vertex set, edge set, label set Si Computing node
Fi A fragment of graph G PQ The set of results of query Q
E
i
 A disjoint entity set of graph G PMi A local partial match on Fi

N
c

i
 The rest of Fi except Ei IIBN

i
 IBN-Index on Fi

Di Inner boundary node set of Fi IOUT
i

 , IIN
i

 BN-Index on Fi

755World Wide Web (2023) 26:751–771

1 3

Definition 2 (Distributed RDF Graph) RDF graph G is partitioned into n disjoint ‘entity sets’ { E1 ,
..., En }, where each Ei = (Vi, Ei, Σi). Here, (1) for each i ∈{1,...,n}, Ei is a subset of G, where Vi ⊆ V ,
Ei ⊆ E , and Σi ⊆ Σ ; (2) for each i, j ∈ {1,...,n} ∧ i≠ j, there is Ei ∩ Ej = ∅; and (3)

⋃n

i=1
 Ei = G.

To ensure the integrity and consistency of the RDF graph when partitioned in a distributed
system, each computing node needs to store some copies of the edges that cross between dif-
ferent entity sets. Let the copy of the associated edges with other partition be denoted as Nc

i
.

Definition 3 (Fragment) Graph G is partitioned into n fragments F = {F1, ..., Fn}, such
that Fi = Ei ∪ Nc

i
 . In other words, G can be considered as a distributed RDF graph w.r.t. F ,

such that:

1) For each Ei = (Vi, Ei, Σi), Vi, Ei, and Σi represent the set of internal vertices, the set of
edges, and the set of labels in Fi, respectively. Formally, Vi = { s ∣ ⟨s, p, o⟩ ∈ Ei } ∪
{ o ∣ ⟨s, p, o⟩ ∈ Ei }, Ei ⊆ Vi × Vi , and Σi = { p ∣ ⟨s, p, o⟩ ∈ Ei};

2) Nc
i
 = (Ve

i
 , Ec

i
 , Σc

i
), where Ec

i
 is the set of crossing edges between Fi and other fragments. If an

internal vertex of Fi has a direct edge with any vertex v in Fj, where i≠j, then v ∈ Ve
i
 . Formally,

Ec
i
⊆ Vi × Vj , Σc

i
 = { p ∣ ⟨s, p, o⟩ ∈ Ec

i
 }, the set of boundary vertices between Fi and Fj is Ve

i

= { s ∣ ⟨s, p, o⟩ ∈ Ec
i
∧ s ∈ Vj } ∪ { o ∣ ⟨s, p, o⟩ ∈ Ec

i
∧ o ∈ Vj }, i, j = 1,2,...,n ∧ i≠j;

Let S = {S0, S1, … , Sn} be a set of n + 1 computing nodes, i.e., sites, in a cluster.
Without loss of generality, each fragment Fi is stored at a slave site Si for i ∈ {1, … , n}.

Example 2 As shown in Fig. 2, given a distributed RDF graph G1 extracted from the DBpe-
dia dataset, G1 can be divided into four parts F = {F1, F2, F3, F4}, which are respectively

v9

China

v10

Beijing

v17
United_States

v16

Washington_D.C.

v13 The_Dark_Knight_Rises

v23

The_Hobbit:_An_Unexpected_Journey

v11

Christopher_Johnathan_James_Nolan

v24 Peter_Jackson

v12

Emma_Thomas

v25Fran_Walsh

v8

Joseph_Robinette_Biden
v7

Jill_Tracy_Biden

v14

Xi_Jinping

v15

Peng_Liyuan

v19

Saving_Private_Ryan

v26

Steven_Allan_Spielberg

v27Ready Player One

S1 S2

v3

A_World_Without_Thieves

v2

Feng_Xiaogang

v1

Zhou_Yun

v4

Hero
v5

Zhang_Yimou

v6

Chen_Ting

v18

Tom_Hanks

v22

Sherlock_Holmes

v21

Guy_Ritchie
v28

United_Kingdom

v20

Trudie_Styler

v29

Boris_Johnson

S3 S4

sp
ou

se

director country president

director
spouse

spouse

sp
ou

se

pr
es

id
en

t

capital

starring co
un

tr
y

sp
ou

se

director country

country director

v31

Hayao Miyazaki

v32
My_Neighbor_Totoro

v33

v34

Tokyo

v30 Akemi Miyazaki

Japan

sp
ou

se

director

country

Fig. 2 A distributed RDF graph G1

756 World Wide Web (2023) 26:751–771

1 3

stored on the corresponding sites {S1, S2, S3, S4} in the cluster. For a fragment F2 = E2 ∪
Nc
2
 , the partition E2 = (V2, E2, Σ2), and V2 = {v4, v5, v9, v10, v11, v12, v13, v14, v15}, E2 = {(v4,

v5), (v9, v10), (v9, v14), (v14, v15), (v13, v11), (v11, v12)}. The copy between F2 and other frag-
ments Nc

2
 = (Ve

2
 , Ec

2
 , Σc

2
), where Ve

2
 = {v3, v6, v17}, Ec

2
 = {(v3, v9), (v5, v6), (v13, v17)}. In par-

ticular, we colored the incoming and outgoing vertices of fragment F2 in blue.

