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Abstract. Property Specification Patterns (PSPs) have been proposed
to ease the formalization of requirements, yet enable automated veri-
fication thereof. In particular, the internal consistency of specifications
written with PSPs can be checked automatically with the use of, e.g.,
Linear Temporal Logic (LTL) satisfiability solvers. However, for most
practical applications, the expressiveness of PSPs is too restricted to
enable writing useful requirement specifications, and proving that a set
of requirements is inconsistent can be worthless unless a minimal set of
conflicting requirements is extracted to help designers to correct a wrong
specification. In this paper, we extend PSPs by considering Boolean as
well as atomic numerical assertions, we contribute an encoding from
extended PSPs to LTL formulas, and we present an algorithm com-
puting inconsistency explanations, i.e., irreducible inconsistent subsets
of the original set of requirements. Our extension enables us to reason
about the internal consistency of functional requirements which would
not be captured by basic PSPs. Experimental results demonstrate that
our approach can check and explain (in)consistencies in specifications
with nearly two thousand requirements generated using a probabilistic
model, and that it enables effective handling of real-world case studies
as well.

1 Introduction

In the context of safety- and security-critical Cyber-Physical Systems (CPSs),
checking the sanity of functional requirements is an important, yet challeng-
ing task. Requirements written in natural language call for time-consuming and
error-prone manual reviews, whereas enabling automated sanity verification of-
ten requires overburdening formalizations. Given the increasing pervasiveness of
CPSs, their stringent time-to-market and product budget constraints, practical
solutions to enable automated verification of requirements are in order. Property
Specification Patterns (PSPs) [20] offer a viable path towards this target. PSPs
are a collection of parameterizable, high-level, formalism-independent specifica-
tion abstractions, originally developed to capture recurring solutions to the needs
of requirement engineering. Each pattern can be directly encoded in a formal



specification language, such as Linear Temporal Logic (LTL) [41], Computational
Tree Logic (CTL) [12], or Graphical Interval Logic (GIL) [16]. Because of their
features, PSPs may ease the burden of formalizing requirements, yet enable ver-
ification of their sanity using current state-of-the-art automated reasoning tools
— see, e.g., [27, 30, 48, 11, 23].

Sanity checking of requirements may consist of three parts: redundancy (vacu-
ity) checking, completeness checking and consistency checking [3]. A specification
is satisfied vacuously in a model if it is satisfied in some non-interesting way;
borrowing the example from [45], the LTL specification “every request is even-
tually followed by a grant” is satisfied vacuously in a model with no requests.
Vacuity checking can also be performed without the need of a model, and in this
case it is known as inherent vacuity checking [21, 46]. Completeness checking is
equivalent to verify if the set of requirements covers all reasonable behaviours of
a system. Completeness can be checked in combination with a system model, but
in [3] a proposal for model-free completeness checking is also presented. Finally,
requirements consistency is about checking whether a real system can be imple-
mented from a given set of requirements. Therefore, two types of check [46] are
possible: (i) realizability, i.e., testing whether there is an open system that sat-
isfies all the properties in the set [42], and (ii) satisfiability, i.e., testing whether
there is a closed system that satisfies all the properties in the set. Satisfiabil-
ity checking ensures that the behavioral description of a system is internally
consistent and neither over- or under-constrained. If a property is either valid,
or unsatisfiable this must be due to an error. Even if the satisfiability test is
weaker than the realizability test, its importance is widely recognized [46]. In
this paper, we restrict our attention to sanity checking as satisfiability checking.
We speak of (internal) consistency of requirements written using PSPs having
in mind that PSPs can be translated to LTL formulas whose satisfiability can
be checked using methods and tools available in the literature — see, e.g., [49,
25, 48, 35] for tableau-based methods and [44–46, 29, 28] for methods based on
automata-theoretic approaches.

The original formulation of PSPs caters for temporal structure over Boolean
variables, but for most practical applications such expressiveness is too restricted.
This is the case of the embedded controller for robotic manipulators that is under
development in the context of the EU project CERBERO [37]3 and provides the
main motivation for this work. As an example, consider the following statement:
“The angle of joint1 shall never be greater than 170 degrees”. This requirement
imposes a safety threshold related to some joint of the manipulator (joint1 )
with respect to physically-realizable poses, yet it cannot be expressed as a PSP
unless we add atomic numerical assertions in some constraint system D. We
call Constraint PSP, or PSP(D) for short, a pattern which has the same struc-
ture of a PSP, but contains atomic propositions from D. For instance, using
PSP(R, <,=) we can rewrite the above requirement as a universality pattern:
“Globally, it is always the case that θ1 < 170 holds”, where θ1 is the numer-

3 Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable
systems in unceRtain hybRid envirOnments — http://www.cerbero-h2020.eu/
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ical signal (variable) for the angle of joint1. In principle, automated reasoning
about Constraint PSPs can be performed in Constraint Linear Temporal Logic,
i.e., LTL extended with atomic assertions from a constraint system [14]: in our
example above, the encoding would be simply � (θ1 < 170). Unfortunately, this
approach does not always lend itself to a practical solution, because Constraint
Linear Temporal Logic is undecidable in general [13]. Restrictions on D may
restore decidability [14], but they introduce limitations in the expressiveness of
the corresponding PSPs. In this paper, we propose a solution which ensures that
automated verification of consistency is feasible, yet enables PSPs mixing both
Boolean variables and (constrained) numerical signals. Our approach enables us
to capture many specifications of practical interest, and to pick a verification
procedure from the relatively large pool of automated reasoning systems cur-
rently available for LTL. In particular, we restrict our attention to a constraint
systems of the form (R,<,=), and atomic propositions of the form x < c or
x = c, where x ∈ R is a variable and c ∈ R is a constant value. In the following,
we write DC to denote such restriction.

Knowing that a set of requirements written with PSPs(DC) is (in)consistent
is only the first step in writing a correct specification. In case of inconsistent
requirements, obtaining a minimal set of such requirements would be desirable
to help designers avoid manual checks to pinpoint problems in a specification.
The problem of finding minimal unsatisfiable subsets, or inconsistency explana-
tions, has been the subject of some attention, e.g., in propositional satisfiability
and constraint programming. The algorithms to be found in the literature can
be either domain specific — see, e.g., [6, 32] — or domain independent — see,
e.g., [24]. They can be further divided into algorithms that find only one incon-
sistent subset or all inconsistent subsets. To the best of our knowledge, there is
no special-purpouse algorithm implemented yet. Indeed, the ones presented in [4,
3, 8], use a variant of the general-purpose algorithm for computing all unsatis-
fiable cores, also known as the “deletion algorithm”. Since for practical reasons
in requirement engineering it is better to have a quick turnaround time rather
than a complete answer, we present a method to look for inconsistencies in an
incremental fashion, i.e., stopping the search once at least one (minimal) incon-
sistency subset is found. In particular, given a set of inconsistent requirements,
we extract a minimal (irreducible) subset from them that it is still inconsistent.
The set is guaranteed to be minimal in the sense that, if we remove one of the
elements, the remaining set becomes consistent.

Overall, our contribution can be summarized as follows:

– We extend basic PSPs over the constraint system DC .
– We provide an encoding from any PSP(DC) into a corresponding LTL for-

mula.
– We present a tool4 based on state-of-the-art decision procedures and model

checkers to automatically analyze requirements expressed as PSPs(DC).
– We propose algorithms devoted to extract minimal subsets of inconsistent

requirements, and we implement them in the tool mentioned above.

