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Abstract
Finding strongly connected components (SCCs) in the state-space of discrete-state models is a

critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of
reachable states and SCCs constitutes a formidable challenge. This paper is concerned with comput-
ing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages
in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel
algorithm and transitive closure. First, saturation speeds up state-space exploration when computing
each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute
the transitive closure using saturation. Experimental results indicate that our improved algorithms
achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive
closure computation algorithm, up to 10150 SCCs can be explored within a few seconds.

1 Introduction
Finding strongly connected components (SCCs) is a basic problem in graph theory. For discrete-state
models, some interesting properties, such as LTL [8] and fair CTL, are related with the existence of
SCCs in the state transition graph, and this is also the central problem in the language emptiness check
for ω-automata. For large discrete-state models (e.g., 1020 states), it is impractical to find SCCs using
traditional depth-first search, motivating the study of symbolic computation of SCCs. In this paper, the
objective is to build the set of states in non-trivial SCCs.

The structure of SCCs in a graph can be captured by its SCC quotient graph, obtained by collapsing
each SCC into a single node. This resulting graph is acyclic, and thus defines a partial order on the
SCCs. Terminal SCCs are leaf nodes in the SCC quotient graph. In the context of large scale Markov
chain analysis, an interesting problem is to partition the state space into recurrent states, which belong
to terminal SCCs, and transient states, which are not recurrent.

The main difficulties in SCC computation are: having to explore huge state spaces and, potentially,
having to deal with a large number of (terminal) SCCs. The first problem is the primary obstacle to
formal verification due to the obvious limitation of computational resources. Traditional BDD-based
approaches employ image and preimage computations on state-space exploration and, while quite suc-
cessful in fully synchronous systems, they do not work as well for asynchronous systems. The second
problem constitutes a bottleneck for one class of previous work, which enumerates SCCs one by one.
Section 2.3 discusses this problem in more detail.

This paper addresses the computation of states in SCCs and terminal SCCs. We propose two ap-
proaches based on two previous ideas: the Xie-Beerel algorithm and transitive closure. Saturation, which
schedules the firing of events according to their locality, is employed to overcome the complexity of state-
space exploration. Pointing to the second difficulty, our efforts are devoted to an algorithm based on the
transitive closure, which does not suffer from a huge numbers of SCCs but, as previously proposed, often
requires large amounts of runtime and memory. We then propose to use a saturation-based algorithm to
compute the transitive closure, enabling it to be a practical method of SCC computation for complex
systems. We also present an algorithm for computing recurrent states based on the transitive closure.
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The remainder of this paper is organized as follows. Section 2 introduces the relevant background
on data structure we use and the saturation algorithm. Section 3 introduces an improved Xie-Beerel
algorithm using saturation. Section 4 introduces our transitive closure computation algorithm using sat-
uration and the corresponding algorithms for SCC and terminal SCC computations. Section 6 compares
the performance of our algorithms and that of Lockstep.

2 Preliminaries
Consider a discrete-state model (S ,Sinit ,E ,N ) where the potential state space S is given by the
product SL × ·· · ×S1 of the local state spaces of L submodels, thus each (global) state i is a tuple
(iL, . . . , i1) where ik ∈Sk, for L ≥ k ≥ 1; the set of initial states is Sinit ⊆S ; the set of (asynchronous)
events is E ; the next-state function N : S → 2S is described in disjunctively partitioned form as N =⋃

α∈E Nα , where Nα(i) is the set of states that can be reached in one step when α fires in state i. We say
that α is enabled in state i if Nα(i) '= /0. Correspondingly, N −1 and N −1

α denote the inverse next-state
functions, i.e., N −1

α (i) is the set of states that can reach i in one step by firing event α .
State-space generation refers to computing the set of reachable states from Sinit , denoted with Srch.

Section 2.2 introduces our state-space generation algorithm called saturation, which is executed prior to
the SCC computation as a preprocessing step. Consequently, Srch, the sets Sk, and their sizes nk are
assumed known in the following discussion, and we let Sk = {0, ...,nk−1}, without loss of generality.

