
Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

Model transformations in the UPES/UPSoC development
process for embedded systems

Elvinia Riccobene · Patrizia Scandurra

Received: date / Accepted: date

Abstract Model Based Development (MBD) aims at

combining modeling languages with model transform-

ers and code generators. Modeling languages, like pro-

�les of the Uni�ed Modeling Language (UML), are in-

creasingly being adopted for speci�c domains of inter-

est to alleviate the complexity of platforms and express

domain concepts e�ectively. Moreover, system develop-

ment processes based on automatic model transforma-

tions are widely required to improve the productivity

and the quality of the developed systems. In this pa-

per, we show how MBD principles and automatic model

transformations provide the basis for the development

process UPES and its sub-process UPSoC. They have

been de�ned to foster in a systematic and seamless man-

ner a model-based design methodology based on the

UML2 and on UML pro�les for the C/SystemC pro-

gramming languages, which we developed to improve

the current industrial system design �ow in the Em-

bedded Systems and System-on-Chip area.

Keywords Model Based Development (MBD) · Model

transformations · Uni�ed Modeling Language (UML) ·
SystemC · Embedded system design

This work is supported in part by the project Model-driven
methodologies and techniques for embedded systems design and
analysis based on UML, Abstract State Machines, and SystemC
at STMicroelectronics, AST R&I of Agrate Brianza (MI), Italy.

Elvinia Riccobene
Università di Milano, Dip. di Tecnologie dell'Informazione, Italy
Tel.: +39-02-50330055
Fax: +39-02-50330010
E-mail: riccobene@dti.unimi.it

Patrizia Scandurra
Università di Milano, Dip. di Tecnologie dell'Informazione, Italy
Tel.: +39-02-50330025
Fax: +39-02-50330010
E-mail: scandurra@dti.unimi.it

1 Introduction

Model Based Development (MBD) is an emerging para-

digm to software production that combines domain-

speci�c modeling languages (DSMLs) with model trans-

formers, analyzers, and generators. Metamodel-based

modeling languages, like pro�les or extensions of the

OMG standard Uni�ed Modeling Language (UML), are

increasingly being de�ned and adopted for speci�c do-

mains of interest (telecommunications, embedded sys-

tems, System-on-Chip, real time computing, aerospace,

automotive, etc.) addressing the inability of third-ge-

neration languages to alleviate the complexity of plat-

forms and express domain concepts e�ectively [35].

MBD emphasizes that software systems should be

designed at a high abstraction level and then incremen-

tally re�ned to contain more speci�c and detailed infor-

mation, ending with the implementation of the system

in a given platform. MBD principles propose the au-

tomation of parts of these re�nements through auto-

matic model transformations in order to increase both

the productivity and the quality of the developed sys-

tems. Model transformations are currently a key re-

search topic in the MBD context. The main research

interest lies on vertical transformations, i.e., transfor-

mations between models of di�erent levels of abstrac-

tion such as PIM (platform independent model) level,

PSM (platform speci�c model) level, and code level of

the OMG Model-driven Architecture (MDA) [17]. An-

other important aspect are horizontal transformations,

where models are translated into other models on the

same level of abstraction.

In [31], we presented a MBD-based methodology

for embedded systems that we de�ned according to the

platform-based design principles [45,15] and by exploit-

ing the OMG MDA as framework for MBD. The de-

2

sign methodology is based on the UML2, on a SystemC

UML pro�le for the hardware parts, and on a multi-

thread C UML pro�le for the software parts. Both the

two UML pro�les are consistent sets of modeling con-

structs designed to lift, respectively, constructs (both

structural and behavioral) of the SystemC and C cod-

ing languages to the UML modeling level. The design

methodology, supported by a modeling environment, al-

lows modeling the system at higher levels of abstrac-

tion from a functional level to Register Transfer Level

(RTL), handling both the hardware architecture with

the Hardware-dependent software (HdS) � i.e. all soft-

ware that is directly dependent on the underlying hard-

ware � and the (hardware-independent) application soft-

ware. In [33], we presented the development process

UPES (Uni�ed Process for Embedded Systems), as ex-

tension of the well-known software engineering UP (Uni-

�ed Process) [2] from the authors of the UML, to foster

our design methodology. UPES includes a sub-process,

called UPSoC (Uni�ed Process for SoC), which com-

bines all involved notations together in a systematic

and seamless manner for the HdS re�nement �ow.

In this paper, we show how the UPES/UPSoC pro-

cesses are based on vertical and horizontal model trans-

formations from abstract models toward re�ned (but

still abstract) models and/or software code models. For

the UPSoC sub-process, we show how well-established

abstraction/re�nement patterns coming from hardware

or system engineering and till now only used at code

level, can be managed as model-to-model transforma-

tion steps and therefore applied at UML level, by the

use of the SystemC UML pro�le, along the modeling

process from a high functional level model down to a

RTL model. We also show how MBD principles are ap-

plied to provide the automation of model-to-code trans-

formations from abstract UML models toward detailed

SystemC code.

The remainder of this paper is organized as follows.

Sections 2 and 3 describe the design process UPES and

its sub-process UPSoC, respectively. Sect. 4 gives an

overview of the notations adopted in the UPSoC pro-

cess, while Sect. 5 provides a brief description of the

design environment. Sect. 6 presents automatic model

transformations used in the UPSoC process. Sect. 7 pro-

vides some related work. Sect. 8 concludes the paper

and sketches some future directions of our contribution.