4 https://gitlab.sagelab.it/sage/SpecPro
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– We implement a generator of artificial requirements expressed as PSPs(DC);
the generator takes a set of parameters in input and emits a collection of
PSPs according to a parametrized probability model.

– Using our generator, we run an extensive experimental evaluation aimed at
understanding (i) which automated reasoning tool is best at handling set of
requirements as PSPs(DC), and (ii) whether our approach is scalable.

– Finally, we analyze the specification of the embedded controller to be dealt
with in the context of CERBERO project, experimenting also with the ad-
dition of faulty requirements.

Verification and inconsistency explanation of requirements written in PSP(DC)
are carried out using tools and techniques available in the literature [45, 46,
27]. With those, we demonstrate the scalability of our approach by checking
the consistency of up to 1920 requirements, featuring 160 variables and up to
8 different constant values appearing in atomic assertions, within less than 500
CPU seconds. A total of 75 requirements about the embedded controller for the
CERBERO project is checked in a matter of seconds, even without resorting
to the best tool among those we consider. This paper is based on and extends
the one presented at the NASA Formal Method Conference [39]. The additional
material relates to (i) algorithms for inconsistency explanation, including their
experimental evaluation, (ii) proofs of results that were only stated in [39], and
(iii) the experimental analysis of the tableau-based tool leviathan [9].

The rest of the paper is organized as follows. Section 2 contains some basic
concepts on LTL, PSPs and some related work. In Section 3 we present the
extension of basic PSPs over DC and the related encoding to LTL, while in
Section 4 we present inconsistency explanation algorithms. In Sections 5 and 6
we report the results of the experimental analysis concerning the scalability and
the case study on the embedded controller, respectively. We conclude the paper
in Section 7 with some final remarks.

2 Background and Related Work

LTL syntax and semantics. Linear temporal logic (LTL) [40] formulae are built
on a finite set Prop of atomic propositions as follows:

φ = p | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2 | (φ)

where p ∈ Prop, φ, φ1, φ2 are LTL formulae, X is the “next” operator and U is the
“until” operator. In the following, unless specified otherwise using parentheses,
unary operators have higher precedence than binary operators. An LTL formula
is interpreted over a computation, i.e., a function π : N → 2Prop which assigns
truth values to the elements of Prop at each time instant (natural number). For
a computation π and a time instant i ∈ N:

– π, i |= p for p ∈ Prop iff p ∈ π(i)
– π, i |= ¬α iff π, i 6|= α
– π, i |= (α ∨ β) iff π, i |= α or π, i |= β
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– π, i |= X α iff π, i+ 1 |= α
– π, i |= α U β iff for some j ≥ i, we have π, j |= β and for all k, i ≤ k < j we

have π, k |= α

We say that π satisfies a formula φ, denoted π |= φ, iff π, 0 |= φ. If π |= φ for
every π, then φ is true and we write |= φ.

We consider other Boolean connectives like “∧” and “→” with the usual
meaning, and we abbreviate p∨¬p as >, p∧¬p as ⊥. We introduce ♦φ (“even-
tually”) to denote >U φ and �φ (“always”) to denote ¬♦¬φ. Finally, some of
the PSPs use the “weak until” operator defined as αW β = �α ∨ (αU β).

LTL satisfiability. Among various approaches to decide LTL satisfiability, re-
duction to model checking was proposed in [44] to check the consistency of
requirements expressed as LTL formulae. Given a formula φ over a set Prop
of atomic propositions, a universal model M can be constructed. Intuitively,
a universal model encodes all the possible computations over Prop as (infinite)
traces, and therefore φ is satisfiable precisely when M does not satisfy ¬φ. In [46]
a first improvement over this basic strategy is presented together with the tool
PANDA5 whereas in [29] an algorithm based on automata construction is pro-
posed to enhance performances even further — the approach is implemented in
a tool called aalta. Further studies along this direction include [28] and [27]. In
the latter, a portfolio LTL satisfiability solver called polsat is proposed to run
different techniques in parallel and return the result of the first one to terminate
successfully.

Property Specification Patterns (PSPs). The original proposal of PSPs is to be
found in [20]. They are meant to describe the structure of systems’ behaviours
and provide expressions of such behaviors in a range of common formalisms.
An example of a PSP is given in Figure 1 — with some parts omitted for sake
of readability.6 A pattern is comprised of a Name (Response in Figure 1), an
(informal) statement describing the behaviour captured by the pattern, and a
(structured English) statement [26] that should be used to express requirements.
The LTL mappings corresponding to different declinations of the pattern are also
given, where capital letters (P , S, T , etc.) stands for Boolean states/events. In
more detail, a PSP is composed of two parts: (i) the scope, and (ii) the body. The
scope is the extent of the program execution over which the pattern must hold,
and there are five scopes allowed: Globally, to span the entire scope execution;
Before, to span execution up to a state/event; After, to span execution after
a state/event; Between, to cover the part of execution from one state/event to
another one; After-until, where the first part of the pattern continues even if
the second state/event never happens. For state-delimited scopes, the interval
in which the property is evaluated is closed at the left and open at the right

5 https://ti.arc.nasa.gov/m/profile/kyrozier/PANDA/PANDA.html
6 We omitted aspects which are not relevant for our work, e.g., translations to other

logics like CTL [20]. The full list of PSPs considered in this paper and their mapping
to LTL and other logics is available at http://patterns.projects.cis.ksu.edu/.
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Response

Describe cause-effect relationships between a pair of events/states. An occur-
rence of the first, the cause, must be followed by an occurrence of the second,
the effect. Also known as Follows and Leads-to.

Structured English Grammar
It is always the case that if P holds, then S eventually holds.

LTL Mappings

Globally � (P → ♦S)

Before R ♦R→ (P → (R U (S ∧R))) U R

After Q � (Q→ � (P → ♦S))

Between Q and R � ((Q ∧R ∧ ♦R)→ (P → (R U (S ∧R))) U R)

After Q until R � (Q ∧R→ ((P → (R U (S ∧R))) W R)

Example
It is always the case that if object detected holds , then moving to target
eventually holds.

Fig. 1. Response Pattern (α stands for ¬α).

end. The body of a pattern, describes the behavior that we want to specify.
In [20], bodies are categorized in occurrence and order patterns. Occurrence
patterns require states/events to occur or not to occur. Examples of such bodies
are Absence, where a given state/event must not occur within a scope, and
its opposite Existence. Order patterns constrain the order of the states/events.
Examples of such patterns are Precedence, where a state/event must always
precede another state/event, and Response, where a state/event must always
be followed by another state/event within the scope. Moreover, we included
the Invariant pattern introduced in [43], and dictating that a state/event must
occur whenever another state/event occurs. Combining scopes and bodies we
can construct 55 different types of patterns.