2.1 Symbolic encoding of discrete-state systems
We employ multi-way decision diagrams (MDDs) [7] to encode discrete-state systems. MDDs extend
binary decision diagrams (BDDs) by allowing integer-valued variables, thus are suitable for discrete-
state models with bounded but non-boolean valued state variables, such as Petri nets [10]. There are two
possible terminal nodes, 0 and 1, for all MDDs. Each MDD has a single root node.

We encode a set of states with an L-level quasi-reduced MDD. Given a node a, its level is denoted
with a.lvl where L≥ a.lvl ≥ 0. a.lvl = 0 if a is 0 or 1 and a.lvl = L if it is a root node. If a is nonterminal
and a.lvl = k, then a has nk outgoing edges labeled with {0, ...,nk−1}, each of which corresponds to a
local state in Sk. The node pointed by the edge labeled with ik is denoted with a[ik]. If a[ik] '= 0, it must
be a node at level k−1. Finally, let B(a)⊆Sk×·· ·×S1 be the set of paths from node a to 1.

Turning to the encoding of the next-state functions, most asynchronous systems enjoy locality, which
can be exploited to obtain a compact symbolic expression. An event α is independent of the kth submodel
if its enabling does not depend on ik and its firing does not change the value of ik. A level k belongs to
the support set of event α , denoted supp(α), if α is not independent of k. We define Top(α) to be the
highest-numbered level in supp(α), and Ek to be the set of events {α ∈ E : Top(α) = k}. Also, we let
Nk be the next-state function corresponding to all events in Ek, i.e., Nk =

⋃
α∈Ek

Nα .
We encode the next-state function using 2L-level MDDs with level order L,L′, ...,1,1′, where un-

primed and primed levels correspond to “from” and “to” states, respectively, and we let Unprimed(k) =
Unprimed(k′) = k. We use the quasi-identity-fully (QIF) reduction rule [13] for MDDs encoding next-
state functions. For an event α with Top(α) = k, Nα is encoded with a 2k-level MDD since it does not
affect state variables corresponding to nodes on levels L, . . . ,k+1; these levels are skipped in this MDD.
The advantage of the QIF reduction rule is that the application of Nα only needs to start at level Top(α),
and not at level L. We refer interested readers to [13] for more details about this encoding.

2.2 State-space generation using saturation
All symbolic approaches to state-space generation use some variant of symbolic image computation. The
simplest approach is the breadth-first iteration, directly implementing the definition of the state space
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mdd Saturate({NL, . . . ,N1},mdd s)
1 if InCacheSaturate(s, t) then return t;
2 level k← s.lvl;
3 mdd t ← NewNode(k); mdd r ←Nk;
4 foreach i ∈Sk s.t. s[i] '= 0 do

•First saturate all its children
5 t[i]←Saturate({NL, . . . ,N1},s[i]);
6 endfor
7 repeat •Get a local fixed point on the root
8 foreach i, i′ ∈Sk s.t. r[i][i′] '=0 do
9 mdd u←

RelProdSat({NL, . . . ,N1}, t[i],r[i][i′]);
10 t[i′]← Or(t[i′],u);
11 endfor
12 until t does not change;
13 t←UniqueTablePut(t);
14 CacheAddSaturate(s, t);
15 return t;

mdd RelProdSat({NL, . . . ,N1},mdd s,mdd r)
1 if s = 1 and r = 1 then return 1; endif
2 if InCacheConsRelProd(s,r, t) then return t; endif
3 level k← s.lvl; mdd t ← 0;
4 foreach i, i′ ∈Sk s.t. r[i][i′] '=0 do
5 mdd u←RelProdSat({NL, . . . ,N1},s[i],r[i][i′]);
6 if u '= 0 then
7 if t = 0 then t ← NewNode(k); endif
8 t[i′]← Or(t[i′],u);
9 endif

10 endfor
11 t ← Saturate({NL, . . . ,N1},UniqueTablePut(t));

•Return a saturated MDD
12 CacheAddRelProdSat(s,r, t);
13 return t;

•UniqueTable guarantees the uniqueness of each node
•Cache reduces complexity through dynamic programming

Figure 1: Saturation algorithms.