2 The UPES (Uni�ed Process for ES)

The UPES process drives the designers during the UML

modeling activity from the analysis of the informal re-

quirements to a high-level functional model of the sys-

tem, down to a RTL model, by supporting current in-

dustry best practice and the platform-based design prin-

ciples [45,15]. The UPES process is an MDA style of

a Y-development cycle (see Fig. 1). It consists on one

side of the conventional UP process for software devel-

opment to de�ne a �rst executable model of the system

(the Application model or System model), and on the

other side of the selection process of an available hard-

ware platform (the Platform model) modeled with an

appropriate language (e.g., a particular UML extension

for SoC design).

Fig. 1 The UPES Y-chart

The intersection, which is intended as a model weav-

ing operation in the model-based context, is the map-

ping of the application model on the given platform

model to establish semantic links between models at

speci�c join points. As input, this task requires also a

reference model of the mapping (the Mapping model or

Weaving model) to try, which is speci�ed in terms of

UML component and deployment diagrams to denote

and annotate the partitioning of the original system

in HW and SW components. This mapping model es-

tablishes the relationships (join points) of the platform

resources and services with the application-level func-

tional components. The UPSoC sub-process, an UP ex-

tension for SoC design (see next section), is then fol-

lowed to accurately re�ne the embedded system plat-

form from a functional level to the RTL level.

3 The UPSoC (Uni�ed Process for SoC)

The UPSoC drives system designers during the re�ne-

ment of the embedded software, after the mapping pha-

se, and therefore after the system components assigned

to the HW partition have been mapped directly onto

the HW resources of the selected platform. The UPSoC

can be also adopted in a stand-alone way also by plat-

3

Fig. 2 The UPSoC � L- Design, Implementation and Testing work�ow

form providers to deliver o�-line models of platforms1

by designing from scratch an abstract hardware plat-

form � from the analysis of informal requirements about

the architecture elements (HW resources and process-

ing elements) � or to directly design it at a desired level

of abstraction. The model of this generic platform could

be then reused and targeted accordingly to implement

a speci�c hardware platform where to embed a given

system. In both cases, by using e.g. the UML pro�le

for SystemC [34,30] that provides in a graphical way

all modelling elements for the design of the hardware

components, the hardware platform can be modelled at

di�erent abstraction levels: functional untimed/timed,

transactional (TLM), behavioral, bus cycle accurate,

and RTL (see Fig. 1).

The UPSoC adapts the UP to the SoC domain by

extending the design and implementation work�ows,

while keeping the use case and analysis work�ows2.

Useful considerations about use case analysis in the

context of systems engineering and SoC design can be

found in [43]. The design and implementation models

in the UPSoC can be de�ned at di�erent abstraction

levels and with di�erent modeling guidelines. Fig. 2

shows the work�ow schema for these models using the

SPEM [38] notation. The letter L in the �gure denotes

a speci�c level of abstraction from the set {functional,

TLM, Behavioral, BCA, RTL}; therefore, there are �ve

design/implementation work�ows. As in the UP, also

a Testing model (not shown in the �gure) can be pro-

1 Detailed platform models comprise a structural view (pro-
vided, e.g., by UML composite structure diagrams) and a be-
havioral one. Component and deployment diagrams can be used
then to provide a black-box view of the API layer and the micro-
architecture layer, respectively.
2 Each UP phase (Inception, Elaboration, Construction, and

Transition) usually consists of a number of iterations. During
each iteration, several activities, called work�ows, are performed
in parallel. The core work�ows of UP are requirements (or use
cases), analysis, design, implementation and testing.

vided by creating test cases and test procedures housed

outside of the modeling tool, but traced back to the

models.

From the TLM level to the RTL, precious re�ne-

ment guidelines [40,6] can be followed to bridge re�ned

elements with more abstract elements like those regard-

ing the introduction of wrappers and adaptors, and to

restrict the design for the hardware modeling. A concise

description of each of the �ve work�ows follows.

Functional design/implementation.After analysis,

the design phase starts by de�ning the components

of the platform as a set of UML subsystems and inter-

faces. A subsystem is a type of UML component whose

functionality is exposed to the outside environment in

the form of one or more interfaces representing oper-

ational contracts (a message-based interface communi-

cation concept). At the end of the design phase, a draft

architecture and its functionality is available.

The architectural design is performed in an incre-

mental way, by creating a subsystem that corresponds

to each analysis package (output of the analysis work-

�ow) and then re�ning those subsystems. UML package

diagrams can be used to show the subsystems. Then

details are added in each subsystem, dividing each sub-

system into a speci�cation and a realization part. The

former contains design use cases obtained by re�ning

the use cases of the corresponding analysis package.

The latter contains design classes and interfaces coming

from the analysis classes and from an analysis of the de-

sign use cases. UML class diagrams are built to show in-

terfaces, classes and relationships, and UML composite

structure diagrams to represent structural hierarchies

using parts with ports as basic structural elements, and

the notation of provided/required interfaces to denote

interface usage/realization dependencies.

The functional design is then performed by identify-

ing operations and dynamic behavior of each class. For

4

this purpose, UML state machine diagrams and UML

activity diagrams are used, while UML interaction di-

agrams are useful to get a better understanding of ob-

jects interactions. Finally, subsystems are re�ned to en-

sure they are as cohesive and loosely coupled as possi-

ble, and that they provide the functionality denoted by

their speci�cation part.

The UML model developed in the design phase cor-

responds to the initial functional untimed model of the

embedded system. It describes the pure system func-

tionality, and the structural elements do not correspond

to blocks in the physical implementation, no time in-

formation is provided, and communication is modeled

point to point. In order to make it executable and timed

� functional timed model �, the implementation phase

has to be carried out, where a precise action semantics

and time model have to be adopted. An action (or sur-

face) language can be used, supported by a proper exe-

cution engine, and the behavioral diagrams can be en-

riched with actions expressed according to the adopted

action and time semantics. Timing diagrams, and anno-

tate interaction diagrams with time-related constraints3

may be also included. Typical execution engines for the

SoC design are those used for programming languages

like C/C++, SystemC, etc. UML pro�les targeted to

these execution engines and model-to-code transforma-

tions provide painless and automatic paths toward these

environments.