Inconsistency Explanation. Usually, inconsistency in a set of requirements is best
explained in terms of minimal subsets of requirements exposing the core issues
within the specification. The literature does not provide a consistent naming
of such cores, and the terms minimal inconsistency subset (MIS ) [7], minimal
unsatisfiable subset [6] (MUS ), minimal unsatisfiable core [32] (MUC ), and also
High-Level MUC (HLMUC) [38] are introduced to refer to the same concept —
in the following, and throughout the paper, we denote with MUC a minimal
set of inconsistent requirements. Algorithms for finding MUCs can be divided in
two basic groups: (i) those focusing on the extraction of a single MUC, and (ii)
those focusing on the extraction of all MUCs. These techniques can be further
divided into domain specific, i.e., targeting specific domains such as propositional
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satisfiability [5], and general purpose, i.e., high level algorithms that can be
applied to any domain provided that a consistency checking procedure exists
for that domain [19]. The most basic general purpose solution for computing a
single MUC out of a set of logical constraints, consists of iteratively removing
constraints from an initial set. At each step, the set of constraints represents
an over-approximation of the MUC. This solution is referred to as the deletion-
based approach [19, 10, 2, 15]. Given a set R of n constraints, the deletion-based
approach calls the consistency checker exactly n times. When examining the i-th
constraint, if R \ {ri} remains inconsistent, then there is a MUC that does not
include ri, and ri can be removed; otherwise ri must be part of the MUC. This
approach is guaranteed to produce a set M ⊆ R such that, if a single requirement
is eliminated from M , then M becomes consistent. However, the approach does
not guarantee that another MUC M ′ ⊆ R such that |M ′| ≤ |M | may not exist.
The majority of the algorithms presented in literature are domain specific [31,
36, 32, 6] and, to the best of our knowledge, no specific approach that works
for LTL has been proposed so far. Extraction of all MUCs has received some
attention, also because retrieving MUCs of minimal size can be done simply by
enumerating all MUCs. Finding all the MUCs of a set of constraints R in a naive
way amounts to check the consistency of all the elements of the power set 2R,
but this is clearly untenable in real world applications. In [31], the power set
of requirements is implicitly considered as follows. Given a set of requirements
R, if R′ ⊆ R is inconsistent, every R′′ ⊃ R′ and R′′ ⊂ R is also inconsistent.
Furthermore if R′ ⊆ R is consistent, every R′′ ⊂ R′ is consistent too. This
algorithm can be modified to find a single MUC by stopping it to the first MUC
extracted.

Related Work. In [33] the framework Property Specification Pattern Wizard
(PSP-Wizard) is presented. Its purpose is the machine-assisted definition of tem-
poral formulae capturing pattern-based system properties. PSP-Wizard offers a
translation into LTL of the patterns encoded in the tool, but it is meant to aid
specification, rather than support consistency checking, and it cannot deal with
numerical signals. In [26], an extension is presented to deal with real-time speci-
fications, together with mappings to Metric temporal logic (MTL), Timed com-
putational tree logic (TCTL) and Real-time graphical interval logic (RTGIL).
Even if this work is not directly connected with ours, it is worth mentioning it
since their structured English grammar for patterns is at the basis of our formal-
ism. The work in [26] also provided inspiration to a recent set of works [18, 17]
about a tool, called VI-Spec, to assist the analyst in the elicitation and debug-
ging of formal specifications. VI-Spec lets the user specify requirements through
a graphical user interface, translates them to MITL formulae and then supports
debugging of the specification using run-time verification techniques. VI-Spec
embodies an approach similar to ours to deal with numerical signals by trans-
lating inequalities to sets of Boolean variables. However, VI-Spec differs from
our work in several aspects, most notably the fact that it performs debugging
rather than consistency checking, so the behavior of each signal over time must
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be known. Also, VI-Spec handles only inequalities and does not deal with sets
of requirements written using PSPs.

3 Constraint Property Specification Patterns

Let us start by defining a constraint system D as a tuple D = (D,R1, . . . , Rn, I),
where D is a non-empty set called domain, and each Ri is a predicate symbol of
arity ai, with I(Ri) ⊆ Dai being its interpretation. Given a finite set of variables
X and a finite set of constants C such that C ∩X = ∅, a term is a member of
the set T = C ∪X; an (atomic) D-constraint over a set of terms is of the form
Ri(t1, . . . , tai) for some 1 ≤ i ≤ n and tj ∈ T for all 1 ≤ j ≤ ai — we also use
the term constraint when D is understood from the context. We define linear
temporal logic modulo constraints — LTL(D) for short — as an extension of LTL
with additional atomic constraints. Given a set of Boolean propositions Prop,
a constraint system D = (D,R1, . . . , Rn, I), and a set of terms T = C ∪X, an
LTL(D) formula is defined as:

φ = p | Ri(t1, . . . , tai) | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2 | (φ)

where p ∈ Prop, φ, φ1, φ2 are LTL(D) formulas, and Ri(·) with 1 ≤ i ≤ n is an
atomic D-constraint. Additional Boolean and temporal operators are defined as
in LTL with the same intended meaning. Notice that the set of LTL(D) formu-
las is a (strict) subset of those in constraint linear temporal logic — CLTL(D)
for short — as defined, e.g., in [14]. LTL(D) formulas are interpreted over com-
putations of the form π : N → 2Prop plus additional evaluations of the form
ν : T ×N→ D such that, for all i ∈ N, ν(c, i) = ν(c) ∈ D for all c ∈ C, whereas
ν(x, i) ∈ D for all x ∈ X. In words, the function ν associates to constants c ∈ C
a value ν(c) that does not change in time, and to variables x ∈ X a value ν(x, i)
that possibly changes at each time instant i ∈ N. LTL semantics is extended to
LTL(D) by handling constraints:

π, ν, j |=D Ri(t1, . . . , tai) iff (ν(t1, j), . . . , ν(tai , j)) ∈ I(Ri)

We say that π and ν satisfy a formula φ, denoted π, ν |=D φ, iff π, ν, 0 |= φ. A
formula φ is satisfiable as long as there exist a computation π and a valuation ν
such that π, ν |=D φ. We further restrict our attention to the constraint system
DC = (R,<,=, I), with atomic constraints of the form x < c and x = c, where c
is a constant corresponding to some real number — hereafter we abuse notation
and write c ∈ R instead of ν(c) ∈ R — and the interpretation I of the predicates
“<” and “=” is the usual one. While CLTL(D) is undecidable in general [14,
13], LTL(DC) is decidable since, as we show in this paper, it can be reduced to
LTL satisfiability.

We introduce the concept of constraint property specification pattern, denoted
PSP(D), to deal with specifications containing Boolean variables as well as atoms
from a constraint system D. In particular, a PSP(DC) features only Boolean
atoms and atomic constraints of the form x < c or x = c (c ∈ R). For example,
the requirement:
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The angle of joint1 shall never be greater than 170 degrees

can be re-written as a PSP(DC):

Globally, it is always the case that θ1 < 170

where θ1 ∈ R is the variable associated to the angle of joint1 and 170 is the
limiting threshold. While basic PSPs only allow for Boolean states/events in
their description, PSPs(DC) also allow for atomic numerical constraints. It is
straightforward to extend the translation of [20] from basic PSPs to LTL in order
to encode every PSP(DC) to a formula in LTL(DC). Consider, for instance, the
set of requirements:

R1 Globally, it is always the case that v ≤ 5.0 holds.
R2 After a, v ≤ 8.5 eventually holds.
R3 After a, it is always the case that if v ≥ 3.2 holds, then z eventually holds.

where a and z are Boolean states/events, whereas v is a numeric signal. These
PSPs(DC)7 can be rewritten as the following LTL(DC) formula:

�(v < 5.0 ∨ v = 5.0) ∧
�(a→ ♦(v < 8.5) ∨ (v = 8.5)) ∧
�(a→ �(¬(v < 3.2)→ ♦z))

(1)

Therefore, to reason about the consistency of sets of requirements written using
PSPs(DC) it is sufficient to provide an algorithm for deciding the satisfiability
of LTL(DC) formulas.