Given an RDF graph G and a query graph Q as a set of triple patterns, a subgraph
matching problem is to find the subgraphs over G that satisfy all the triple patterns in
Q. Such a subgraph matching problem is a conjunctive query (CQ) on G, which is the
focus of this paper. In the following, we formally present the query graphs and the other
necessary definitions adapted from [28].

A query graph includes m triple patterns 〈sr, pr, or〉, where the value of each sr, or can
either be a member of V, or ‘not labeled’. If a sr or or is ‘not labeled’, sr or or belongs to a
special set Var, and the name of each element in Var starts with the character ‘?’. Similarly,
the value of each pr can either be a member of Σ, or Var.

Definition 4 (Query Graph) Given an RDF graph G, a CQ Q over G is defined as: Q(z1,
… , zt)←

⋀
1≤r≤m tpr , where tpr = 〈sr, pr, or〉 is a triple pattern. sr,or ∈ V ∪ V ar, zl is a vari-

able and zl ∈ {sr∣1 ≤ r ≤ m} ∪ {or∣1 ≤ r ≤ m}. A CQ Q is also referred to as a query graph.

Before defining subgraph matching, we recapitulate certain definitions of the mapping.
For a mapping μ, dom(μ) is its domain. Two mappings μ1 and μ2 are compatible, i.e., μ1 ∼
μ2, iff for every element v ∈ dom(μ1) ∩ dom(μ2), it holds that μ1(v) = μ2(v). Furthermore,
the set-union of two compatible mappings, i.e., μ1 ∪ μ2, is also a mapping.

Definition 5 (Subgraph Matching) The semantics of a CQ Q over an RDF graph G is
defined as:

1) μ is a mapping from the vertices in Q to the vertices in V, i.e., mapping from s =
{s1,...sm} and o = {o1,...om} to the vertices in V;

2) (G,𝜇) ⊨ Q iff 〈μ(sr), μ(pr), μ(or)〉∈ E and the labels of sr, pr and or are the same as that
of μ(sr), μ(pr), and μ(or), respectively, if sr, pr, or∉Var;

3) PQ is the set of all results, where each result satisfies the subgraph matching query Q
over G.

Problem statement Consider a distributed RDF graph G, w.r.t., a fragmentation F =
{F1,...,Fn}, and let Fi be stored in the cluster S = {S0, S1,...Sn}. For simplicity, we assume
that each site Si hosts one fragment Fi. Given a query graph Q, the problem is to find all
subgraph matching results PQ of Q in G.

Example 3 Given a CQ, Q = (?a, spouse, ?s) ∧ (?a, director, ?b) ∧ (?b, country, ?c) ∧ (?c,
capital, ?d). Q consists of five query vertices and its semantic is to find the films directed
by a person with his spouse, the film’s country and the capital of the country. The corre-
sponding query graph is shown in Fig. 3, with one of the query results being highlighted in
purple in Fig. 2.

757World Wide Web (2023) 26:751–771

1 3

4 Overview

The partial evaluation and assembly framework is extended to answer SPARQL queries
over a distributed RDF graph G, as shown in Fig. 4. In the execution model, there are
two phases: the partial evaluation phase and the assembly phase. In addition, two opti-
mization strategies are designed and embedded in this framework.

Before the query starts, the entire RDF graph G is divided into multiple fragments
according to a certain partitioning strategy, and an index named BN-Index is built on
each fragment. The fragments and corresponding BN-Index are then transmitted to each
site, and an index named IBN-Index is further constructed on each site locally. When
querying, the master node sends the entire query graph to all slave nodes, and the subse-
quent partial evaluation phase can be summarized into three processes. (1) Each site Si
first receives the complete query graph Q and finds all candidate sets of the query graph
variables. (2) The query engine uses the IBN-Index to filter the candidates, and executes
the graph exploration algorithm according to the filtered candidates to find local matches.
(3) Finally, BN-Index is utilized to filter the local partial matches after graph exploration.

The local partial matches are then sent to the master site to compute the complete
SPARQL matches, which is called the assembly stage. Benefiting from the filtering effect
of BN-Index, the number of partial matches is drastically reduced, which alleviates the
assembly bottleneck problem to a certain extent.

To better illustrate the effect of IBN-Index, it is necessary to explain the partial evalua-
tion process of gStoreD in detail. After each site Si receives the complete query graph, the
candidate set of each query variable is obtained according to the predicates connected with
the variables. Specifically, the vertices in the candidate set can be classified into internal
candidate vertices and boundary candidate vertices. The internal candidate vertices denote
the vertices contained in the subgraph Fi allocated on Si, while the boundary candidate
vertices denote those vertices connected with Fi but do not belong to it. After obtaining the

Fig. 3 A query graph Q with 5
query variables

SPARQL
queries

Candidates of
variables in S1

Candidates of
variables in S2

Candidates of
variables in S3

DN-Index
based local

computation

DN-Index
based local

computation

DN-Index
based local

computation

Filter local
partial matches

by BN-Index

Filter local
partial matches

by BN-Index

Filter local
partial matches

by BN-Index

Assemble
all local
partial

matches

SPARQL
matches

ylbmessAnoitaulavElaitraPnoitazilaitinI

Fig. 4 Overview of the optimized partial evaluation and assembly method

758 World Wide Web (2023) 26:751–771

1 3

candidate sets, all the sites transmit the internal candidate vertices to the master site, and
the collection of all internal candidates is resent to all sites.