Transactional design/implementation.At TLM le-

vel, the architecture is designed and validated in terms

of functionality as characterized by high level block in-

put and output events, and inter-block data transfers.

Communication details among processing elements are

separated from the details of computation. Communica-

tion is modeled by channels, while transaction requests

take place by calling interface functions of these chan-

nel elements. Transactions are protocols exchanging ab-

stract data between blocks, with associated timing in-

formation. Elements of a TLM model can correspond

or not to blocks in the physical implementation. Chan-

nels'interfaces encapsulate low-level details to enable

higher simulation speed than pin-based interfaces and

also to speed up the modeling task.

The SoC architecture is designed with IP blocks

connected via application program interfaces (APIs)

to implementation-independent high-level bus models.

System IP components and buses may be modi�ed or

replaced with greater ease than at RTL, and simulated

3 The SysML modeling language [39] and the MARTE UML
pro�le [37], e.g., provide a set of constructs for expressing time-
related aspects.

more than 1,000 times faster. Thus designers can quickly

optimize the design to achieve what works best.

To make a transactional model executable (imple-

mentation model), UML pro�les for languages as SpecC

and SystemC supporting the transaction level model

can be considered. Similar considerations apply to the

next levels.

Behavioral design/implementation.A behavioral mo-

del is pin and functionally accurate at its boundaries.

It is not cycle accurate, i.e. internal and I/O events are

not scheduled in a cycle accurate manner. There is a

certain freedom left to implement the model in a cer-

tain number of clock cycles.

BCA design/implementation.A Bus Cycle Accu-

rate model is pin accurate and functionally accurate.

It is also cycle accurate at its boundaries, i.e. in the

number of clock cycles it takes to perform its function-

ality (I/O interactions are scheduled at the proper clock

cycle, internal events are not scheduled).

RTL design/implementation.At RTL level the hard-

ware is described in terms of transfers among regis-

ters though functional units (adders, multipliers, ALUs,

etc.). The RTL model is accurate at the clock cycle

level, both at the boundaries and internally (all actions

are scheduled at the appropriate clock cycle), and also

pin accurate.

The RTL platform model serves as input to the

lower level VLSI design �ow, where logic simulation and

synthesis are performed leading to the �nal product.

4 UPSoC notations

A brief overview is provided here of the two main nota-

tions adopted in the UpSoC sub-process: the SystemC

coding language as target language of the model-to-

code transformations, and the SystemC UML pro�le as

main modeling notation used at di�erent levels of ab-

stractions and, therefore, source/target language of the

model-to-model transformations.

4.1 SystemC overview

SystemC [21,1] is an IEEE standard controlled by the

major companies in the EDA (Electronic Design Au-

tomation) industry. It is a system-level design language

intended to support the description and validation of

complex systems in an environment completely based

on the C++ programming language.

5

Fig. 3 SystemC Language Architecture

SystemC is de�ned in terms of a C++ class library,

organized according to a layered-architecture shown in

in Fig. 3 (taken from [40]). The Core Language and

Data Types are the so called core layer (or layer 0)

of the standard SystemC, and consists of the event-

based and discrete-timed SystemC simulation kernel,

the core design primitives and data types. The Prim-

itive Channels represents, instead, the layer 1 of Sys-

temC; it comes with a prede�ned set of interfaces, ports

and channels for commonly used communication mech-

anisms such as signals and �fos. Finally, the external

libraries layer on top of the layer 1 are not considered

as part of the standard SystemC language.

Fig. 4 A simpli�ed SystemC Metamodel

Figure 4 depicts a simpli�ed metamodel (an ab-

stract syntax provided in terms of a class diagram)

of the main SystemC terms and concepts. The design

of a system in SystemC is essentially given by a con-

tainment hierarchy of modules. A module is a container

class able to encapsulate structure and functionality of

hardware/software blocks. Each module may contain

variables as simple data members, ports for communi-

cation with the surrounding environment and processes

for performing module's functionality and expressing

concurrency in the system. Two kinds of processes are

available: method processes and thread processes. They

run concurrently in the design and may be sensitive to

events which are noti�ed by other processes. A port

of a module is a proxy object through which the pro-

cess accesses to a channel interface. The interface de-

�nes the set of access functions for a channel, while

the channel provides the implementation of these func-

tions to serve as a container to encapsulate the com-

munication of blocks. There are two kinds of channels:

primitive channels and hierarchical channels. Primitive

channels do not exhibit any visible structure, do not

contain processes, and cannot (directly) access other

primitive channels. A hierarchical channel is a module,

i.e., it can have structure, it can contain processes, and

it can directly access other channels.

In 2006, SystemC received a major revision (2.2)

and became IEEE Standard [1]. This last revision in-

cludes new structural and behavioural features for tran-

saction-level modeling (TLM) according to the OSCI

TLM standard.

4.2 The SystemC UML pro�le

The UML2 pro�le for SystemC [34] is a consistent set

of modelling constructs designed to lift both structural

and behavioral constructs of the SystemC coding lan-

guage (including events and time features) to the UML

modeling level.

