Skip to main content
Log in

HWOA: an intelligent hybrid whale optimization algorithm for multi-objective task selection strategy in edge cloud computing system

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Edge computing is a popular computing modality that works by placing computing resources as close as possible to the sensor data to relieve the burden of network bandwidth and data centers in cloud computing. However, as the volume of data and the scale of tasks processed by edge terminals continue to increase, the problem of how to optimize task selection based on execution time with limited computing resources becomes a pressing one. To this end, a hybrid whale optimization algorithm (HWOA) is proposed for multi-objective edge computing task selection. In addition to the execution time of the task, economic profits are also considered to optimize task selection. Specifically, a fuzzy function is designed to address the uncertainty of task’s economic profits and execution time. Five interactive constraints among tasks are presented and formulated to improve the performance of task selection. Furthermore, some improved strategies are designed to solve the problem that the whale optimization algorithm (WOA) is subject to local optima entrapment. Finally, an extensive experimental assessment of synthetic datasets is implemented to evaluate the multi-objective optimization performance. Compared with the traditional WOA, the diversity metric (Δ-spread), the hypervolume (HV) and other evaluation metrics are significantly improved. The experiment results also indicate the proposed approach achieves remarkable performance compared with other competitive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

    Article  Google Scholar 

  2. Shi, W., Jie, C., Quan, Z., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  3. Kong, L., Wang, L., Gong, W., Yan, C., Duan, Y., Qi, L.: Lsh-aware multitype health data prediction with privacy preservation in edge environment. World Wide Web:1–16 (2021)

  4. Cen, C., Li, K., Ouyang, A., Zeng, Z., Li, K.: Gflink: an in-memory computing architecture on heterogeneous cpu-gpu clusters for big data. IEEE Trans. Parallel Distrib. Syst. 29(6), 1275–1288 (2018)

    Article  Google Scholar 

  5. Wang, X., Yang, L. T., Wang, Y., Ren, L., Deen, M.J.: Adtt: a highly efficient distributed tensor-train decomposition method for iiot big data. IEEE Trans. Industr. Inform. 17(3), 1573–1582 (2021)

    Article  Google Scholar 

  6. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39 (2017)

    Article  Google Scholar 

  7. Alves, M.P., Delicato, F.C., Santos, I.L., Pires, P.F.: Lw-coedge: a lightweight virtualization model and collaboration process for edge computing. World Wide Web 23(2), 1127–1175 (2020)

    Article  Google Scholar 

  8. Zhou, X., Delicato, F.C., Wang, I.K., Huang, R.: Smart computing and cyber technology for cyberization. World Wide Web 23(2), 1089–1100 (2020)

    Article  Google Scholar 

  9. Ren, L., Liu, Y., Wang, X., Lu, J., Deen, M.J.: Cloud–edge-based lightweight temporal convolutional networks for remaining useful life prediction in iiot. IEEE Internet of Things J. 8(16), 12578–12587 (2020)

    Article  Google Scholar 

  10. Yan, C., Zhang, Y., Zhong, W., Zhang, C., Xin, B.: A truncated svd-based arima model for multiple qos prediction in mobile edge computing. Tsinghua Sci. Technol. 27(2), 315–324 (2022)

    Article  Google Scholar 

  11. Kwak, J., Kim, Y., Lee, J., Chong, S.: Dream: dynamic resource and task allocation for energy minimization in mobile cloud systems. IEEE J. Sel. Areas Commun. 33(12), 2510–2523 (2015)

    Article  Google Scholar 

  12. Sardellitti, S., Scutari, G., Barbarossa, S.: Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Trans. Signal Inf. Process. Netw. 1(2), 89–103 (2015)

    MathSciNet  Google Scholar 

  13. You, C., Huang, K., Chae, H., Kim, B.H.: Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Trans. Wirel. Commun. 16 (3), 1397–1411 (2016)

    Article  Google Scholar 

  14. Jiang, Y., Ge, H., Wan, C., Fan, B., Yan, J.: Pricing-based edge caching resource allocation in fog radio access networks. Intell. Converged Netw. 1(3), 221–233 (2020)