In order to find partial results on Fi, graph exploration starts with each internal candi-
date vertex of the internal query variables. Specifically, for a query graph, the query vari-
ables can be classified into internal query variables and satellite variables, depending on
the edges connected with the query node. If a query node only has one edge, it is denoted
as a satellite variable.

The reasons why we choose these special candidate vertices as the starting vertices are
considered from two aspects. (1) A boundary vertex is also an internal vertex on another site
simultaneously so that it will be set as a starting vertex on that site, and the path connected
with it will not be lost. (2) If a partial match on Si only matches a satellite node, it will also
be found on other sites. Take the partial match in purple on S1 in Fig. 2 as an example, the
partial match will be found on S2 and connected with v6 as a complete SPARQL match.
Therefore, only starting with internal query variables will not lose any partial results.

At each expansion step of graph exploration, query engine judges whether the matching
node belongs to the collection of all the internal candidates. The graph exploration process
will not stop until all maximal partial matches are obtained.

5 Inner boundary node‑based algorithm

Recall that in partial evaluation and assembly framework, given a distributed RDF graph
G, each site Si receives a part of the graph Fi and constructs IBN-Index according to the
subgraph. Then, when answering query Q, each site Si computes local partial matches uti-
lizing the constructed index. In this section, the structure of the IBN-Index is defined, and
the IBN-Index construction algorithm is introduced. Then we present the subgraph match-
ing algorithm utilizing IBN-Index on each site and give the complexity analysis of the pro-
posed method.

5.1 Inner boundary node

The local partial match computation algorithm based on partial evaluation and assembly
framework have been proposed in [10]. First, an in-depth analysis of the performance prob-
lem of existing work in computing local matches during partial evaluation is carried out,
and on this basis, an optimization using the inner boundary node index is proposed.

When computing local partial matches, each internal candidate vertex of the candidate
vertices sets starts the graph exploration to find the local partial matches. It should be noted
that it is not necessary to traverse all internal nodes as the starting point of graph explora-
tion. The reasons can be considered from the following two aspects.

(1) Intuitively, a complete SPARQL match only needs to be traversed from one vertex
so that the candidate vertices in other candidate sets can be discarded. (2) Besides, as men-
tioned in [10], a local partial match is the overlapping part of an unknown crossing match
and a fragment Fi. There must be a crossing edge derived from an internal vertex con-
nected with other fragments. Therefore, only searching from the vertices connected with
other fragments can get all the partial matches. These kinds of vertices are defined as inner
boundary nodes, and the formal definition is given as follows:

759World Wide Web (2023) 26:751–771

1 3

Definition 6 (Inner Boundary Node.) Given a distributed RDF graph Q and a fragmenta-
tion F = {F1,...,Fn}. In fragment Fi = Ei ∪ Nc

i
 , if an internal vertex v of Fi has a direct edge

with any vertex u in Fj, where i≠j, then v is an inner boundary node.

Based on inner boundary nodes, the internal entity set Vi of fragment Fi can be
divided into two mutually exclusive subsets, pure internal node set Pi and inner bound-
ary node set Di. Formally, Vi = Pi ∪ Di, where Di = { s ∣ ⟨s, p, o⟩ ∈ Ec

i
∧ o ∈ Vj } ∪

{ o ∣ ⟨s, p, o⟩ ∈ Ec
i
∧ s ∈ Vj }, i,j = 1,2,...,n ∧ i≠j. The definition of the inner boundary node

index is presented as follows:

Definition 7 (Inner Boundary Node Index.) Given a fragment Fi of RDF graph G, the
inner boundary node index, i,e., IBN-Index of Fi is a key-value map IIBN where

1) for any tuple (v, tag) ∈ IIBN, the key is a vertex v ∈ Vi, and the value tag is a Boolean
value denoting if v is an inner boundary node or not; if a vertex v is an inner boundary
node, its corresponding tag will be set to True, otherwise it will be set to False;

2) for any vertex v ∈ Vi, there exists a unique tuple in IIBN with v as the key and a Boolean
tag as the value.

Example 4 As shown in Fig. 2, on site S1, the inner vertices (inner boundary nodes) con-
nected with vertices on other sites (S2 and S3) are v3, v6, and v8. And on site S2, the inner
boundary nodes are v9, v5, and v13. As a result, the inner boundary node index on site s1
is IIBN

1
 = {(v3, True), (v6, True), (v8, True), (v1, False), (v2, False), (v7, False), (v30, False),

(v31, False), (v31, False), (v32, False), (v33, False), (v34, False)}. And the IBN-Indexes on
site S2 is IIBN

2
 = {(v5, True), (v9, True), (v13, True), (v4, False), (v10, False), (v11, False),

(v12, False), (v14, False), (v15, False)}.

To improve space efficiency of IBN-Index, the strategy of dictionary encoding is
adopted, such that each vertex is encoded into an integer by hash operation.

760 World Wide Web (2023) 26:751–771

1 3

The construction approach of the IBN-Index is shown in Algorithm 1. First, the inner
boundary node set and IBN-Index are initialized by the fragment identifier Fi (line 1).
Then, for each triple 〈s, p, o〉, if it is a crossing edge and the subject s (or object o) is an
internal vertex, the s (or o) is put into the inner boundary node set Di (lines 2-6). For each
node v in the internal node set Vi, if it is also an inner boundary node in Di, a mapping
(v, True) will be put into IIBN

i
 ; otherwise, a mapping (v, False) will be put into IIBN

i
 (lines

7-11).