Srch as the fixed point of Sinit ∪N (Sinit)∪N 2(Sinit)∪N 3(Sinit)∪ ·· · . Given a set of states X ,
their forward and backward reachable sets are f orward(X ) = X ∪N (X )∪N 2(X )∪N 3(X )∪·· ·
and backward(X ) = X ∪N −1(X )∪ (N −1)2(X )∪ (N −1)3(X )∪·· · .

Locality and disjunctive partition of the next-state function form the basis of the saturation algorithm.
The key idea is to apply the event firings in an order consistent with their Top. An event in Ek will not
be fired until the events in Eh where h < k do not further grow the explored state space. We say that a
node a at level k is saturated if it is a fixed point with respect to firing any event that is independent of
all levels above k: ∀h,k ≥ h≥ 1,∀α ∈ Eh,∀i ∈SL× . . .×Sk+1, {i}×B(a)⊇Nα({i}×B(a))

Figure 1 shows the pseudocode of the saturation algorithm. In function Saturate, the nodes in MDD
s are saturated in order, from the bottom level to the top level. Different from the traditional relational
product operation, RelProdSat always returns a saturated MDD. Saturation can also be applied to com-
puting backward(X ) by using inverse next-state functions {N −1

L , . . . ,N −1
1 }.

2.3 Previous work
Symbolic SCC analysis has been widely explored. Almost all of these algorithms employ BDD-based
manipulation of sets of states. Many efforts have been made on computing the SCC hull. The SCC hull
contains not only states in nontrivial SCCs, but also states on the paths between them. A family of SCC
hull algorithms [12] with the same upper bound of complexity is available. We review two categories of
previous work on the same problem as ours: transitive closure and the Xie-Beerel algorithm.

Hojati et al. [6] presented a symbolic algorithm for testing ω-regular language containment by com-
puting the transitive closure, namely, N + = N ∪N 2 ∪N 3 ∪ ·· · . Matsunaga et al. [9] proposed a
recursive procedure for computing the transitive closure. While it is a fully symbolic algorithm, due to
the unacceptable complexity of computing the transitive closure, this approach has long been considered
infeasible for complex systems.

Xie et al. [15] proposed an algorithm, referred as the Xie-Beerel algorithm in this paper, combining
both explicit state enumeration and symbolic state-space exploration. This algorithm explicitly picks
a state as a “seed”, computes the forward and backward reachable states from the seed and finds the
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mdd Lockstep(mdd P)
1 if(P = /0) then return /0;
2 mdd ans← /0; mdd seed←Pick(P); mdd C←0;
3 mdd Ff ront←N (seed)∩P; mdd B f ront←N −1(seed)∩P;
4 mdd F←Ff ront ; mdd B←B f ront ;
5 while(Ff ront '= /0 and B f ront '= /0)
6 Ff ront←N (Ff ront)∩P \F ; B f ront←N (B f ront)∩P \B;
7 F←F ∪Ff ront ; B←B∪B f ront ;
8 endwhile
9 if(Ff ront = /0) then

10 mdd conv←F ;
11 while(B f ront ∩F '= /0) do B f ront←N (B f ront)∩P \B; B←B∪B f ront ; endwhile
12 else
13 mdd conv←B;
14 while(Ff ront ∩B '= /0) do Ff ront←N (Ff ront)∩P \F ; F←F ∪Ff ront ; endwhile
15 endif
16 if(F ∩B '= /0 ) then C←(F ∩B)∪ seed; ans←C; endif
17 ans←ans∪Lockstep(conv\C)∪Lockstep(P\ (conv∪ seed));
18 return ans;

mdd XB TSCC(mdd S )
1 mdd ans← /0; mdd P←S ; mdd seed,F,B;
2 while (P '= /0)
3 seed←Pick(P); F← f orward(seed)∩P; B←backward(seed)∩P;
4 if F \B = /0 then ans←ans∪F ; endif •F ind a terminal SCC
5 P←P\B;
6 endwhile
7 return ans;

Figure 2: Lockstep for SCC computation and Xie-Beerel’s algorithm for terminal SCC computation.