A UML2 pro�le is a set of stereotypes. Each stereo-

type de�nes how the syntax and the semantics of an

existing UML2 construct (a class of the UML2 meta-

model) is extended for a speci�c domain terminology

or purpose. A stereotype can de�ne additional seman-

tic constraints � the well-formedness rules expressed

in the OCL (Object Constraint Language) [20] over the

base metaclass � to enforce a semantic restriction of the

extended modeling element, as well as tags to state ad-

ditional properties. Fig. 5 shows an example of stereo-

type de�nition for the SystemC sc_port together with

an example of OCL constraint. At model level, when a

stereotype is applied to a model element (an instance of

a UML metaclass), an instance of a stereotype is linked

to the model element. From a notational point of view,

the name of the stereotype is shown within a pair of

guillemets above or before the name of the model el-

ement and the eventual tagged values displayed inside

or close as name-value pairs. Examples of stereotypes

application are provided here (see Fig. 6, e.g., for the

sc_port stereotype) and in Sect. 6.1.

The SystemC UML pro�le is de�ned at two distinct

levels � the SystemC core layer (or layer 0) and the

SystemC layer of prede�ned channels, ports and inter-

faces (or layer 1) � re�ecting the layered-architecture of

SystemC.

6

Fig. 5 sc_port stereotype

Fig. 6 Modules, ports and interfaces

The core layer � the basic SystemC pro�le � is the

foundation upon which speci�c libraries of model ele-

ments or also other modeling constructs can be de�ned.

It is logically structured as follows.

A Structure and Communication part de�nes

stereotypes for the SystemC building constructs (mod-

ules, interfaces, ports and channels) for use in UML

structural diagrams like UML class diagrams and com-

posite structure diagrams. UML class diagrams are used

to de�ne modules, interfaces and channels. Fig. 6 shows

an example of a SystemC module exposing a multi-

port, an array port, and a simple port, together with

the port type and the interface de�nitions of the sim-

ple port. The internal structure of composite modules,

especially the one of the topmost level module (repre-

senting the structure of the overall system), is captured

by UML composite structure diagrams. From these di-

agrams several UML object diagrams can be created

to describe di�erent con�guration scenarios. This sep-

aration allows the (also partial) speci�cation of di�er-

ent HW platforms as instances of the same parametric

model (i.e. the composite structure diagram). Concrete

examples of composite modules are provided in Sect.

6.1.

A Behavior and Synchronization part de�nes

special state and action stereotypes which lead to an

extension of the UML state machines, the SystemC Pro-

cess State Machines [29]. This formalism has been ap-

positely included in the pro�le de�nition to model the

control �ow and the reactive behavior of SystemC pro-

cesses (methods and threads) within modules. A �nite

number of abstract behavior patterns of state machines

Fig. 7 A thread process pattern

Fig. 8 Dynamic Sensitivity of a Thread

have been identi�ed. Fig. 7 depicts one of these be-

havior patterns together with the corresponding Sys-

temC pseudo-code for a thread that: (i) is not initial-

ized, (ii) has both a static (the event list e1s, . . . , eNs)

and a dynamic sensitivity (the wait state), and (iii)

runs continuously (by the in�nite while loop). Note

that the notation used for the wait state in the pattern

in Fig. 7 stands for a shortcut to represent a generic

wait(e*) call where the event e* matches one of the

cases reported in Fig. 8. Moreover, activities a1 and

a2 stand for blocks of sequential (or not) code without

wait statements.

It should be noted that the state machine pattern

depicted in Fig. 7 can be more complex in case of one

or more wait statements are enclosed in the scope of

one or more nested control structures. In this case, as

part of the UML pro�le for SystemC, the control struc-

tures while, if, etc. need to be explicitly represented

7

Fig. 9 Conditional controls

Fig. 10 Loop controls

in terms of special stereotyped junction or choice pseu-

dostates4 combined together in order to stand out the

state-like representation of the wait calls. The condi-

tional control and loop controls, e.g., can be modeled

as shown in Fig. 9 and in Fig. Fig. 10, respectively.

These stereotypes allow us to e�ectively generate code

from state diagrams in a style that re�ects the nature of

constructs of the target implementation language, de-

spite to well know techniques (like state pattern, stable

table pattern, etc.) currently used to achieve this goal.

4 Choice pseudostates must be used in place of junction pseu-
dostates whenever the head condition of the while loop is a func-
tion of the results of prior actions performed in the same run-to-
completion step.

A Data types part de�nes a UML class library to

represent the set of SystemC data types.

In addition, prede�ned channels, ports and inter-

faces of the layer 1 of SystemC are provided either as a

UML class library, modeled with the basic stereotypes

of the SystemC core layer, or as a group of stand alone

stereotypes � the extended SystemC pro�le � specializ-

ing the basic pro�le.

An extended version of the SystemC UML pro�le

encapsulating some new structural and behavioural fea-

tures (i.e., dynamic processes and fork/join synchro-

nization mechanisms) necessary to model a TLM li-

brary conforming to the OSCI SystemC TLM library,

was presented in [3].

5 UPSoC design tool

For industrial application, the availability of appropri-

ate tool support is crucial. In order to cover the full

spectrum of the UPSoC by using C/C++ and SystemC

as action languages, we developed a design tool work-

ing as front-end for consolidated lower level co-design

tools.

Fig. 11 shows the tool architecture. Components vi-

sualized inside dashed lines are still under development.

The tool consists of two major parts: a development kit

(DK) with design and development components, and a

runtime environment (RE) represented by the SystemC

execution engine.

The DK consists of a UML2 modeler supporting the

SystemC UML pro�le, translators for the forward/re-

verse engineering to/from C/C++/SystemC, and an

abstraction/re�nement evaluator to guarantee traceabil-

ity and correctness along the re�nement process from

the high-level abstract description to the �nal imple-

mentation. A more detailed description of the tool is

provided in [32].

Fig. 11 Tool architecture

8

Fig. 12 Generate SystemC code from EA

Initially, the UML2 modeler was based on the com-

mercial Enterprise Architect (EA) tool [10] by SparxSys-

tems. Fig. 12 shows a screenshot of EA. The SystemC

data types and prede�ned channels, interfaces, and ports

are modelled with the core stereotypes, and are avail-

able in the Project View with the name SystemC_-

Layer1.