To this end, consider an LTL(DC) formula φ, and let X(φ) be the set of
variables and C(φ) be the set of constants that occur in φ. We define the set
of thresholds Sx(φ) ⊆ C(φ) as the set of constant values against which some
variable x ∈ X(φ) is compared to; more precisely, for every variable x ∈ X(φ)
we construct a set Sx(φ) = {c1, .., cn} such that, for all ck ∈ R with 1 ≤ k ≤ n,
φ contains a constraint of the form x < ck or x = ck. For convenience, we
always consider each threshold set Sx(φ) ordered in ascending order, i.e., ck <
ck+1 for all 1 ≤ k < n. For instance, in example (1), we have X = {v} and
the corresponding set of threshold is Sv = {3.2, 5.0, 8.5}. Given an LTL(DC)
formula φ, and some variable x ∈ X(φ), let Sx(φ) = {c1, . . . , cn} be the set of
thresholds for which we define the corresponding sets of inequality propositions
Qx(φ) = {q1, . . . , qn} and equality propositions Ex(φ) = {e1, . . . , en}. Informally,
inequality propositions should be true exactly when a variable x ∈ X(φ) is below
or between some value in the threshold set Sx(φ), whereas equality propositions
should be true exactly when x is equal to some value in Sx(φ). Because of this,
in our encoding we must ensure that for every computation π and time instant
i ∈ N exactly one of the following cases is true (1 ≤ j ≤ n):

– qj ∈ π(i) for some j, ql 6∈ π(i) for all l 6= j and ej 6∈ π(i) for all j;

7 Strictly speaking, the syntax used is not that of DC , but a statement like v ≤ 5.0
can be thought as syntactic sugar for the expression (v < 5.0) ∨ (v = 5.0).

9



– ej ∈ π(i) for some j, el 6∈ π(i) for all l 6= j and qj 6∈ π(i) for all j;
– qj 6∈ π(i) and ej 6∈ π(i) for all j.

The first case above corresponds to a value of x that lies between some thresh-
old value in Sx(φ) or before its smallest value; the second case occurs when a
threshold value is equal to x, and the third case is when x exceeds the highest
threshold value in Sx(φ).

Given the definitions above, an LTL(DC) formula φ over the set of Boolean
propositions Prop and the set of terms T = C ∪X, can be converted to an LTL
formula φ′ over the set of Boolean propositions Prop ∪

⋃
xinX(Qx(φ) ∪ Ex(φ)).

We obtain this by considering, for each variable x ∈ X and associated thresh-
old set Sx(φ), the corresponding propositions Qx(φ) = {q1, . . . qn} and Ex =
{e1, . . . , en}; then, for each ck ∈ Sx(φ), we perform the following substitutions:

x < ck  
k∨
j=1

qj ∨
k−1∨
j=1

ej and x = ck  ek. (2)

Replacing atomic numerical constraints is not enough to ensure equisatisfiability
of φ′ with respect to φ. In particular, for every x ∈ X(φ), we must encode the
informal observation made above about “mutually exclusive” Boolean valuations
for propositions in Qx(φ) and Ex(φ) as corresponding constraints:

φM =
∧

x∈X(φ)

 ∧
a,b∈Mx(φ),a 6=b

�¬(a ∧ b)

 (3)

where Mx(φ) = Qx(φ) ∪ Ex(φ).
For instance, given example (1), we haveQv = {q1, q2, q3} and Ev = {e1, e2, e3}

and the mutual exclusion constraints are written as:

φM =�¬(q1 ∧ q2) ∧�¬(q1 ∧ q3) ∧�¬(q1 ∧ e1) ∧�¬(q1 ∧ e2)∧
�¬(q1 ∧ e3) ∧�¬(q2 ∧ q3) ∧�¬(q2 ∧ e1) ∧�¬(q2 ∧ e2)∧
�¬(q2 ∧ e3) ∧�¬(q3 ∧ e1) ∧�¬(q3 ∧ e2) ∧�¬(q3 ∧ e3)∧
�¬(e1 ∧ e2) ∧�¬(e1 ∧ e3) ∧�¬(e2 ∧ e3).

(4)

Therefore, the LTL formula to be tested for assessing the consistency of the
requirements is

φM ∧ ( �(q1 ∨ q2 ∨ e1 ∨ e2)∧
�(a→ ♦(

∨3
i=1 qi ∨ ei))∧

�(a→ �(¬q1 → ♦z))).
(5)

We can now state the following:

Theorem 1. Let φ be an LTL(DC) formula on the set of proposition Prop and
terms T = X(φ) ∪ C(φ); for every x ∈ X(φ), let Sx(φ), Qx(φ) and Ex(φ) be
the corresponding set of thresholds, inequality propositions and equality proposi-
tions, respectively; let φ′ be the LTL formula on the set of proposition Prop ∪
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⋃
x∈X(φ)Qx(φ) ∪ Ex(φ) obtained from φ by applying substitutions (2) for every

x ∈ X(φ) and ck ∈ Sx(φ), and let φM be the LTL formula obtained as in (3);
then, the LTL(DC) formula φ is satisfiable if and only if the LTL formula φM∧φ′
is satisfiable.

Proof. First, we prove that if φ is satisfiable the same holds for φM ∧ φ′. Since
φ is satisfiable, then there exists a computation π and an evaluation ν such that
π, ν |=DC

φ. Let us consider a generic variable x ∈ X(φ), for which the corre-
sponding set of thresholds is Sx(φ) = {c1, . . . , cn}. Considering that thresholds
are ordered in ascending order, we construct the following sets of time instants:

Nx<c1 = {i ∈ N | π, ν, i |=DC
x < c1}

Nx=c1 = {i ∈ N | π, ν, i |=DC
x = c1}

Nc1<x<c2 = {i ∈ N | π, ν, i |=DC
x > c1 ∧ x < c2}

. . .
Ncn−1<x<cn = {i ∈ N | π, ν, i |=DC

x > cn−1 ∧ x < cn}
Nx=cn = {i ∈ N | π, ν, i |=DC

x = cn}
Nx>cn = {i ∈ N | π, ν, i |=DC

x > cn}

which, given the standard semantics of “<” and “=”, are a partition of N.
Let Nx denote such partition for a specific variable x ∈ X(φ). We construct a
computation π′ such that, for all time instants i ∈ N and propositions p ∈ Prop,
we have p ∈ π′(i) exactly when p ∈ π(i) and, for each variable x ∈ X(φ), given
Qx(φ) = {q1, . . . qn} and Ex(φ) = {e1, . . . en}, we have also

– q1 ∈ π′(i) exactly when i ∈ Nx<c1 ;
– e1 ∈ π′(i) exactly when i ∈ Nx=c1 ;
– q2 ∈ π′(i) exactly when i ∈ Nc1<x<c2 ;
– . . .
– qn ∈ π′(i) exactly when i ∈ Ncn−1<x<cn ;
– en ∈ π′(i) exactly when i ∈ Nx=cn .