SCC containing this seed as the intersection of these two sets of states. Bloem et al. [2] presented a im-
proved algorithm called Lockstep, shown in Figure 2. Lockstep(Srch) returns the set of states belonging
to non-trivial SCCs. It has been proven that Lockstep requires in O(n logn) image and preimage com-
putations (Theorem 2 in [2]), where n is the number of reachable states. As shown in Figure 2, given a
“seed” state, instead of computing sets of forward and backward reachable states separately, it uses the
set which converges earlier to bound the other. This optimization constitutes the key point in achieving
O(n logn) complexity. Ravi et al. [11] compared the SCC-hull algorithms and Lockstep. According
to our experimental results, Lockstep often works very well for systems with few SCCs. However, as
the number of SCCs grows, the exhaustive enumeration of SCCs becomes a problem. In this paper, we
compare our algorithms to Lockstep.

Xie et al. [14] proposed a similar idea in computing recurrent states in large scale Markov chains.
The pseudocode of that algorithm is shown as XB TSCC in Figure 2. From a randomly picked seed state,
if the forward reachable states (F) is a subset of backward reachable states (B), F is a terminal SCC;
otherwise (F ! B), no terminal SCC exists in B, and B can be eliminated from future exploration.

The main ideas of our two approaches belong to these two categories of previous work. In the
Xie-Beerel algorithm, BFS-based state-space exploration can be replaced with saturation. For transitive
closure computation, we propose a new algorithm using saturation.
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mdd XBSaturation(mdd P)
1 if(P = /0) then return /0;
2 mdd ans← /0; mdd seed←Pick(P);
3 mdd Ff ront←N (seed)∩P; mdd B f ront←N −1(seed)∩P;
4 mdd F←Saturate({NL · · ·N1},Ff ront)∩P;
5 mdd B←Saturate({N −1

L · · ·N −1
1 },B f ront)∩P;

6 mdd C←F ∩B; if C '= /0 then ans←C; endif •Line 6−8 are for computing SCCs
7 ans←ans∪XBSaturation(F \C)∪XBSaturation(P\F);
8 return ans;
6’ if F \B = /0 then ans←ans∪F ; endif •Line 6’−8’ are for computing terminal SCCs
7’ ans←ans∪XBSaturation(P\B);
8’ return ans;

Figure 3: Improved Xie-Beerel algorithm using saturation.

3 Improving the Xie-Beerel algorithm using saturation
A straightforward idea is to employ saturation on the state-space exploration in the Xie-Beerel algorithm.
The pseudocode of our algorithms for computing SCCs and terminal SCCs is shown as XBSaturation in
Figure 3. The merit of our algorithms comes from the higher efficiency of saturation in computing
forward and backward reachable states (B and F). However, our algorithms need to compute B and F
separately, while Lockstep can use the set that converges first to bound the other, which may reduce the
number of image computations (steps). Thus, there is a trade-off between the advantages of BFS and
saturation. From a theoretical point of view, the complexity of our algorithm can hardly be compared
directly with the result in [2], which measures the complexity by the number of steps. Since saturation
executes a series of light-weight events firing instead of global image computations, its complexity cannot
be captured as a number of steps. Furthermore, saturation results in more compact decision diagrams
during state-space exploration, often greatly reducing runtime and memory. Performance is also affected
by which seed is picked in each iteration. For a fair comparison, we pick the same seed in both algorithms
at each iteration. The experimental results in Section 6 show that, for most models, the improved Xie-
Beerel algorithm using saturation outperforms Lockstep, sometimes by orders of magnitude.