    Article  Google Scholar 

  15. Chen, M., Hao, Y.: Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J. Sel. Areas Commun.:587–597 (2018)

  16. Liu, Y., Lee, M.J., Zheng, Y.: Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system. IEEE Trans. Mob. Comput. 15(10), 1536–1233 (2016)

    Article  Google Scholar 

  17. Yang, B., Chai, W.K., Pavlou, G., Katsaros, K.V.: Seamless support of low latency mobile applications with nfv-enabled mobile edge-cloud. In: 2016 5th IEEE international on cloud networking, pp. 136–141 (2016)

  18. Psychas, K., Ghaderi, J.: Scheduling jobs with random resource requirements in computing clusters. In: Proceedings of the IEEE INFOCOM conference on computer communications, pp. 2269–2277 (2019)

  19. Chen, C., Li, K., Ouyang, A., Tang, Z., Li, K.: Gpu-accelerated parallel hierarchical extreme learning machine on flink for big data. IEEE Trans. Syst. Man Cybern. Syst.:1–14 (2017)

  20. Wang, X., Yang, L. T., Song, L., Wang, H., Deen, J.: A tensor-based multi-attributes visual feature recognition method for industrial intelligence. IEEE Trans. Industr. Inf. 17(3), 2231–2241 (2020)

    Article  Google Scholar 

  21. Xu, X., Li, H., Xu, W., Liu, Z., Yao, L., Dai, F.: Artificial intelligence for edge service optimization in internet of vehicles: a survey. Tsinghua Sci. Technol. 27(2), 270–287 (2022)

    Article  Google Scholar 

  22. Zhang, Y., Zhang, H., Cosmas, J., Jawad, N., Ali, K., Meunier, B., Kapovits, A., Huang, L. K., Li, W., Shi, L., Zhang, X., Wang, J., Koffman, I., Robert, M., Zarakovitis, C.C.: Internet of radio and light: 5g building network radio and edge architecture. Intell. Converged Netw. 1(1), 37–57 (2020)

    Article  Google Scholar 

  23. Yuan, L., He, Q., Tan, S., Li, B., Yu, J., Chen, F., Jin, H., Yang, Y.: Coopedge: a decentralized blockchain-based platform for cooperative edge computing. In: Proceedings of the Web 2021, pp. 2245–2257 (2021)

  24. Tirkolaee, E.B., Goli, A., Hematian, M., Sangaiah, A.K., Han, T.: Multi-objective multi-mode resource constrained project scheduling problem using pareto-based algorithms. Computing 101(6), 547–570 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petchrompo, S., Wannakrairot, A., Parlikad, A.K.: Pruning pareto optimal solutions for multi-objective portfolio asset management. Eur. J. Oper. Res.:203–220 (2021)

  26. Elsisy, M.A., El Sayed, M.A., Abo-Elnaga, Y.: A novel algorithm for generating pareto frontier of bi-level multi-objective rough nonlinear programming problem. Ain Shams Eng. J. 12(2), 2125–2133 (2021)

    Article  Google Scholar 

  27. Nath, S., Wu, J.: Deep reinforcement learning for dynamic computation offloading and resource allocation in cache-assisted mobile edge computing systems. Intell. Converged Netw. 1(2), 181–198 (2020)

    Article  Google Scholar 

  28. Xu, X., Zhang, X., Gao, H., Xue, Y., Dou, W.: Become: blockchain-enabled computation offloading for iot in mobile edge computing. IEEE Trans. Industr. Inf. 16(6), 4187–4195 (2019)

    Article  Google Scholar 

  29. Wang, F., Wang, L., Li, G., Wang, Y., Lv, C., Qi, L.: Edge-cloud-enabled matrix factorization for diversified apis recommendation in mashup creation. World Wide Web:1–21 (2021)

  30. Li, X.: A computing offloading resource allocation scheme using deep reinforcement learning in mobile edge computing systems. J. Grid Comput. 19(3), 1–12 (2021)

    Article  Google Scholar 

  31. He, Y., Chen, Y., Lu, J., Chen, C., Wu, G.: Scheduling multiple agile earth observation satellites with an edge computing framework and a constructive heuristic algorithm. J. Syst. Archit. 95, 55–66 (2019)

    Article  Google Scholar 

  32. Wang, J., Wang, L.: Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles. J. Ambient. Intell. Humaniz. Comput.:1–11 (2021)