Recently, we have implemented the UML2 modeler

also in the Papyrus framework [23]. This last is an open

source Eclipse-based UML modeler which supports the

UML2 standard as de�ned by the OMG and allows the

integration of model transformation services. These last

are handled by transformation engines, like the ATL

engine [13] (the one we adopted), developed within the

Eclipse Modeling Project [12] as implementation of the

OMG QVT [27] standard.

6 UPSoC model transformations

The MDA-style separation of models of UPES/UPSoC

demands automatic model transformations as support

to evolution activities [18] in general, like re�nemen-

t/abstraction, model refactoring, model inconsistency

management, etc.

According to the classi�cation given in [8], for re�ne-

ment/abstraction purposes we identify two main kinds

of model transformations to be adopted speci�cally in

the UPSoC process:model-to-model transformations and

model-to-code transformations. They are better explained

in the following sections by providing concrete exam-

ples.

6.1 Model-to-model transformations

Model-to-model transformations of UPSoC allow model

re�nement along the (not necessarily successive) ab-

straction levels: functional, transactional, behavioral,

BCA, and RTL. These transformations must be in-

tended as vertical transformations as they imply a chan-

ge of the level of abstraction. Each model is here in-

tended as an instance of the SystemC UML pro�le meta-

model, and therefore is an implementation model with

a �xed action semantics.

In the model-to-model category, we adopt an hy-

brid approach based on both direct-manipulation and

structure-driven approach [8]. The idea is to collect

and reuse precise abstraction/re�nement transforma-

tion patterns, coming from industry best practices. The

transformation patterns are once for all proved correct

and complete, and can be used for guiding the re�ne-

ment process or for pointing out missing elements in a

re�nement.

We have implemented some of these patterns in the

EA-based environment by using the EA MDA trans-

formers, and in the Papyrus-based environment using

the ATL engine. By applying the model transforma-

tions de�ned for a given pattern, a UML system de-

sign may automatically and correctly evolve to an ab-

stract/re�ned model re�ecting the abstraction/re�ne-

ment rules de�ned for the applied pattern. Below, we

provide an example of communication re�nement from

functional level to RTL level based on model transfor-

mations.

9

Fig. 13 A producer/consumer design

Fig. 14 Producer/consumer modules communicating via a primitive FIFO

6.1.1 Communication re�nement

In general, in the re�nement process we do not only re-

�ne the model's internal structure, its timing, or the

data-types being used; we also need to think about

how components communicate with their environment.

Communication re�nement refers to mapping an ab-

stract communication protocol into an actual imple-

mentation related to a given target architecture. To

give an idea on how to perform re�nement at UML

level by model-to-model transformations, we show here

how to apply communication re�nement patterns to a

functional timed model leading to a RTL model.

We clarify the process of communication re�nement

in a general way. To this purpose, we assume to have

two high level modules M1 and M2 communicating over

a channel C via some abstract protocol. As suggested in

[40], one possible approach to re�ning this basic com-

munication scenario toward an implementation consists

of the following steps:

1. Select an appropriate communication scheme to im-

plement;

2. Replace the abstract communication channel C with

a re�ned one CRefined realizing the selected commu-

nication protocol;

3. Enable the communication of the modules M1 and

M2 over CRefined by either:

(a) wrapping CRefined in a way that the resulting

channel CWrapped provides the interfaces required

by M1 and M2 (wrapping), or

(b) re�ningM1 intoM1Refined andM2 intoM2Refined

in order their required interfaces match the ones

provided by CRefined (adapter-merging).

The two cases (not the only ones) are similar. Both

include an intermediate step to build two further mod-

ules � i.e. two hierarchical channels called adapters �

to map one interface to another: one, let us say A1, be-

tweenM1 and CRefined, and one, let us say A2, between

CRefined and M2. In the case (a), the resulting channel

CWrapped encloses CRefined and the two adapters; while,

in the case (b) these adapters are merged to the call-

ing modules M1 and M2 resulting in the re�ned mod-

ulesM1Refined andM2Refined. Deciding whether to use

wrapping or merging depends on the methodology and

chosen target architecture.

Example We show here how to apply the communi-

cation re�nement strategy described above to a sim-

ple abstract (functional timed) producer/consumer sys-

tem taken from [40]. The design of a producer/con-

sumer module that writes and reads characters to/from

a FIFO channel is shown by the UML composite struc-

ture diagram in Fig. 13. The top composite module is

de�ned to contain one instance of the consumer mod-

ule, one instance of the producer module, and one FIFO

channel instance. The FIFO channel permits to store

characters by means of blocking read and write inter-

faces, such that characters are always reliably delivered.

Two processes, the producer and the consumer (see the

thread processes main within the producer and the con-

sumer modules in Fig. 14), respectively feed and read

the FIFO. The producer module writes data through

its out port into the FIFO by a sc_�fo_out_if inter-

face, the consumer module reads data from the FIFO

through its in port by the sc_�fo_in_if interface. These

two interfaces are implemented by the FIFO channel

(see the sc_�fo channel in Fig. 14). Because of the

blocking nature of the sc_�fo read/write operations,

all data are reliably delivered despite the varying rates

of production and consumption.

Now, let's assume to replace the (abstract) FIFO

instance above with a (re�ned) model of a clocked RTL

10

Fig. 15 Clocked RTL HW FIFO

Fig. 16 The hw_�fo_wrapper hierarchical channel

Fig. 17 A clocked producer/consumer design

hardware FIFO named hw_�fo<T> for an hardware

implementation. The new hardware FIFO uses a signal-

level ready/valid handshake protocol for both the FIFO

input and output (see Fig. 15). It should be noted that

we cannot use hw_�fo directly in place of sc_�fo, since

the former does not provide any interfaces at all, but

has ports that connect to signals, i.e. has ports that use

the sc_signal_in_if and sc_signal_out_if interfaces.