4 Applying saturation to computing transitive closure
We define the backward transitive closure (TC−1) of a discrete-state model as follows:

Definition 4.1. A pair of states (i, j) ∈ TC−1 iff there exists a non-trivial (i.e., positive length) path π
from j to i, denoted by j→ i. Symmetrically, we can define TC where (i, j) ∈ TC iff i→ j.

As TC and TC−1 are symmetric to each other, we focus on the computation of TC−1. TC can then
be obtained from TC−1 by simply swapping the unprimed and primed levels. Our algorithm is based on
the following observation:

(i, j) ∈ TC−1 iff ∃k ∈N −1(i) and j ∈ Saturate({N −1
L , · · · ,N −1

1 },{k})

Instead of executing saturation on j for each pair of (i, j), we propose an algorithm that executes on the
2L-level MDD encoding N −1. In function SCC TC(N −1) of Figure 4, TC−1 is computed in line 1
using function TransClosureSat, which runs bottom-up recursively. Similar to the idea of saturation
shown in Figure 1, this function runs node-wise on primed level and fires lower level events exhaustively
until the local fixed point is obtained. This procedure guarantees the following Lemma.
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Lemma: Given a 2k-level MDD n, TransClosureSat(n) returns an 2k-level MDD t that for any (i, j) ∈
B(n), all (i,k) where k ∈ (N −1

≤k )∗(j) belong to B(t).

Theorem: TransClosureSat(N −1) returns TC−1.
This theorem can be proved directly from Lemma and the definition of TC−1. The pseudocode of

the SCC computation using TC−1 is shown in SCC TC in Figure 4. Then, function TCtoSCC extracts all
states i such that (i, i) ∈ TC−1.

Unlike SCC enumeration algorithms like Xie-Beerel’s or Lockstep, the TC-based approach does not
necessarily suffer when the number of SCCs is large. Nevertheless, due to the complexity of building
TC−1, this approach is considered not feasible for complex systems. Thanks to the idea of saturation, our
algorithm of computing TC−1 completes on some large models, such as the dining philosopher problem
with 1000 philosophers. For some models containing large numbers of SCCs, the TC-based approach
shows its advantages. While the TC-based approach is not as robust as Lockstep, it can be used as the
substitute for Lockstep when Lockstep fails to exhaustively enumerate all SCCs.

TC−1 can also be employed to find recurrent states, i.e., terminal SCCs. As the other SCCs are not
reachable from terminal SCCs, state j belongs to a terminal SCC iff ∀i, j→ i =⇒ i→ j. Given states i, j,
let j 2→ i denote that j→ i and ¬(i→ j). We can encode this relation with a 2L-level MDD, which can
be obtained as TC−1 \TC. The pseudocode of this algorithm is shown as TSCC TC in Figure 5. The set
of {(i, j)|j 2→ i} is encoded with a 2L-level MDD L. Then, the set of states {j|∃i, j 2→ i}, which do not
belong to terminal SCCs, is computed by quantifying out the unprimed levels and can be stored in MDD
nontscc. The remaining states in SCCs are recurrent states belonging to terminal SCCs.

To the best of our knowledge, this is the first symbolic algorithm for terminal SCC computation
using the transitive closure. This algorithm is more expensive in both runtime and memory than SCC
computation because of the computation of the 2→ relation. With the help of TransClosureSat, this
algorithm works for most of the models we study. Moreover, for models with many terminal SCCs, this
algorithm also shows its unique benefits.

5 Fairness
One application of the SCC computation is to decide language emptiness for an ω-automaton. The lan-
guage of an ω-automaton is nonempty if there is a nontrivial fair loop satisfying a certain fair constraint.
Thus, it is necessary to extend the SCC computation to finding fair loops. Büchi fairness (weak fair-
ness) [5] is a widely used fair condition specified as a set of sets of states {F1, . . . ,Fn}. A fair loop
satisfies Büchi fairness iff, for each i = {1, . . . ,n}, some state in Fi is included in the loop.