5.2 IBN‑index based partial evaluation

In order to answer query Q, each site Si computes the local partial matches based on the
known fragment Fi. The formal definition of local partial match was defined in [10]. Intui-
tively, a local partial match PMi is an overlapping part between a crossing match M and
fragment Fi.

Algorithm 2 describes the local partial match computation process utilizing the IBN-
Index. The key idea is to use the inner boundary node index to filter the candidate sets,
thereby reducing the search space when finding local partial results. Since the result of par-
tial evaluation can be divided into complete SPARQL matches and local partial matches,
the correctness of Algorithm 2 can be considered from the following two aspects. (1) Since

761World Wide Web (2023) 26:751–771

1 3

some complete SPARQL matches contain only pure internal vertices (e.g., the dashed par-
tial match on S1 in Fig. 2), i.e. they do not have any inner boundary nodes, in order to
ensure that all complete SPARQL matches are obtained, we keep a complete candidate set
in which all vertices will start graph exploration (line 8). Here a greedy strategy is applied,
selecting the candidate set with the smallest size as the reserved set (line 6). (2) In other
candidate sets, only the candidate vertex judged as an inner boundary node will start the
graph exploration (lines 13-19).

Example 5 We take site S1 as an example. As shown in Fig. 2, for query Q, the candidate
sets of each internal query variables on site S1 are Bg1 = {〈?a, (v2, v31, vv8)〉, 〈?b, (v3, v32)〉,
〈?c, (v33)〉}. Firstly, the candidate sets are sorted to find the candidate set with the smallest
size and the set 〈?c, (v33)〉 is reserved. In the candidate set of ?a, the nodes v2 and v31 are
not inner boundary nodes according to the IBN-Index, so they are all filtered out. As for
the candidate set of ?b, v3 will not be filtered, while v32 will be discarded. The filtered set
of candidate sets is Bg1 = {〈?a, (v8)〉, 〈?b, (v3)〉, 〈?c, (v33)〉}. As a result, graph exploration
can find all partial matches on S1 starting only from v8, v3, and v33. Likewise, the candidate
sets on other sites are also filtered out of a large number of candidate vertices using the
same method.

Space complexity of IBN‑Index For each fragment Fi, each vertex corresponds to
a tag indicating whether it is an inner boundary node. The extra space is bounded with
O(|Vi| + |Ve

i
|) , where Vi is the set of internal nodes of fragment Fi and Ve

i
 is the set of

boundary nodes of fragment Fi.

762 World Wide Web (2023) 26:751–771

1 3

6 Filter local partial matches with boundary node index

As shown in Fig. 5, since the RDF data graph is distributed and stored on multiple sites,
the boundary node on each site becomes a bridge connecting any two sites. Node 1 (in
blue) on F1 is a boundary node for F2, while it is an internal node in the view of F1. As a
result, it is named an inner boundary node on F1, while it is a boundary node for F2. In par-
tial evaluation and assembly framework, after the local partial matches are obtained, all of
them are sent to the master site uniformly. However, not all the partial results can continue
to be joined to form a complete SPARQL match on the master site. Therefore, it is unnec-
essary to transmit local partial matches, which are not associated with partial matches on
other sites, to the master site. Based on the above problem, this paper proposes an optimi-
zation strategy for pre-judging edge labels from boundary nodes to reduce the communica-
tion overhead between local sites and the master site.

The definition of boundary nodes (see the definition of Ve
i
) has been given in Section 3,

which means vertices that belong to other fragments but are directly connected to internal
vertices in Fi. For an RDF graph G, when dividing the data, we record each boundary
node’s out-edge and in-edge information on the fragment Fi as boundary node index. The
formal definition of boundary node index is as follows:

Definition 8 (Boundary Node Index) . Given a fragment Fi of RDF graph G, the bound-
ary node index, i,e., BN-Index of Fi is a key-value map IBN

i
 where

1) IBN
i

 = IOut
i

∪ IIn
i

;
2) for any tuple (v, v.Out) ∈ IOut

i
 , the key is a vertex v ∈ Ve

i
 , and the value v.Out = {(p1, p2,

..., pn) ∣i≠j ∧〈v, pl, u〉∈ Fj ∧ l ∈{1,...,n}};
3) for any tuple (v, v.In) ∈ IIn

i
 , the key is a vertex v ∈ Ve

i
 , and the value v.In = {(p1, p2,

..., pn) ∣i≠j ∧〈u,pl,v〉∈ Fj ∧ l ∈ {1,...,n}}.

The construction approach of boundary node index is shown in Algorithm 4. First, the
BN-Index is initialized by the identifier Fi (line 1). Then, for each triple 〈s, p, o〉 in RDF
graph G, if s (or o) is a boundary node in Fi and the triple 〈s, p, o〉 ∉ F, the the (s, p) (or
(o, p)) will be put into IOut

i
 (or IIn

i
) (lines 2-8). Algorithm 4 will iterate over each triple until

there is no triple left.