Notice that for all i ∈ Nx>cn , we have that π′(i) ∩Mx(φ) = ∅, where Mx(φ) =
Qx(φ)∪Ex(φ). Since Nx is a partition of N for each variable x ∈ X(φ), it follows
that π′ |= φM because for all a, b ∈ Mx(φ), there is no time instant i ∈ N such
that π′, i |= a ∧ b. Now we show that for every i ∈ N, π′, i |= φ′ if and only if
π, ν, i |=DC

φ by induction on the set of subformulas of φ and the corresponding
translation φ′. Let ψ and ψ′ be two subformulas of φ and φ′, respectively. For
every i ∈ N:

– if ψ ≡ p for p ∈ Prop then ψ′ ≡ p; therefore, for any given i ∈ N, we have
π, ν, i |=DC

p if and only if π′, i |= p by construction of π′.
– if ψ ≡ (x < ck) for some variable x ∈ X(φ) and some constant ck ∈ Sx(φ)

then, according to (2),

ψ′ ≡
k∨
j=1

qj ∨
k−1∨
j=1

ej .

11



Let Nx,k be the set defined as

Nx,k = Nx<c1 ∪Nx=c1 ∪ . . . ∪Nck−1<x<ck

There are two cases: either i ∈ Nx,k or i 6∈ Nx,k. In the former case, we have
that π, ν, i |=DC

(x < ck) and, by construction of π′, this happens exactly
when π′, i |= qj for some 1 ≤ j ≤ k or π′, i |= ej for some 1 ≤ j < k which,
by the semantics of disjunction and construction of π′, is also exactly when
π′, i |= ψ′. In the second case, π, ν, i 6|=DC

(x < ck) and, by construction of
π′, this happens exactly when π′, i 6|= qj for all 1 ≤ j ≤ k and π′, i 6|= ej for
all 1 ≤ j < k which, by the semantics of disjunction, is also exactly when
π′, i 6|= ψ′.

– if ψ ≡ x = ck for some variable x ∈ X(φ) and some constant ck ∈ Sx(φ) then,
according to (2), ψ′ ≡ ek. The time instants i ∈ N in which π, ν, i |=DC

x = ck
are contained in the set Nx=ck , so there are two cases: either i ∈ Nx=ck or
i 6∈ Nx=ck . In the former case, we have that π, ν, i |=DC

(x = ck) and, by
construction of π′, this happens exactly when π′, i |= ek. In the second case,
π, ν, i 6|=DC

(x = ck) and, by construction of π′, this happens exactly when
π′, i 6|= ek.

– if ψ = ¬α then ψ′ = ¬α′; by induction, we can assume that for every i, we
have π, ν, i |=DC

α if and only if π′, i |= α′, and thus π, i 6|=DC
α if and only

if π′, i 6|= α′. By the semantics of negation, we have that for any given i ∈ N,
π, i, ν |=DC

¬α if and only if π, i, ν 6|=DC
¬α and this happens exactly when

π′, i 6|= α′, i.e., π′, i |= ¬α′;
– if ψ ≡ (α ∨ β) then ψ′ ≡ α′ ∨ β′; by induction, we can assume that for all
i ∈ N we have that π, ν, i |=DC

α and π, ν, i |=DC
β if and only if π′, i |= α′

and π′, i |= β′, respectively. By the semantics of disjunction, we have that,
for any given i ∈ N, π, i, ν |=DC

α∨β exactly when π, ν, i |= α or π, ν, i |= β′

and this happens exactly when π′, i |= α′ or π′, i |= β′, i.e., by the semantics
of disjunction, π′, i |= α′ ∨ β′.

– if ψ ≡ X α then ψ′ ≡ X α′; by induction, we can assume that for all j ∈ N
we have π, ν, j |=DC

α if and only if π′, j |= α′. By the semantics of the
“next” operator we have that, for any given i ∈ mathbbN , π, i, ν |=DC

X α
if and only if π, ν, i + 1 |=DC

α which happens exactly when π′, i + 1 |= α′,
i.e., π′, i |= X α.

– if ψ ≡ α U β then ψ′ = α′ U β′; by induction, we can assume that, for all
j ∈ N, we have π, ν, j |=DC

β if and only if π′, j |= β′ and that π, ν, j |=DC
α

if and only if π′, j |= α′. By the semantics of the “until” operator we have
that, for any given i, π, i, ν |=DC

α U β if and only if for some j ≥ i we
have π, ν, j |=DC

β and for all k such that i ≤ k < j we have π, ν, k |=DC
α.

However, the former happens exactly when for the same j ∈ N we have
π′, j |= β′ and for all k such that i ≤ k < j we have π′, k |=DC

α′, i.e.,
π′, i |= α′ U β′.

We now prove that the satisfiability of φM∧φ′ in LTL implies the satisfiability
of φ in LTL(DC). First we observe that, for a generic variable x ∈ X(φ), and
for all time instants i ∈ N, every computation π′ such that π′ |= φM has at
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most one proposition p ∈ Mx(φ) for which p ∈ π(i). Therefore, for all variables
x ∈ X(φ) and for every time instant i ∈ N, we have the following cases only
(where n = |Sx(φ)| = |Ex(φ)| = |Qx(φ)|):

1. π′, i |= ek for some ek ∈ Ex(φ); consequently, as long as k < n, also π′, i |=∨k+1
j=1 qj ∨

∨k
j=1 ej holds.

2. π′, i |= qk for some qk ∈ Qx(φ), and thus π′, i |=
∨k
j=1 qj ∨

∨k−1
j=1 ej holds.

3. π′, i 6|= p for every p ∈Mx(φ); consequently, for all k it is also the case that

π′, i 6|=
∨k
j=1 qj ∨

∨k−1
j=1 ej and π′, i 6|= ek.

A computation π and an evaluation ν such that π, ν |=DC
φ can be constructed

as follows. For every p ∈ Prop, and time instant i ∈ N, let p ∈ π(i) exactly when
p ∈ π′(i). As for the evaluation ν, for a generic variable x ∈ X(φ), and for every
time instant i ∈ N, we can construct ν considering that π′ is bound to satisfy
the three cases above :

1. ν(x, i) = ck for the same k s.t. π′, i |= ek; consequently, as long as k < n,
both π, ν, i |= x < ck+1 and π, ν, i |= x = ck hold.

2. ν(x, i) = v and, for the same k s.t. π′, i |= qk, if k > 1, then ck−1 < v < ck,
else if k = 1, then v < c1; consequently π, ν, i |= x < ck holds and, in case
k > 1, π, ν, i 6|= x < cj for all j < k.

3. ν(x, i) = v with v > cn; consequently π, ν, i 6|= x < ck and π, ν, i 6|= x = ck
for all k

An induction proof analogous to the one provided for the “if” part can be pro-
vided to show that if π′ |= φ′, then also π, ν |= φ, with π and ν constructed as
shown above.

ut
The proposed translation from LTL(DC) to a LTL formula is also quite com-

pact, i.e., the number of symbols in the LTL encoding grows at most quadrati-
cally with the number of symbols in the original formula. Let us define the size
of a formula φ, denoted as |φ|, in the usual way, i.e., by counting the number of
symbols in it. We can state the following:

Theorem 2. Let φ be an LTL(DC) formula on the set of proposition Prop and
terms T = X(φ) ∪ C(φ); for every x ∈ X(φ), let Sx(φ), Qx(φ) and Ex(φ) be
the corresponding set of thresholds, inequality propositions and equality proposi-
tions, respectively; let φ′ be the LTL formula on the set of proposition Prop ∪⋃
x∈X(φ)Qx(φ) ∪ Ex(φ) obtained from φ by applying substitutions (2) for every

x ∈ X(φ) and ck ∈ Sx(φ), and φM be the LTL formula obtained as in (3); the
size of φ′∧φM is at most quadratic in the size of φ, i.e., O(|φ′∧φM |) = O(|φ|2).