Lockstep is able to handle the computation of fair loops as proposed in [2]. Here we present a
TC-based approach. Assume TC and TC−1 have been built, let Sweak be the set of states i satisfying:

⋂

m=1,...,n
[∃fm∈Fm.(TC(fm, i)∧TC−1(fm, i))]

According to the definition of weak fairness, it can be proved that Sweak contains all states in the fair
loops. The pseudocode of computing Sweak is shown in Figure 6. Fi×Srch returns a 2L-level MDD
encoding all pairs of states (i, j) where i ∈ Fi and j ∈ Srch. The main complexity lies in computing
TC(i, j)∧TC−1(i, j), which is similar to computing the 2→ relation in the terminal SCC computation.

6 Experimental results
We implement the proposed approaches in SMART [4] and report experimental results obtained on an
Intel Xeon 3.0Ghz workstation with 3GB RAM under SuSE Linux 9.1. All the models are described as
the Petri nets expressed in the input language of SMART. These models include a closed queue networks
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mdd SCC TC(N −1)
1 mdd TC−1←TransClosureSat(N −1);
2 mdd SCC←TCtoSCC(TC−1);
3 return SCC;

mdd TransClosureSat(mdd n)
1 if InCacheTransClosureSat(n, t) then return t;
2 level k← n.lvl; mdd t ← NewNode(k); mdd r ←N −1

Unprimed(k)
3 foreach i, j ∈Sk s.t. n[i][ j] '= 0 do t[i][ j]←TransClosureSat(n[i][ j]); endfor
4 foreach i ∈SUnprimed(k) s.t. n[i] '=0
5 repeat •Build a local fixed point
6 foreach j, j′ ∈SUnprimed(k) s.t. n[i][ j] '=0 and r[ j][ j′] '=0 do
7 mdd u←TCRelProdSat(t[i][ j],r[ j][ j′]); t[i][ j′]← Or(t[i][ j′],u);
8 endfor
9 until t does not change;

10 endfor
11 t←UniqueTablePut(t); CacheAddTransClosureSat(n, t);
12 return t;

mdd TCRelProdSat(mdd n,mdd r)
1 if n = 1 and r = 1 then return 1;
2 if InCacheTCRelProdSat(n,r, t) then return t;
3 level k← n.lvl; mdd t ← 0;
4 foreach i ∈SUnprimed(k) s.t. n[i] '=0 do
5 foreach j, j′ ∈SUnprimed(k) s.t. n[i][ j] '=0 and r[ j][ j′] '=0 do
6 mdd u←TCRelProdSat(n[i][ j],r[ j][ j′]);
7 if u '= 0 then
8 if t = 0 then t ← NewNode(k); endif
9 t[i][ j′]← Or(t[i][ j′],u);

10 endif
11 endfor
12 endfor
13 t ← TransClosureSat(UniqueTablePut(t)); CacheAddTCRelProdSat(n,r, t);
14 return t;

mdd TCtoSCC(mdd n)
1 if n = 1 return 1; if InCacheTCtoSCC(n, t) then return t;
2 mdd t←0; level k←n.lvl;
3 foreach i ∈SUnprimed(k) s.t. n[i][i] '=0 do
4 if TCtoSCC(n[i][i]) '=0 then
5 if t = 0 then t←NewNode(k); endif
6 t[i]← TCtoSCC(n[i][i]);
7 endif
8 endfor
9 t←UniqueTablePut(t); CacheAddTCtoSCC(n, t);

10 return t;

Figure 4: Building the transitive closure using saturation.

(cqn) discussed in [15], two implementations of arbiters (arbiter1, arbiter2)[1], one which guarantees
fairness and the other which does not, the N-queen problem (queens), the dining philosopher problem
(phil) and the leader selection protocol (leader) [3]. The size for each model is parameterized with N.
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mdd TSCC TC(N −1)
1 mdd TC−1←TransClosureSat(N −1); mdd TC← Inverse(TC−1);
2 mdd SCC←TCtoSCC(TC−1);
3 mdd L←TC−1 \TC;
4 mdd nontscc←QuantifyUnprimed(L);
5 mdd recurrent←SCC \nontscc;
6 return recurrent;

Figure 5: Computing recurrent states using transitive closure.

mdd FairLoop TC(Srch,N −1,{F1, . . . ,Fn})
1 mdd TC−1←TransClosureSat(N −1); mdd TC← Inverse(TC−1);
2 mdd Sweak←Srch;
3 foreach m ∈ {1, . . . ,n}
4 mdd p←QuantifyUnprimed(TC−1∧TC∧ (Fm×Srch));
5 Sweak←Sweak ∩ p;
6 endfor
7 return Sweak;

Figure 6: Computing fair loops using transitive closure.