Following the wrapper-based approach 3.b described

above, we can de�ne a hierarchical channel hw_�fo_-

wrapper<T> (CWrapped) implementing the interfaces

sc_�fo_out_if and sc_�fo_in_if and containing an in-

stance of hw_�fo<T> (CRefined). In addition, it con-

tains sc_signal instances to interface with hw_�fo<T>

and a clock port (since hw_�fo<T> has also a clock

port) to feed in the clock signal to the hw_�fo<T>

instance (see Fig. 16). Finally, we need to add a hard-

ware clock instance in the top-level design to drive the

additional clock port that is now on the hw_�fo_-

wrapper<T> instance (see Fig. 17). The hw_�fo_wrap-

11

per<T> implements the required signal-level ready/-

valid handshake protocol whenever a read or write op-

eration occurs; this protocol will properly suspend read

or write transactions if hw_�fo<T> is not ready to

complete the operation. Details on the SystemC code

can be found in [40].

6.2 Model-to-code transformations

Model-to-code transformations are primarily aimed at

providing executable models at a �xed abstraction level.

They must be intended as horizontal transformations

creating program text in the SystemC implementation

language.

In the model-to-code category, we distinguish be-

tween visitor -based and template-based approaches. Vi-

sitor-based simply means that the model is navigated

and code is generated for each element visited accord-

ing to speci�c rules describing for each meta-concept

what code to generate and which elements to visit next.

Template-based approaches use target text that includes

place holders that are to be replaced with concrete data

in concrete template instances. Rules in such template-

based approaches usually access information in the sour-

ce model using the left hand side of a rule and give a

template as right hand side that incorporates this data

in a piece of target code.

We adopted a visitor-based approach for the EA-

based environment. The EA supports forward/reverse

engineering to/from C++. We developed an EA add-

in (based on the EA automation and scripting inter-

face and on the Windows OLE Automation ActiveX

technology) which exploits the added semantics in the

SystemC UML pro�le to generate complete SystemC

code (full code generation) from input models (for both

the structural and behavioral views) developed with the

EA-based UML modeler.

The EA-based code generator traverses all class di-

agrams and for every encountered class it produces a

C++ header �le (.h); this happens for both the de�ni-

tion of SystemC classes (modules, channels and inter-

faces) and simple C++ classes, allowing a mixed de-

sign style. Classes contain �elds and methods. For each

method it is possible to describe its behavior either as

an inline code description or as a SystemC process state

machine diagram. Each process state machine, there-

fore, contributes to the generation and enrichment of a

body �le (.cpp) containing the implementation code of

all methods of a class or module or channel.

Moreover, by an analysis of the composite structure

diagram associated to a module to describe its inter-

nal structure (especially the one of the topmost level

module, which represents the structure of the overall

system), it is possible to determine how internal parts

are connected to each other in the module constructors

in the header �le. Finally, object diagrams may be seen

as instances of the composite structure diagrams, useful

to model particular initializations of the system compo-

nents for the construction of appropriate test benches.

The header �le producer.h, e.g., for the producer

module (see Fig. 14) would contain the declaration of

the producer class together with the declaration of the

main thread process, as reported in Listing 1.

The body section (�le producer.cpp in Fig. 18)

is determined by the thread state machine main (see

Fig. 18), where the C++ notation is put on top of the

UML action semantics and the control structures are di-

rectly derived from the stereotyped pseudostates while,

if-then, etc., of the state machine diagram.

We have been applying similar code engineering tech-

niques to the Papyrus-based environment, but following

a template-based approach by relying on JET and Ac-

celeo technologies. Compared to visitor-based approa-

ches, template-based approaches have the advantage of

reusing pieces of code and thus template-based tools

are less error prone than visitor-based ones.

Listing 1 producer.h

#include " read_write_if . h"
class producer : public sc_module {
public :
sc_port<sc_fi fo_out_if<char> > out ;

void main () ;
SC_HAS_PROCESS(producer) ;
producer (sc_module_name mn) : sc_module (mn)
{
SC_THREAD(main) ;

}
} ;

7 Related work

In this paper, we provide guidance on how to integrate

a UP style of software development into the overall pro-

cess for Embedded Systems. The UPES re�ects current

industry best practices and follows the platform-based

design principles [45,15]. For the UPES de�nition, we

have been taking in consideration the work experiences

in [15,11,46,44] as �rst contributions to the de�nition

of a development process for the Embedded Systems do-

main based on abstract and executable models and on

the System-on-Chip (SoC) paradigm for the software-

hardware convergence.

The possibility to use UML 1.x for system design

[16] started since 1999, but the general opinion at that

time was that UML was not mature enough as a system

design language. Nevertheless signi�cant industrial ex-

periences using UML in a system design process soon

12

#include "producer.h"
void producer::main() {

const char ∗str="www.systemc.org\n";
const char ∗p=str;
while(true){
if (rand() & 1){

out−>write(∗p++);
if (!∗p) p = str;
}

wait(1, SC_NS);
}

}

Fig. 18 Producer's main thread state machine and its SystemC code

started leading to the �rst results in design method-

ology, such as the one in [41] that was applied to an

internal project for the development of a OFDM Wire-

less LAN chipset. In this project SystemC was used to

provide executable models.