  33. Celik, E., Dal, D.: A novel simulated annealing-based optimization approach for cluster-based task scheduling. Clust. Comput. 24, 2927–2956 (2021)

    Article  Google Scholar 

  34. Huang, J., Li, S., Chen, Y.: Revenue-optimal task scheduling and resource management for iot batch jobs in mobile edge computing. Peer-to-Peer Netw. Appl. 13, 1776–1787 (2020)

    Article  Google Scholar 

  35. Feng, S., Chen, Y., Zhai, Q., Huang, M., Shu, F.: Optimizing computation offloading strategy in mobile edge computing based on swarm intelligence algorithms. EURASIP J. Adv. Signal Process. 2021(1), 1–15 (2021)

    Article  Google Scholar 

  36. Guo, X.: Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm. AEJ - Alexandria Eng. J. 60(6), 5603–5609 (2021)

    Article  Google Scholar 

  37. Alrezaamiri, H., Ebrahimnejad, A., Motameni, H.: Software requirement optimization using a fuzzy artificial chemical reaction optimization algorithm (2018)

  38. Wang, X., Duan, L.: Dynamic pricing and capacity allocation of uav-provided mobile services. In: Proceedings of the IEEE INFOCOM Conference on Computer Communications, pp. 1855–1863. IEEE (2019)

  39. Dai, Y., Xu, D., Zhang, K., Maharjan, S., Zhang, Y.: Deep reinforcement learning and permissioned blockchain for content caching in vehicular edge computing and networks. IEEE Trans. Veh. Technol. 69(4), 4312–4324 (2020)

    Article  Google Scholar 

  40. Wang, Y., Ru, Z.Y., Wang, K., Huang, P.Q.: Joint deployment and task scheduling optimization for large-scale mobile users in multi-uav-enabled mobile edge computing. IEEE Trans. Cybern. 50(9), 3984–3997 (2019)

    Article  Google Scholar 

  41. Toth, P.: Dynamic programming algorithms for the zero-one knapsack problem. Computing 25(1), 29–45 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jackson, D., Belakaria, S., Cao, Y., Doppa, J.R., Lu, X.: Machine learning enabled fast multi-objective optimization for electrified aviation power system design. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp. 6385–6390. IEEE (2020)

  43. Chen, C., Li, K., Teo, S.G., Zou, X., Li, K., Zeng, Z.: Citywide traffic flow prediction based on multiple gated spatio-temporal convolutional neural networks. ACM Trans. Knowl Discov. Data 14(4), 1–23 (2020)

    Article  Google Scholar 

  44. Chen, C., Li, K., Wei, W., Zhou, J.T., Zeng, Z.: Hierarchical graph neural networks for few-shot learning. IEEE Trans. Circuits Syst. Video Technol. 32(1), 240–252 (2021)

    Article  Google Scholar 

  45. Pu, B., Li, K., Li, S., Zhu, N.: Automatic fetal ultrasound standard plane recognition based on deep learning and iiot. IEEE Trans. Industr. Inf. 17 (11), 7771–7780 (2021)

    Article  Google Scholar 

  46. Zhao, Y.T., Chen, J.C., Wei-Gang, L.I.: Multi-objective grey wolf optimization hybrid adaptive differential evolution mechanism. Comput. Sci. (2019)

  47. Akay, B.: Artificial bee colony – modifications and an application to software requirements selection swarm intelligence algorithms (2020)

  48. Zhou, S.Z., Zhan, Z.H., Chen, Z.G., Kwong, S., Zhang, J.: A multi-objective ant colony system algorithm for airline crew rostering problem with fairness and satisfaction. IEEE Trans. Intell. Transp. Syst. 22(11), 6784–6798 (2021)

    Article  Google Scholar 

  49. Fang, W., Zhang, Q., Sun, J., Wu, X.J.: Mining high quality patterns using multi-objective evolutionary algorithm. IEEE Trans. Knowl. Data Eng. (2020)

  50. Sun, J., Li, H., Zhang, Y., Xu, Y., Wei, Z.: Multi-objective task scheduling for energy-efficient cloud implementation of hyperspectral image classification. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 14, 587–600 (2020)