The number of SCCs (terminal SCCs) and states in SCCs (terminal SCCs) for each model obtained from
(terminal) SCC enumeration is listed in column “SCC” (“TSCC”) and column “States” respectively. The
upper bounds for runtime and size of unique table (i.e., the storage for the MDD nodes) are set to 2 hours
and 1GB respectively. The main metrics of our comparison are runtimes and peak memory consumption
(for the unique table, storing the MDD nodes, plus the cache).

The top part of Table 1 compares three algorithms for SCC computation: the TC-based algorithm
(column “TC”) presented in Section 4, the improved Xie-Beerel algorithm (column “XBSat”) presented
in Section 3, and Lockstep (column “Previous algorithm”) in Section 2.3. Coupled with saturation,
the improved Xie-Beerel algorithm is better than Lockstep for most of the models in both runtime and
memory. Compared with Lockstep, the TC-based algorithm is often more expensive. However, for two
models, queens and arbiter2, the TC-based algorithm completes within the time limit while the other
two algorithms fail. For arbiter2, our TC-based algorithm can explore over 10150 SCCs in a few seconds,
while it is obviously not feasible for SCC enumeration algorithms to exhaustively enumerate all SCCs.
To the best of our knowledge, this is the best result of SCC computation reported, stressing that the TC-
based algorithm is not sensitive to the number of SCCs. With our new algorithm, the transitive closure
can be built for some large systems, such as the dining philosopher problem with 1000 philosophers.

The bottom part of Table 1 compares the improved Xie-Beerel algorithm, XBSaturation, (column
“XBSat”) and algorithm TSCC TC Sat (column “TC”), presented in Section 3 and 4, respectively, for
terminal SCC computation, with XB T SCC (column “Previous algorithm”) in Section 2.3. The basic
trends are similar to the results of SCC computations, XBSaturation works consistently better than the
original method, while TSCC TC is less efficient for most models. In the Xie-Beerel framework, it is
faster to compute terminal SCCs than all SCCs because a larger set of states is pruned in each recursion.
On the contrary, TSCC TC is more expensive than SCC TC due to the computation of the 2→ relation,
which has large memory and runtime requirements. Nevertheless, for models with large numbers of
terminal SCCs, such as queens, TSCC TC shows its advantage over the Xie-Beerel algorithm.

We conclude that saturation is effective in speeding up the SCC and terminal SCC computations
within the framework of the Xie-Beerel algorithm. Also, our new saturation-based TC computation can
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Model SCC/TSCC States TC XBSat Previous algorithm
name N mem(MB) time(sec) mem(MB) time(sec) mem(MB) time(sec)

Results for the SCC computation

cqn
10 11 2.09e+10 34.2 13.6 3.4 < 0.1 4.0 3.9
15 16 2.20e+15 64.4 73.8 5.0 0.2 89.1 44.5
20 21 2.32e+20 72.7 687.8 25.8 0.5 118.7 275.0

phil
100 1 4.96e+62 5.0 0.5 3.2 < 0.1 52.0 4.5
500 1 3.03e+316 33.0 4.0 24.5 0.1 – to