More integrated design methodologies were later de-

veloped. The authors of [28] propose a methodology

using the UML for the speci�cation and validation of

SoC design. They de�ne a �ow, parallel to the imple-

mentation �ow, which is focused on high-level specs

capture and validation. In [15], a UML pro�le for a

platform-based approach to embedded software devel-

opment is presented. It includes stereotypes to repre-

sent platform services and resources that can be as-

sembled together. The authors also present a design

methodology supported by a design environment, called

Metropolis, where a set of UML diagrams (use cases,

classes, state machines, activity and sequence diagrams)

can be used to capture the functionality and then re�ne

it by adding models of computation.

Another approach to the uni�cation of UML and

SoC design is the HASoC (Hardware and Software Ob-

jects on Chip) [11] methodology. It is based on the

UML-RT pro�le [36] and on the RUP process [14]. The

design process starts with an uncommitted model and

after a committed model is derived by partitioning the

system into software and hardware, and then mapped

onto a system platform. From these models a SystemC

skeleton code can be also generated, but to provide a

�ner degree of behavioral validation, detailed C++ code

must be added by hand to the skeleton code. All the

works mentioned above could greatly bene�t from the

use of UML2.

In [9], the authors present a model-driven frame-

work called ModES (Model-driven Design of Embed-

ded Systems) made of metamodels de�nition and APIs

to integrate, by model transformations, several model-

based design tools. However, this framework is more re-

lated to the design space exploration at a high abstrac-

tion level than to model re�nement, model validation,

and automatic code generation from models, which are,

instead, our main concerns.

SysML [39] is a conservative extension of UML 2.0

for a domain- neutral representation (i.e. a PIM model

as in MDA [17]) of system engineering applications.

It can be involved at the beginning of the design pro-

cess, in place of the UML, for the requirements, analy-

sis, and functional design work�ows. So it is in agree-

ment with our UML pro�le for SystemC, which can

be thought (and e�ectively made) as customization of

SysML rather than UML. Unluckily, when we started

the SysML speci�cation was not yet �nalized and there

were no tools yet supporting it. Similar considerations

apply also to the recent MARTE (Modeling and Anal-

ysis of Real-Time Embedded Systems) pro�le initiative

[37].

The standardization proposal [42] by Fujitsu, in col-

laboration with IBM and NEC, has evident similarities

with our SystemC UML pro�le, like the choice of Sys-

temC as a target implementation language. However,

their pro�le does not provide building blocks for be-

havior modeling and any time model.

Some other proposals already exist about exten-

sions of UML towards C/C++/SystemC. All have in

common the use of UML stereotypes for SystemC con-

structs, but not rely on a UML pro�le de�nition. In

this sense, it is appreciable the work in [5] attempting

to de�ne a UML pro�le for SystemC; but, as all the

other proposals, it is based on the previous version of

UML, UML 1.4. Moreover, in all the proposals we have

seen, no code generation, except in [19], from behavioral

diagrams is considered.

Re�nement, or in general model-to-model transfor-

mation, is another key concept in MBD. However, com-

pared with the re�nement techniques available for for-

mal methods like Z, B, and ASMs [4], few work has been

carried out for modeling languages like UML. Some pro-

posals that we are considering in our process can be

found in [7,25,26,24,22].

13

8 Conclusions and future directions

This paper describes aspects of reusable model-to-model

and model-to-code transformations in the context of the

UPES/UPSoc processes for embedded system develop-

ment. This aspect is vital for integrating, synchroniz-

ing or transforming models for our design methodology

based on the UPES/UPSoC processes.

Today, model transformations are mainly written

from scratch. This is in many cases a very time con-

suming and di�cult task. According to the MBD vi-

sion, there must be large libraries of reusable model

transformations available.

In the future, we aim at identifying characteristics

of reusable transformations and ways of achieving reuse

by collecting in a library precise abstraction/re�nement

transformation patterns according to the levels of ab-

straction: functional, transactional, behavioral, BCA,

and RTL. In particular, we are focusing on the TLM

to model the communication aspects at a certain num-

ber of TLM sub-levels according to the OSCI TLM 1.0

library [21]. We believe the use of �ne-grained trans-

formations that are being composed (chaining) would

be bene�cial, both increasing the productivity and the

quality of the developed systems.

References

1. SystemC Language Reference Manual. IEEE Std 1666-2005,
31 March 2006.

2. J. Arlow and I. Neustadt. UML and the Uni�ed Process.
Addison Wesley, 2002.

3. S. Bocchio, E. Riccobene, A. Rosti, and P. Scandurra. An En-
hanced SystemC UML Pro�le for Modeling at Transaction-
Level. Embedded Systems Speci�cation and Design Lan-
guages. E. Villar (ed.), 2008.

4. E. Börger and R. Stärk. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer Verlag,
2003.

5. F. Bruschi and D. Sciuto. SystemC based Design Flow start-
ing from UML Model. In Proc. of European SystemC Users
Group Meeting, 2002.

6. L. Cai and D. Gajski. Transaction Level Modeling: an
Overview. In Proc. of CODES+ISSS, Newport Beach, Cal-
ifornia, USA, 2003.

7. The Catalysis process: www.catalysis.org, 1998.
8. Krzysztof Czarnecki and Simon Helsen. Classi�cation of

Model Transformation Approaches. In Proc. of 2nd OOP-
SLA Workshop on Generative Techniques in the Context of
Model-Driven Architecture, 2003.

9. Francisco Assis M. do Nascimento, Márcio F. S. Oliveira, and
Flávio Rech Wagner. ModES: Embedded Systems Design
Methodology and Tools based on MDE. In Fourth Interna-
tional workshop on Model-based Methodologies for Pervasive
and Embedded Software (MOMPES'07). IEEE Press, 2007.

10. The Enterprise Architect tool: www.sparxsystems.com.au/,
2008.

11. M. Edwards and P. Green. UML for hardware and software
object modeling. UML for real design of embedded real-time
systems, pages 127�147, 2003.