763World Wide Web (2023) 26:751–771

1 3

Example 6 As shown in Fig. 2, on site S3, the boundary nodes (with their predicates in
orange) are Ve

i
 = {v8, v13, v23, v26, v28}. And the corresponding boundary node index is IOut

3

= {〈v8, (spouse)〉, 〈v13, (director)〉, 〈v23, (director)〉, 〈v28, (prime_minister)〉, 〈v26, NULL〉},
IIn
3

 = {〈v26, (director)〉,〈v8, NULL〉, 〈v13, NULL〉, 〈v23, NULL〉, 〈v28, NULL〉}.

Example 7 As shown in Fig. 6, the local partial matches on S3 is PM3 = {(〈?s, null〉,
〈?a, null〉, 〈?b, v13〉, 〈?c, v17〉, 〈?d, v16〉), ((〈?s, null〉, 〈?a, null〉, 〈?b, v23〉, 〈?c, v17〉,
〈?d, v16〉), (〈?s, null〉, 〈?a, v26〉, 〈?b, v19〉, 〈?c, v17〉, 〈?d, v16〉), (〈?s, v20〉, 〈?a, v21〉, 〈?b, v22〉,
〈?c, v28〉, 〈?d, null〉)}. According to the boundary node index, the last two local partial
matches could not constitute any final results. Then these two matching pairs will not be
sent to the master node as a message.

The filtering partial matches process is presented briefly in Algorithm 5. On site Si, each
partial match is iterated to judge on the boundary nodes (line 3). Only when the value (also
known as the predicates belong to other fragments) of BN-Index of the boundary node
contains the unmatched predicates on the query graph, can the partial match be further
matched and reserved to transmit to the master site.

Fig. 5 Fragmentation of a data graph

764 World Wide Web (2023) 26:751–771

1 3

Space complexity of BN‑Index For each fragment Fi, the number of the BN-Index is
O(|Ve

i
|) at most. As a result, the extra space of BN-Index is bounded with O(|Ve

i
|) , where

Ve
i
 is the set of crossing edges.

7 Experimental evaluation

In order to verify the effectiveness and efficiency of the IBN-Index method and BN-Index
filtering method under the partial evaluation and assembly framework, a comparative
experiment with gStoreD [10, 11] was performed over several benchmark RDF datasets.
The proposed algorithm is implemented on top of gStoreD, and is deployed on a 3-node
cluster, of which each node is in a Docker. The three dockers are all deployed on a machine
with 16 cores Intel Xeon Silver 4216 2.10 GHz processors, 512 GB of RAM, and 1.92 TB
SSD, running the 64-bit CentOS 7.7 operating system.

7.1 Datasets and queries

In this experiment, the proposed method and gStoreD are evaluated using the LUBM [29]
synthetic benchmark dataset of different scales. The statistics of the datasets are shown in
Table 2. We need to compare the query efficiency of the method based on IBN-Index, the
method based on BN-Index and the combination of the two, and the original gStoreD on
different queries. It is necessary to gradually change the number of intermediate results
that the query satisfies while limiting the basic structure of the query. Therefore, we choose
benchmark datasets rather than real-world datasets to keep the dataset size positively cor-
related with the number of intermediate results. In addition, to eliminate the impact of the
partitioning strategy on query performance, we use a random partitioning method to divide
each dataset into four fragments.

As shown in Table 3, eight complex queries of different scales on the LUBM dataset are
presented, i.e., Q1 ∼ Q8 . To exhibit the effect of IBN-Index and BN-Index, the proposed
queries may generate large amount of intermediate results in the partial evaluation phase,
as showed in Fig. 7a.

v17v16

v23
The_Hobbit:_An_

Unexpected_Journey

Washington_D.C.

United_States
v17

v16 Washington_D.C.

v13

The_Dark_Knight_Rises

United_States

v17

United_States
v16

Washington_D.C.

v19

Saving_Private_Ryan

v26

Steven_Allan_Spielberg

v22

Sherlock_Holmes

v21

Guy_Ritchie

v28

United_Kingdom

v20

Trudie_Styler

v8.Out={spouse}
v13.Out={director}
v23.Out={director}

v28.Out={prime-minister}
v26.In={director}

capital

co
un

tr
y

capital

co
un

tr
y

director

country

ca
pi
ta
l

country
di
re
ct
or

spouse

v17

v16 Washington_D.C.

v13country

ca
pi
ta
l

United_States

The_Dark_Knight_Rises

v17v16

v23

Washington_D.C.

United_States

capital

co
un

tr
y

The_Hobbit:_An_
Unexpected_Journey

BN-Index

Fig. 6 Filtering partial matches with BN-index on site S3 on graph G1

765World Wide Web (2023) 26:751–771

1 3

7.2 Experimental results

To verify the effectiveness of the IBN-Index and BN-Index based partial evaluation algo-
rithm, extensive experiments were conducted.

Exp 1. Number of partial matching results. To make it more intuitive to observe and
evaluate the performance of the partial evaluation algorithm with different queries
and datasets, the number of partial matching results and complete SPARQL matches of
Q1 ∼ Q8 over LUBM10, LUBM20, and LUBM30 is recorded. The maximal total number
of all partial evaluation results (including complete SPARQL matches and local partial
matches) generated from each site are depicted in Fig. 7a, which determines the time con-
sumption of the partial evaluation and influences assembly phases. As shown in Fig. 7a, for
Q1, the number of partial evaluation results increases approximately linearly with the size
of the datasets. For the query Q2 ∼ Q8 , their partial evaluation results on LUBM20 are the
most, which is affected by the partitioning strategy.