1000 1 9.18e+626 40.5 7.8 29.1 0.3 – to

queens

10 3.22e+4 3.23e+4 8.2 1.6 64.4 14.5 63.9 12.4
11 1.53e+5 1.53e+5 45.8 9.0 94.2 108.6 96.3 93.6
12 7.95e+5 7.95e+5 184.8 60.6 170.2 1220.4 281.9 1663.9
13 4.37e+6 4.37e+6 916.5 840.6 – to – to

leader

3 4 6.78e+2 6.0 1.4 20.8 < 0.1 20.8 < 0.1
4 11 9.50e+3 70.3 73.1 25.4 1.1 23.8 0.3
5 26 1.25e+5 116.6 3830.4 35.6 40.8 49.4 6.4
6 57 1.54e+6 – to 41.6 1494.9 417.2 387.9

arbiter1
10 1 2.05e+4 24.1 1.2 21.4 < 0.1 21.8 0.1
15 1 9.83e+5 128.3 63.0 45.1 < 0.1 62.1 6.8
20 1 4.19e+7 mo – 709.7 < 0.1 mo –

arbiter2

10 1024 1.02e+4 20.3 < 0.1 26.2 0.7 31.1 1.1
15 32768 4.91e+5 20.4 < 0.1 31.1 51.8 211.3 990.3
20 1.05e+6 2.10e+7 20.4 < 0.1 31.2 2393.3 – to

500 3.27e+150 1.64e+151 41.0 4.0 – to – to
Results for the terminal SCC computation

cqn
10 10 2.09e+10 37.9 15.5 21.4 < 0.1 33.5 3.4
15 15 2.18e+15 64.8 79.6 23.0 0.3 59.4 33.7
20 20 2.31e+20 72.7 691.3 26.2 0.8 90.0 280.5

phil
100 2 2 26.5 0.5 20.9 < 0.1 39.2 8.7
500 2 2 34.3 4.1 23.2 < 0.1 – to

1000 2 2 44.4 11.3 26.5 0.2 – to

queens
10 1.28e+04 1.28e+4 36.2 3.0 46.7 2.8 62.3 35.1
11 6.11e+04 6.11e+4 76.5 19.3 70.6 24.5 145.2 364.2
12 3.14e+05 3.14e+5 244.1 205.4 98.8 179.4 mo –
13 1.72e+06 1.72e+6 mo – 269.0 1940.81 mo –

leader

3 3 3 26.6 1.5 20.7 < 0.1 21.4 0.1
4 4 4 70.6 75.1 24.4 0.9 38.0 4.5
5 5 5 119.3 3845.3 30.6 26.9 41.1 87.6
6 6 6 – to 39.0 492.9 44.8 1341.5

arbiter1
10 1 2.05e+4 24.1 1.2 20.4 < 0.1 22.4 0.4
15 1 9.83e+5 128.3 63.1 20.4 < 0.1 65.3 23.3
20 1 4.19e+7 mo – 20.5 < 0.1 – to

arbiter2
10 1 1 20.4 < 0.1 20.9 < 0.1 39.6 6.4
15 1 1 20.5 < 0.1 40.6 4.6 – to
20 1 1 20.5 < 0.1 450.0 2897.8 – to

Table 1: Results for SCC and terminal SCC computations.

tackle some complex models with up to 10150 states. Finally, for models with huge numbers of SCCs,
the TC-based SCC computation has advantages over Lockstep, which detects SCCs one-by-one.

While our TC-based approach is not a replacement for Lockstep, we argue that it is an alternative
worth further research. For a model with an unknown number of existing SCCs, employing both of
these approaches at the same time could be ideal. Given current trends in multi-core processors, it is
reasonable to run the two algorithms concurrently, possibly sharing some of the common data structures,
such as the MDDs encoding the state space and next-state functions.
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7 Conclusion
In this paper, we focus on improving two previous approaches to SCC computation, the Xie-Beerel
algorithm and TC, using saturation. We first employ the saturation on the framework of the Xie-Beerel
algorithm. In the context of the asynchronous models we study, the improved Xie-Beerel algorithm using
saturation achieves a clear speedup. We also propose a new algorithm to compute TC using saturation.
The experimental results demonstrate that our TC-based algorithm is capable of handling models with
up to 10150 of SCCs. As we argue, the TC-based approach is worth further research because of its
advantages when used on models with large numbers of SCCs.
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