Proof. From Equation (3), for each variable x ∈ X(φ), all combinations of two
elements from the set Mx(φ) = Qx(φ)∪Ex(φ) are required to build φM . There-
fore, if n = |Sx(φ)|, the number of conjuncts of the form �¬(a ∧ b) in φM is(

2n

2

)
=

2n!

2!(2n− 2)!
=

2n(2n− 1)

2
= n(2n− 1) (6)
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ri PSP

r1 Globally, it is always the case that A holds.

r2 Globally, it is never the case that A holds.

r3 Globally, it is always the case that B holds.

r4 Globally, it is always the case that if B holds, then C holds as well.

r5 Globally, it is never the case that C holds.

r6 Globally, it is always the case that A and B holds.

r7 After B, D eventually holds.

Table 1. Set R of inconsistent PSPs.

If we consider m = maxx∈X(φ) |Sx(φ)|, it follows that |φM | = O(|X(φ)| · m2).
Now it remains to show the effect of substitution (2) in φ′. For every variable
x ∈ X(φ), if we let again n = |Sx(φ)|, then for each constant ck ∈ Sx(φ) we
have:

– one proposition in φ′ for each occurrence of x = ck in φ;
– a formula of size 2k − 1 in φ′ for each occurrence of x < ck in φ.

Therefore, we can say that each condition corresponding to x is translated to a
formula of size O(n). Now, let m = maxx∈X(φ) |Sx(φ)|, and let p be the maximum
number of occurrences in φ of a condition x = c or x < c for specific values of
x ∈ X(φ) and c ∈ C(φ); then we have that |φ| = O(|X(φ)|·p·m+r), where r is the
number of symbols that do not appear in conditions. Since each condition in φ is
translated to a formula of sizeO(m) in φ′, we have that |φ′| = O(|X(φ)|·p·m2+r).
Considering also the bound for |φM | we obtain

O(|φ′ + φM |) = O(|X(φ)| ·m2 · (p+ 1) + r) = O(|X(φ)| · p ·m2 + r).

Since |φ| = O(|X(φ)| · p ·m), and the values of the parameters |X(φ)|, p and r
do not depend on the translation, we can conclude that O(|φ′+φM |) = O(|φ|2).

ut

4 Inconsistency Explanation

Given a set R = {r1, . . . , rn} of inconsistent requirements written as PSP(DC),
the aim of the algorithms proposed in this Section is to compute a Minimal Un-
satisfiable Core (MUC ), i.e., a subset I ⊆ R such that removing any element ri
from I makes the set consistent again. Table 1 shows an inconsistent specifica-
tion as a set R = {r1, . . . r7} of seven requirements. Looking at the table, we can
see that there are 4 different MUCs in R, namely {r1, r2}, {r2, r6}, {r3, r4, r5},
{r4, r5, r6}. In the remainder of the section we present two algorithms devoted
to the extraction of MUC for PSPs.

4.1 Linear Deletion-Based MUC Extraction

The first algorithm we present is based on a deletion-based strategy, and its
pseudo-code is depicted in Algorithm 1. The procedure works as follows. If the
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set R′ ← R \ {r} with r ∈ R is inconsistent, then r is not in the MUC. On the
other hand, if R′ is consistent, then r is part of a MUC and cannot be removed.
Such operation is repeated iteratively and the algorithm terminates when all
requirements have been checked for inclusion in the MUC.

Algorithm 1. Linear Deletion-Based MUC Extraction Algorithm

1: function findInconsistency(R)
2: R′ ← R
3: for ri ∈ R do
4: R′ ← R′ \ {ri}
5: if isConsistent(R′) then
6: R′ ← R′ ∪ {ri}
7: end if
8: end for
9: return R′

10: end function

It is easy to see that, with |R| = n, the loop iterates n times, and that at each
iteration the isConsistent function is called once. The input of the function is
R′ and its size is given by |R′|. The number of elements in R′ is reduced by one at
each iteration, but ri could be added back again in R′, depending on the result of
isConsistent. The worst case is obtained when all requirements are part of the
MUC, i.e., each requirement ri is first removed and then reinserted again. In this
case the model checker is called each time with n− 1 requirements. The overall
complexity is therefore O(n · C(n)), where n is the number of elements initially
in R and C(n) is the complexity for the consistency check of n requirements.
The algorithm is therefore linear in the number of calls to the model checker.

Example 1. Considering the set R in Table 1, Algorithm 1 works along the fol-
lowing steps.

Step ri R′ isConsistent(R′)
1: r1 {r2, r3, r4, r5, r6, r7} false
2: r2 {r3, r4, r5, r6, r7} false
3: r3 {r4, r5, r6, r7} false
4: r4 {r5, r6, r7} true
5: r5 {r4, r6, r7} true
6: r6 {r4, r5, r7} true
7: r7 {r4, r5, r6} false

The final result is R′ = {r4, r5, r6}. It is worth to notice that this result depends
on the extraction order of the requirements. It is easy to see that processing the
requirements in reverse order would yield R′ = {r1, r2} as a result instead.
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4.2 Dichotomic MUC Extraction

Algorithm 2 is based on the same general-purpose structure of algorithm 1, but
it also exploits the fact that the dimension of the MUC is often much smaller
than |R|. Therefore, it is possible to exploit a “divide and conquer” strategy to
reduce the search space. Considering Algorithm 2, R is split in two halves R1

and R2, such that R1 ∪R2 = R and R1 ∩R2 = ∅. If one of the two halves (plus
I) is inconsistent, then there is no need to explore the other one and we can
proceed recursively. Otherwise it means that the MUC has been split in the two
halves and further search is needed. This is done by means of two recursive calls
(lines 21–22); The former performs the search on R2 considering the whole set
R1 as inconsistent, while the latter continues the search on R1, removing from I
the requirements that still need to be checked. The algorithm terminates when
R has 1 or 0 elements.