Exp 2. The construction time and space occupied by IBN-Index and BN-Index. Fig-
ure 8a shows the largest time overhead and space occupation of the IBN-Index among all
slave nodes on different datasets. It can be observed that the time to construct the IBN-
Index and the size of the IBN-Index are positively correlated with the size of the graph.
Figure 8b presents the construction time and space of the BN-Index, which have similar
trends to that of the IBN-Index.

Table 2 Datesets Dateset #edges #vertices

LUBM10 1,316,700 314,852
LUBM20 2,782,126 663,647
LUBM30 3,890,992 841,108

Table 3 Queries #Query vertices Queries

4 Q1, Q2
5 Q3, Q4
6 Q5, Q6
7 Q7, Q8

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8N
um

be
r o

f r
es

ul
ts(
×1

00
0)

Queries

LUBM10
LUBM20
LUBM30

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Q
ue

ry
 T

im
e(

s)

Queries

LUBM10
LUBM20
LUBM30

Fig. 7 Query evaluation on LUBM datasets. (a) Partial evaluation results on LUBM datasets, (b) Query
evaluation time of Q1 ∼ Q8

766 World Wide Web (2023) 26:751–771

1 3

For IBN-Index, since the value of each node is only a Boolean value, the space required for the
index is small, which guarantees the time and space complexity of the proposed method. As for
BN-Index, the space required is correlated with the number of boundary nodes, which depends on
the graph partitioning strategy. Although the random partitioning method we use will produce a
large number of intermediate results, the experimental results prove the time and space complexity
of BN-Index. Overall, the size of the BN-index is proportional to the size of the graph except that
on LUBM20. The reason is that the number of crossing edges on LUBM20 is even more than that
on LUBM30, which can be verified by the partial evaluation results depicted in Fig. 7a.

Exp 3. Efficiency of IBN-Index Based Optimization. A measurement of the statistical
consequences of graph exploration time in the partial evaluation phase of Q1 ∼ Q8 over
different datasets is shown in Fig. 9. It can be observed that the partial evaluation method
based on IBN-Index outperforms gStoreD on all queries and can improve query perfor-
mance by 1.64 times in the best case. Furthermore, the method combining IBN-Index and
BN-Index (the grey lines) improves the query efficiency by 1.79 times in the best case. As
the size of the dataset increases, the proportion of time reduction also increases.

Interestingly, the optimization becomes more significant as the number of query nodes
increases. The reasons can be summarized in two aspects. (1) When dealing with more

0

2

4

6

8

10

12

14

16

0

50

100

150

200

250

300

LUBM10 LUBM20 LUBM30

T
he

 s
iz

e
of

 i
nd

ex
(M

B
)

C
on

st
ru

ct
in

g
T

im
e(

s)

Datasets

Time

Size

0

40

80

120

160

0

200

400

600

800

1000

1200

LUBM10 LUBM20 LUBM30

T
h

e
si

ze
 o

f
 i

n
d

ex
(M

B
)

C
o
n
st

ru
ct

in
g

T
im

e(
s)

Datasets

Time

Size

Fig. 8 The constructing time and size of IBN-Index and BN-Index. (a) The constructing time and size of
IBN-Index, (b) The constructing time and size of BN-Index

Fig. 9 The graph exploration in partial evaluation on LUBM datasets

767World Wide Web (2023) 26:751–771

1 3

query nodes, the number of candidate sets also rises, leading to more repetitive partial eval-
uation results. Therefore, the IBN-Index can be affected on more candidate sets resulting in
a better pruning efficiency. (2) As the length of the result of partial evaluation expands, the
candidate nodes are more likely to be pure internal nodes that can be filtered by IBN-Index.

Exp 4. Efficiency of BN-Index Based Optimization. Although gStoreD already has a
partial match filtering strategy, the BN-Index-based method could have the same filter-
ing effect and even higher efficiency than gStoreD. As shown in Fig. 9, the efficiency of
graph exploration during the partial evaluation of the BN-Index-based method (the blue
lines) exceeds gStoreD in most cases, and the strength is expanded as the scale of datasets
grows. The reason is that when dealing with a large number of candidate vertices, gStoreD
collects all the internal candidate vertices from all slave sites and transmits them back to
all sites, which enlarges the searching space of graph exploration seriously. However, BN-
Index will not enlarge the candidate sets.

Exp 5. Scalability. To prove the scalability of the IBN-Index and BN-Index based meth-
ods, the whole query times of the improved partial evaluation and assembly method over
eight queries are presented in Fig. 7b. It is obvious that the query time of our method is
nearly linear with the scale of the datasets. Unfortunately, all runs of query Q3, including
gStoreD and the IBN-Index and BN-Index based methods, are failed on the LUBM30 data-
set due to the limited memory.

8 Conclusion

In this paper, we proposed an inner boundary node index-based method and a boundary
node index-based method to improve the computing efficiency of the subgraph matching
queries in distributed settings based on the partial evaluation and assembly framework.
Moreover, we also proved that the IBN-Index and BN-Index are both time-efficient and
space-effective. The extensive experimental results on benchmark datasets verified the effi-
ciency and scalability of the proposed method, which clearly outperforms gStoreD when
large-scale intermediate results need to be processed.