12. Eclipse Modeling Framework. http://www.eclipse.org/

emf/, 2008.

13. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev,
and Patrick Valduriez. ATL: a QVT-like transformation lan-
guage. In OOPSLA '06: Companion to the 21st ACM SIG-
PLAN conference on Object-oriented programming systems,
languages, and applications, pages 719�720. ACM, 2006.

14. P. Kruchten. The Rational Uni�ed Process. Addison Wesley,
1999.

15. L. Lavagno, G. Martin, A. Sangiovanni Vincentelli,
J. Rabaey, R. Chen, and M. Sgroi. UML and Platform based
Design. UML for Real Design of Embedded Real-Time Sys-
tems, 2003.

16. G. Martin. UML and VCC. White paper, Cadence Design
Systems, Inc, Dec. 1999.

17. OMG. The Model Driven Architecture (MDA). MDA Guide
V1.0.1, http://www.omg.org/mda/, 2003.

18. T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri. Challenges in Software Evo-
lution. In Proc. of the International Workshop on Software
Evolution. IEEE, 2005.

19. K.D. Nguyen, Z. Sun, P.S. Thiagarajan, and W.F. Wong.
Model-Driven SoC Design: The UML-SystemC Bridge. UML
for SOC Design, 2005.

20. OMG. UML 2.0 OCL Speci�cation, ptc/03-10-14.

21. The Open SystemC Initiative. http://www.systemc.org,
2008.

22. Richard F. Paige, Dimitrios S. Kolovos, and Fiona A.C. Po-
lack. Re�nement via Consistency Checking in MDA. In Proc.
Re�nement Workshop, ENTCS, Surrey, UK, April 2005.

23. Papyrus UML web site. http://www.papyrusuml.org, 2008.

24. C. Pons and R-D Kutsche. Using UML-B and U2B for for-
mal re�nement of digital components. In Proc. of Forum on
speci�cation and design languages, Frankfurt, 2003.

25. C. Pons and R-D Kutsche. Traceability Across Re�nement
Steps in UML Modeling. In Proc. of the WiSME@UML
workshop, 2004.

26. Claudia Pons and Diego Garcia. An OCL-Based Technique
for Specifying and Verifying Re�nement-Oriented Transfor-
mations in MDE. In MoDELS, pages 646�660, 2006.

27. OMG, MOF Query/Views/Transformations, ptc/07-07-07,
2007.

28. Q.Zhu, R.Oishi, T.Hasegawa, T.Nakata. System-on-Chip
Validation using UML and CWL. In Proc. of CODES, 2004.

29. E. Riccobene and P. Scandurra. Modelling SystemC Process
Behaviour by the UML Method State Machines. In Proc. of
RISE'04. Springer, 2004.

30. E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A
UML 2.0 pro�le for SystemC: toward high-level SoC de-
sign. In EMSOFT '05: Proceedings of the 5th ACM inter-
national conference on Embedded software, pages 138�141.
ACM Press, 2005.

31. E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A
Model-driven Co-design Flow for Embedded Systems. In
FDL '06: Proceedings of Forum on Speci�cation and Design
Languages, 2006.

32. E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A
model-driven design environment for embedded systems. In
DAC '06: Proceedings of the 43rd annual conference on De-
sign automation, pages 915�918, New York, NY, USA, 2006.
ACM Press.

33. E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. De-
signing a uni�ed process for embedded systems. In Fourth In-
ternational workshop on Model-based Methodologies for Per-
vasive and Embedded Software (MOMPES'07). IEEE Press,
2007.

14

34. E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A
UML2 Pro�le for SystemC 2.1. STMicroelectronics Technical
Report, April, 2007.

35. Douglas C. Schmidt. Guest editor's introduction: Model-
driven engineering. Computer, 39(2):25�31, 2006.

36. B. Selic. A Generic Framework for Modeling Resources with
UML. In Proceedings of the 16th Symposium on Integrated
Circuits and Systems Design (SBCCI'03), 33:64�69, 2000,
IEEE Computer Society.

37. R. De Simone and et al. MARTE: A new Pro�le RFP for the
Modelling and Analysis of Real-time Embedded Systems. In
UML for SoC Design workshop at DAC'05.

38. OMG. SPEM, formal/08-04-01, 2008.
39. OMG, SysML, Version 1.0, formal/2007-09-01. http://www.

omgsysml.org/, 2007.
40. T. Gröetker and S. Liao and G. Martin and S. Swan. System

Design with SystemC. Kluwer Academic Publisher, 2002.
41. T.Moore, Y.Vanderperren and G.Sonck and P.van Oostende

and M. Pauwels and W. Dehaene. A Design Methodology for
the Development of a Complex System-On-Chip using UML
and Executable System Models. In Forum on Speci�cation
and Design Languages, ECSL, 2002.

42. Fujitsu Limited, IBM, NEC. A UML Extension for SoC.
Draft RFC to OMG, 2005-01-01, 2005.

43. Y. Vanderperren and W. Dehaene. A Model-Driven Devel-
opment Process for Low Power SoC Using UML. UML for
SOC Design, 2005.

44. Y. Vanderperren, M. Pauwels, W. Dehaene, A.Berna, and
F. Ozdemir. A SystemC Based System On Chip Modelling
and Design Methodology. SystemC : Methodologies and Ap-
plications, 2003.

45. A. Sangiovanni Vincentelli. De�ning Platform-based Design.
EEDesign, February 2002.

46. Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, and M. Shoji.
An object-oriented design process for system-onchip using
UML. In Proc. of the 15th international symposium on Sys-
tem Synthesis, Kyoto, Japan, 2002.