Algorithm 2. Dichotomic MUC Extraction Algorithm

1: function findInconsistency(R)
2: return findInconsistency(R, ∅)
3: end function

4: function findInconsistency(R, I)
5: if |R| ≤ 1 then
6: if isConsistent(I) then
7: return I ∪R
8: else
9: return I

10: end if
11: end if
12: (R1, R2)← split(R)
13: if |R1| > 1 and |R2| > 1 then
14: if ¬ isConsistent(R1 ∪ I) then
15: return findInconsistency(R1, I)
16: end if
17: if ¬ isConsistent(R2 ∪ I) then
18: return findInconsistency(R2, I)
19: end if
20: end if
21: I ← findInconsistency(R2, I ∪R1)
22: I ← findInconsistency(R1, I \R1)
23: return I
24: end function

As for the complexity of the algorithm the best case occurs when the MUC is
always in the first half of R. In such a case, half of the requirements are discarded
at each iteration, and it is easy to see that complexity is Ω(log |R|). The worst
case occurs when the set of inconsistent requirements I coincides with R. Taking
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into account Table 1, let R be comprised of {r1, r2, r3, r4} and let MUC be R
itself. At the first step, the algorithm checks R′1 = {r1, r2} and R′2 = {r3, r4} but
both sets are consistent. Therefore findInconsistency is called recursively with
R = {r3, r4} and I = {r1, r2}. At this point we have R′′1 = {r3} and R′′2 = {r4}.
The algorithm checks the consistency of {r1, r2, r3} and {r1, r2, r4} and returns
to the previous recursive call. This time findInconsisntency is called again,
but with R = {r1, r2} and I = {r3, r4} and the same process is applied. In
general, if |R| = n and C(n) is the complexity for the consistency check of n
requirements, then the worst case complexity of this algorithm is O(n · C(n))
– the same as the previous one. However, as we will show in Section 5.2, when
|I| � |R| it is noticeable faster than the linear version.

Example 2. Considering again the set R reported in Table 1, in the following we
report step-by-step how Algorithm 2 works. For lack of space in the table we
replace isConsistent with isCons.

Step R R1 R2 I isCons(R1 ∪ I) isCons(R2 ∪ I)
1: {r1, . . . , r7} {r1, r2, r3} {r4, r5, r6, r7} {} False −
2: {r1, r2, r3} {r1} {r2, r3} {} True True
3: {r2, r3} {r2} {r3} {r1} − −
4: {r2} − − {r1} − −
5: {r1} − − {r2} − −

In the first step, the algorithm splits the initial set R in two subset R1 and
R2, and checks the consistency of the first one. Since R1 is inconsistent, the
algorithm automatically discards R2 and continue with step 2. Also in this case
the new set R = {r1, r2, r3} is split in two, but this time both are consistent
and so the two recursive calls in line 21–22 are executed: the first one is resolved
in step 3 and 4, while the second one in step 5. In the last two steps, the basic
case is reached (lines 5–11), and since the call to isConsistent(I) returns true
in both cases, r1 and r2 are added to I. Therefore, I = {r1, r2} is returned as
final answer. In this case isConsistent is called 6 times instead of 7 as in the
previous example.

5 Analysis with Probabilistic Requirement Generation

The aim of this Section is twofold; On the one hand, we evaluate the scalability
of our approach for consistency checking, experimenting the encoding proposed
in Section 3 with a pool of state-of-the-art LTL model checkers. On the other
hand, we assess the performance of the MUC extraction algorithms described
in Section 4, in order to evaluate the possibility of their usage in contexts of
practical interest.

Since we want to have control over different dimensions of the specifications –
namely, the kind of requirements, the number of constraints, and the size of the
corresponding domains – we generate artificial specifications using a probabilistic
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model that we devised and implemented specifically to carry out the experiments
herein presented.

In particular, the following parameters can be tuned in our generator of
specifications:

– The number of requirements generated (#req).
– The probability of each different body to occur in a pattern.
– The probability of each different scope to occur in a pattern.
– The size (#vars) of the set from which variables are picked uniformly at

random to build patterns.
– The size (dom) of the domain from which the thresholds of the atomic con-

straints are chosen uniformly at random.

5.1 Evaluation of LTL(Dc) Satisfiability

The goal of this experiment is to evaluate the performance – in terms of cor-
rectness, efficiency, and scalability – of LTL model checkers for the consistency
checking task described in Section 3. To this end, we evaluate the performances
of state-of-the-art tools for LTL satisfiability, and then we consider the best
among such tools to assess whether our approach can scale to sets of require-
ments of realistic size. All the experiments here reported ran on a workstation
equipped with 2 Intel Xeon E5-2640 v4 CPUs and 256GB RAM running Debian
with kernel 3.16.0-4.

Evaluation of LTL satisfiability solvers. The tools considered in our analysis
are the ones included in the portfolio solver polsat [27], namely aalta [30],
NuSMV [11], pltl [48], and trp++ [23]. We also consider leviathan [9], a
tableaux-based system for consistency checking that has been recently published.
Notice that in the case of NuSMV, we consider two different encodings. With
reference to Property 1, the first encoding defines φM as an invariant — denoted
as NuSMV-invar — and φ′ is the property to check; the second encoding
considers φM ∧ φ as the property to check — denoted as NuSMV-noinvar.
Finally, concerning aalta, we slightly modified its default version in order to
be able to evaluate large formulas. In particular, we modified the source code
increasing of two orders of magnitude the input size buffer.

In our experimental analysis we set the range of the parameters as follows:
#vars ∈ {16, 32}, dom ∈ {2, 4, 8, 16}, and #req ∈ {8, 16, 32, 64}. For each com-
bination of the parameters with v ∈ #vars, r ∈ #req and d ∈ dom, we generate
10 different benchmarks. Each benchmark is a specification containing r re-
quirements where each scope has (uniform) probability 0.2 and each body has
(uniform) probability 0.1. Then, for each atomic numerical constraint in the
benchmark, we choose a variable out of v possible ones, and a threshold value
out of d possible ones. In Table 2 we show the results of the analysis. Notice
that we do not show the results of trp++ because of the high number of fail-
ures obtained. Looking at the table, we can see that aalta is the tool with the
best performances, as it is capable of solving two times the problems solved by
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dom 2 4 8 16
#vars 16 32 16 32 16 32 16 32
Tool S T S T S T S T S T S T S T S T

aalta 16 0.0 27 0.1 22 0.1 29 0.4 26 0.6 29 1.4 25 2.8 31 4.9
leviathan 4 0.1 6 0.3 7 0.8 5 0.2 0 – 7 2.3 4 47.7 7 12.8
NuSMV-invar 11 30.4 10 185.1 10 804.2 9 881.3 11 68.1 8 402.9 10 1172.6 8 1001.9
NuSMV-noinvar 11 65.0 10 489.7 7 303.6 7 505.5 11 92.4 10 1277.6 8 660.0 9 1394.5
pltl 8 25.0 11 108.1 9 1.2 10 0.6 10 19.6 11 0.1 11 14.5 14 3.5

Table 2. Evaluation of LTL satisfiability solvers on randomly generated requirements.
The first line reports the size of the domain (dom), while the second line reports the
total amount of variables (vars) for each domain size. Then, for each tool (on the first
column), the table shows the total amount of solved problems and the CPU time (in
seconds) spent to solve them (columns “S” and “T”, respectively).