Appendix:: Workload Queries on LUBM

The query workload (Q1 ∼ Q8) designed on LUBM are listed as follows:
PREFIX ub: 〈 http:// swat. cse. lehigh. edu/ onto/ univ- bench. owl#〉
PREFIX rdf: 〈 http:// www. w3. org/ 1999/ 02/ 22- rdf- syntax- ns#〉

Q1: SELECT ? X ? Y ? Z ?d WHERE{ ? X ub:memberOf ? Z . ? Z ub:subOrganizationOf
? Y . ?d ub:undergraduateDegreeFrom ? Y }
Q2: SELECT ? X ? Y ? Z ?d WHERE{ ? X ub:memberOf ? Z . ? Z ub:subOrganizationOf
? Y . ?d ub:mastersDegreeFrom ? Y . }

768 World Wide Web (2023) 26:751–771

http://swat.cse.lehigh.edu/onto/univ-bench.owl∖#
http://www.w3.org/1999/02/22-rdf-syntax-ns∖#

1 3

Q3: SELECT ? X ? Y ? Z ?d ?c WHERE{ ? X ub:memberOf ? Z . ? Z
ub:subOrganizationOf ? Y . ?d ub:undergraduateDegreeFrom ? Y . ?d ub:takesCourse
?c . }
Q4: SELECT ? X ? Y ? Z ?d ?c WHERE{ ? X ub:memberOf ? Z . ? Z
ub:subOrganizationOf ? Y . ?d ub:mastersDegreeFrom ? Y . ?d ub:teacherOf ?c . }
Q5: SELECT ? X ? Y ? Z ?d ?c ?t WHERE{ ? X ub:memberOf ? Z . ? Z
ub:subOrganizationOf ? Y . ?d ub:undergraduateDegreeFrom ? Y . ?d ub:takesCourse
?c . ?t ub:teachingAssistantOf ?c . }
Q6: SELECT ? X ? Y ? Z ?d ?c ?t WHERE{ ? X ub:memberOf ? Z . ? Z
ub:subOrganizationOf ? Y . ?d ub:mastersDegreeFrom ? Y . ?d ub:teacherOf ?c . ?t
ub:teachingAssistantOf ?c . }
Q7: SELECT ? X ? Y ? Z ?d ?p ?c ?t WHERE{ ? X ub:advisor ?p . ? X
ub:memberOf ? Z . ? Z ub:subOrganizationOf ? Y . ?d ub:mastersDegreeFrom ? Y .
?d ub:takesCourse ?c . ?t ub:teachingAssistantOf ?c . }
Q8: SELECT ? X ? Y ? Z ?d ?c ?t ?p WHERE{ ? X ub:advisor ?p . ? X ub:memberOf
? Z . ? Z ub:subOrganizationOf ? Y . ?d ub:mastersDegreeFrom ? Y . ?d ub:teacherOf
?c . ?t ub:teachingAssistantOf ?c . }

Acknowledgments This work is expanded on the optimal subgraph matching queries over distrib-
uted knowledge graphs based on partial evaluation [30], and is supported by National Key Research and
Development Program of China (2019YFE0198600); the National Natural Science Foundation of China
(61972275), partially supported by Australian Research Council Linkage Project (LP180100750).

Declarations

Conflict of Interests The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Wang, X., Zou, L., Wang, C., Peng, P., Feng, Z.: Research on knowledge graph data management: a
survey. J. Softw. 30(7), 2140 (2019)

 2. Consortium, W.W.W., et al.: Sparql 1.1 overview (2013)
 3. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. In: International Semantic

Web Conference, pp. 30–43. Springer (2006)
 4. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases.

In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, pp. 77–90 (1977)
 5. Ren, X., Wang, J., Han, W.-S., Yu, J.X.: Fast and robust distributed subgraph enumeration. arXiv:1901.

07747 (2019)
 6. Jones, N.D.: An introduction to partial evaluation. ACM Computing Surveys (CSUR) 28(3), 480–503

(1996)
 7. Fan, W., Wang, X., Wu, Y.: Performance guarantees for distributed reachability queries. arXiv:1208.

0091 (2012)

769World Wide Web (2023) 26:751–771

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1901.07747
http://arxiv.org/abs/1901.07747
http://arxiv.org/abs/1208.0091
http://arxiv.org/abs/1208.0091

1 3

 8. Wang, X., Wang, J., Zhang, X.: Efficient distributed regular path queries on rdf graphs using partial
evaluation. In: Proceedings of the 25th ACM International on Conference on Information and Knowl-
edge Management, pp. 1933–1936 (2016)

 9. Wang, X., Wang, S., Xin, Y., Yang, Y., Li, J., Wang, X.: Distributed pregel-based provenance-aware
regular path query processing on rdf knowledge graphs. World Wide Web 23(3), 1465–1496 (2020)

 10. Peng, P., Zou, L., Özsu, M.T., Chen, L., Zhao, D.: Processing sparql queries over distributed rdf
graphs. The VLDB Journal 25(2), 243–268 (2016)

 11. Peng, P., Zou, L., Guan, R.: Accelerating partial evaluation in distributed sparql query evaluation. In:
2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 112–123. IEEE (2019)

 12. Ge, Y.-F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: Mdde: multitasking distributed differential evo-
lution for privacy-preserving database fragmentation. The VLDB Journal, pp. 1–19 (2022)