    Article  Google Scholar 

  51. Pitangueira, A.M., Tonella, P., Susi, A., Maciel, R., Barros, M.: Risk-aware multi-stakeholder next release planning using multi-objective optimization. In: Proceedings of the international working conference on requirements engineering: foundation for software quality, pp. 3–18 (2016)

  52. Zhang, Y., Li, H., Bu, R., Song, C., Chen, T.: Fuzzy multi-objective requirements for nrp based on particle swarm optimization. In: Proceedings of the international conference on artificial intelligence and security, pp. 143–155. Springer (2020)

  53. Hudaib, A., Masadeh, R., Alzaqebah, A.I.: Wgw: A hybrid approach based on whale and grey wolf optimization algorithms for requirements prioritization. Adv. Syst. Sci. Appl 2(576), 63–83 (2018)

    Google Scholar 

  54. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6 (2), 182–197 (2002)

    Article  Google Scholar 

  55. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  56. Agrawal, R.K., Kaur, B., Sharma, S.: Quantum based whale optimization algorithm for wrapper feature selection. Appl. Soft Comput. 106092, 89 (2020)

    Google Scholar 

  57. Aljarah, I., Faris, H., Mirjalili, S.: Optimizing connection weights in neural networks using the whale optimization algorithm. Soft. Comput. 22(1), 1–15 (2018)

    Article  Google Scholar 

  58. Pham, Q.V., Mirjalili, S., Kumar, N., Alazab, M., Hwang, W.J.: Whale optimization algorithm with applications to resource allocation in wireless networks. IEEE Trans. Veh. Technol. 69(4), 4285–4297 (2020)

    Article  Google Scholar 

  59. Sun, Y., Chen, Y.: Multi-population improved whale optimization algorithm for high dimensional optimization. Appl. Soft Comput.:107854 (2021)

  60. Chakraborty, S., Saha, A.K., Sharma, S., Mirjalili, S., Chakraborty, R.: A novel enhanced whale optimization algorithm for global optimization. Comput. Ind. Eng 153, 107086 (2021)

    Article  Google Scholar 

  61. Zhang, D.Y., Wang, D.: An integrated top-down and bottom-up task allocation approach in social sensing based edge computing systems. In: Proceedings of the IEEE INFOCOM Conf. Comput. Com., pp. 766–774 (2019)

  62. Luo, R.J., Ji, S.F., Zhu, B.L.: A pareto evolutionary algorithm based on incremental learning for a kind of multi-objective multidimensional knapsack problem. Comput. Ind. Eng 135(SEP.), 537–559 (2019)

    Article  Google Scholar 

  63. Nouioua, M., Li, Z.: New Binary Artificial Bee Colony for the 0-1 Knapsack Problem, pp 153–165. Springer, Cham (2018)

    Google Scholar 

  64. Zhi-Yong, L.I., Liang, M.A., Zhang, H.Z., Management, S.O.: Adaptive cellular particle swarm algorithm for solving 0/1 knapsack problem. Comput. Eng.:198–203 (2014)

  65. Fister, I., Fister, D., Yang. S.: A hybrid bat algorithm. Elektrotehniski Vestnik/electrotechnical Rev. vol. 80(1) (2013)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61762092); the Open Foundation of the Key Laboratory in Software Engineering of Yunnan Province (Grant No. 2020SE303); the Major Science and Technology Project of Precious Metal Materials Genome Engineering in Yunnan Province (Grant No. 2019ZE001-1 and 202002AB080001-6); Yunnan provincial major science and technology: Research and Application of key Technologies for Resource Sharing and Collaboration Toward Smart Tourism (Grant No. 202002AD080047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaokang Wang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Resource Management at the Edge for Future Web, Mobile and IoT Applications

Guest Editors: Qiang He, Fang Dong, Chenshu Wu, and Yun Yang

Appendices

Appendix: A

Details of data ECTD1 and ECTD2 are shown in Tables 7 and 8.

Table 7 The details of ECTD1
Table 8 The details of ECTD2

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Yang, X., Pu, B. et al. HWOA: an intelligent hybrid whale optimization algorithm for multi-objective task selection strategy in edge cloud computing system. World Wide Web 25, 2265–2295 (2022). https://doi.org/10.1007/s11280-022-01082-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-022-01082-7

Keywords

Navigation