 13. Ge, Y.-F., Yu, W.-J., Cao, J., Wang, H., Zhan, Z.-H., Zhang, Y., Zhang, J.: Distributed memetic algo-
rithm for outsourced database fragmentation. IEEE Trans. Cybern. 51(10), 4808–4821 (2020)

 14. Rohloff, K., Schantz, R. E.: Clause-iteration with mapreduce to scalably query datagraphs in the shard
graph-store. In: Proceedings of the Fourth International Workshop on Data-intensive Distributed Com-
puting, pp. 35–44 (2011)

 15. Husain, M., McGlothlin, J., Masud, M. M., Khan, L., Thuraisingham, B. M.: Heuristics-based query
processing for large rdf graphs using cloud computing. IEEE Trans. Knowl. Data Eng. 23(9), 1312–
1327 (2011)

 16. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for web scale rdf data.
Proceedings of the VLDB Endowment 6(4), 265–276 (2013)

 17. Buneman, P., Cong, G., Fan, W., Kementsietsidis, A.: Using partial evaluation in distributed query
evaluation. In: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 211–
222 (2006)

 18. Cong, G., Fan, W., Kementsietsidis, A., Li, J., Liu, X.: Partial evaluation for distributed xpath query
processing and beyond. ACM Transactions on Database Systems (TODS) 37(4), 1–43 (2012)

 19. Ma, S., Cao, Y., Huai, J., Wo, T.: Distributed graph pattern matching. In: Proceedings of the 21st Inter-
national Conference on World Wide Web, pp. 949–958 (2012)

 20. O’Neil, P. E.: The sb-tree: an index-sequential structure for high-performance sequential access. Acta
Informatica 29(3), 241–265 (1992)

 21. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management.
Proceedings of the VLDB Endowment 1 (1), 1008–1019 (2008)

 22. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. Proceedings of the VLDB Endowment
1(1), 647–659 (2008)

 23. Deppisch, U.: S-tree: a dynamic balanced signature index for office retrieval. In: Proceedings of the 9th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 77–87 (1986)

 24. Zou, L., Mo, J., Chen, L., Özsu, M.T.: Zhao, d.: gstore: answering sparql queries via subgraph match-
ing. Proceedings of the VLDB Endowment 4 (8), 482–493 (2011)

 25. He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: 22nd International Confer-
ence on Data Engineering (ICDE’06), pp. 38–38. IEEE (2006)

 26. Zhao, P., Han, J.: On graph query optimization in large networks. Proceedings of the VLDB Endow-
ment 3(1-2), 340–351 (2010)

 27. Sasaki, Y., Fletcher, G., Onizuka, M.: Structural indexing for conjunctive path queries. arXiv:2003.
03079 (2020)

 28. Wang, X., Chai, L., Xu, Q., Yang, Y., Li, J., Wang, J., Chai, Y.: Efficient subgraph matching on large
rdf graphs using mapreduce. Data Sci. Eng. 4(1), 24–43 (2019)

 29. Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge base systems. Journal of Web
Semantics 3(2-3), 158–182 (2005)

 30. Xing, J., Liu, B., Li, J., Choudhury, F.M., Wang, X.: Optimal subgraph matching queries over distrib-
uted knowledge graphs based on partial evaluation. In: International Conference on Web Information
Systems Engineering, pp. 274–289. Springer (2021)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

770 World Wide Web (2023) 26:751–771

http://arxiv.org/abs/2003.03079
http://arxiv.org/abs/2003.03079

1 3

Authors and Affiliations

Yanyan Song1 · Yuzhou Qin1 · Wenqi Hao1 · Pengkai Liu1 · Jianxin Li2 ·
Farhana Murtaza Choudhury3 · Xin Wang1 · Qingpeng Zhang4

 Yanyan Song
 songyanyan1895@tju.edu.cn

 Yuzhou Qin
 yuzhou_qin@tju.edu.cn

 Wenqi Hao
 haowenqi@tju.edu.cn

 Pengkai Liu
 liupengkai@tju.edu.cn

 Jianxin Li
 jianxin.li@deakin.edu.cn

 Farhana Murtaza Choudhury
 farhana.choudhury@unimelb.edu.au

 Qingpeng Zhang
 qingpeng.zhang@cityu.edu.hk

1 College of Intelligence and Computing, Tianjin University, Tianjin, China
2 School of Information Technology, Deakin University, Melbourne, Australia
3 School of Computing and Information Systems, The University of Melbourne, Melbourne,

Australia
4 School of Data Science, City University of Hong Kong, Hong Kong, China

771World Wide Web (2023) 26:751–771

http://orcid.org/0000-0001-9651-0651

	Optimizing subgraph matching over distributed knowledge graphs using partial evaluation
	Abstract
	1 Introduction
	2 Related work
	2.1 MapReduce-based graph systems
	2.2 Specialized RDF systems
	2.3 Graph indexing

	3 Preliminaries
	4 Overview
	5 Inner boundary node-based algorithm
	5.1 Inner boundary node
	5.2 IBN-index based partial evaluation

	6 Filter local partial matches with boundary node index
	7 Experimental evaluation
	7.1 Datasets and queries
	7.2 Experimental results

	8 Conclusion
	Acknowledgments
	References