other solvers in most cases. Moreover, aalta is up to 3 orders of magnitude
faster than its competitors. Considering unsolved instances, it is worth noticing
that in our experiments aalta never reaches the granted time limit (10 CPU
minutes), but it always fails beforehand. This is probably due to the fact that
aalta is still in a relatively early stage of development and it is not as mature
as NuSMV and pltl. Most importantly, we did not find any discrepancies in
the satisfiability results of the evaluated tools, with the noticeable exception of
trp++, for which we did not report performance in Table 2.
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Fig. 2. Scalability Analysis (Part 1). On the x-axes (y-axes resp.) we report #req (CPU time in seconds resp.). Axis are both in
logarithmic scale. In each plot we consider different values of #dom. In particular, the diamond green line is for #dom = 4, the light
blue line with stars is for #dom = 8, the blue crossed lines and red circled ones denote #dom = 16 and #dom = 32, respectively.
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Fig. 3. Scalability Analysis (Part 2). Plots are organized as in Figure 2.
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Evaluation of scalability. The analysis involves 2560 different benchmarks gen-
erated as in the previous experiment. The initial value of #req has been set
to 15, and it has been doubled until 1920, thus obtaining benchmarks with a
total amount of requirements equals to 15, 30, 60, 120, 240, 480, 960, and 1920.
Similarly has been done for #vars and #dom; the former ranges from 5 to 640,
while the latter ranges from 4 to 32. At the end of the generation, we obtained 10
different sets composed of 256 benchmarks. In Figure 2 and Figure 3 we present
the results, obtained running aalta. The Figure is composed by 8 plots, one
for each value of #vars. Looking at the plots in Figures 2 and 3, we can see
that the difficulty of the problem increases when all the values of the considered
parameters increase, and this is particularly true considering the total amount
of requirements. The parameter #dom has a higher impact of difficulty when
the number of variables is small. Indeed, when the number of variables is less
then 40 there is a clear difference between solving time with #dom = 4 and
#dom = 32. On the other hand when the number of variables increases, all the
plots for various values of #dom are very close to each other. As a final remark,
we can see that even considering the largest problem (#vars = 640, #dom =
32), more than the 60% of the problems are solved by aalta within the time
limit of 10 minutes.

5.2 Evaluation of MUC Extraction

In order to evaluate the algorithms proposed in Section 4, we consider the pool of
inconsistent benchmarks resulting from the experiment presented in Section 5.1,
for a total amount of 559, having different requirements set dimension as reported
in Table 5.2. All the experiments reported in this section ran on a workstation
equipped with an Intel Xeon E31245 @ 3.30GHz CPU and 16GB RAM running
Ubuntu 14.04 LTS. We limit the presentation of the results to the algorithms
presented in Section 4 because state-of-the-art tools able to cope with this task,
namely pltl-mup [22] and trp++uc [47], report the same correctness and
scalability issues of their counterpart presented in Section 5.1; We also considered
procmine [1], but we do not report its results for the same motivation.

In Figure 4 we report the results obtained from the experiment described
above. For each plot, we report the median CPU time (in seconds) over 10 runs
of the same benchmark, granting for each run 600 CPU seconds. aalta has been
used for the satisfiability check.

Looking at the plots, we can see that the dichotomic algorithm is, as ex-
pected, overall faster than the linear one. Despite the fact that they show similar
performance for benchmarks having 8 and 16 requirements (top-most plots in
Figure 4), looking at the plots in the middle of Figure 4 we can see that the
dichotomic algorithm is at least one order of magnitude faster than the linear
one for benchmarks having 32 and 60 requirements. More, we report that the
latter was able to return MUCs only for 62 out of 65 and 43 out of 83, while the
former returned a solution for all instances with 32 requirements and 81 out of
83 for instances with 60 requirements.
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Fig. 4. Performance of the algorithms for MUC extraction. On the x-axes we report the
number of benchmarks, and on the y-axes we report the time in logarithmic scale. In
each plot we consider different values of #req. The green and blue lines shows median
times of the dichotomic and linear algorithms, respectively.

Considering the plots in the bottom of Figure 4, we can see that the gap
between the two algorithms increases even further: the linear one was able to
return MUCs only for 34 and 12 benchmarks of 120 and 240 requirements re-
spectively, while the dichotomic one returned a MUC for 138 out of 147 and 168
out of 210 benchmarks. In addition, it is worth noticing that the MUCs found
are usually small in size; indeed, in all 6 configurations, the median size of the
MUCs found by the two algorithms is 2.
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#req N

8 16

16 38

32 65

60 83

120 147

240 210

Table 3. Synopsis of the pool of benchmarks involved in the analysis of MUC extrac-
tion algorithms. The table is organized in two columns, namely the total amount of
requirements for each benchmark (column “#req”) and the total amount of bench-
marks falling in the related category (column “N”).

Fig. 5. WidowX robotic arm (left) and the simulated arm moving a grabbed object in
the bucket on the left (right).

Finally, we report that we involved in our analysis also benchmarks composed
of 480 requirements, but our algorithms were not able to return a solution within
the considered CPU time limit.

6 Analysis with a Controller for a Robotic Manipulator

In this Section, as a basis for our experimental analysis, we consider a set of
requirements from the design of an embedded controller for a robotic manip-
ulator. The controller should direct a properly initialized robotic arm — and
related vision system — to look for an object placed in a given position and
move to such position in order to grab the object; once grabbed, the object is to
be moved into a bucket placed in a given position and released without touch-
ing the bucket. The robot must stop also in the case of an unintended collision
with other objects or with the robot itself — collisions can be detected using
torque estimation from current sensors placed in the joints. Finally, if a general
alarm is detected, e.g., by the interaction with a human supervisor, the robot
must stop as soon as possible. The manipulator is a 4 degrees-of-freedom Trossen
Robotics WidowX arm8 equipped with a gripper: Figure 5 shows a snapshot of

8 http://www.trossenrobotics.com/widowxrobotarm.
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Pattern Specification Fault injections
after after until globally after after until globally

Absence – 12 14 [F4] – [F3]

Existence 9 – – – [F5] [F4, F6]

Invariant – – 29 – – [F2, F6]

Precedence – – 1 – – –

ResponseChain – – 2 – – –

Response 1 – 4 – – [F1]

Universality 2 – 1 – – –

Table 4. Robotic use case requirements synopsis. The table is organized as follows:
the first column reports the name of the patterns and it is followed by two groups
of three columns denoted with the scope type: the first group refers to the intended
specification, the second to the one with fault injections. Each cell in the first group
reports the number of requirements grouped by pattern and by scope type. Cells in
the second group categorize the 6 injected faults, labeled with F1, . . . , F6.

the robot in the intended usage scenario taken from V-REP9 simulator. The
design of the embedded controller is currently part of the activities related to
the “Self-Healing System for Planetary Exploration” use case [37] in the context
of the EU project CERBERO.

In this case study, constrained numerical signals are used to represent re-
quirements related to various parameters, namely angle, speed, acceleration,
and torque of the 4 joints, size of the object picked, and force exerted by the
end-effector. We consider 75 requirements, including those involving scenario-
independent constraints like joints limits, and mutual exclusion among states,
as well as specific requirements related to the conditions to be met at each state.
The set of requirements involved in our analysis includes 14 Boolean signals and
20 numerical ones. In Table 4 we present a synopsis of the requirements, to give
an idea of the kind of patterns used in the specification.10 While most require-
ments are expressed with the Invariant pattern, e.g., mutual exclusiveness of
states and safety conditions, the expressivity of LTL is required to describe the
evolution of the system. Indeed, as shown in [20] and [43], it is often the case
that few PSPs cover the majority of specifications whereas others are sparsely
used.

Our first experiment11 is to run NuSMV-invar on the intended specification
translated to LTL(DC). The motivation for presenting the results with NuSMV-
invar rather than aalta is twofold: While its performances are worse than
aalta, NuSMV-invar is more robust in the sense that it either reaches the
time limit or it solves the problem, without ever failing for unspecified reasons
like aalta does at times; second, it turns out that NuSMV-invar can deal

9 http://www.coppeliarobotics.com/
10 The full list of requirements and the fault injection examples are available at https:

//github.com/SAGE-Lab/robot-arm-usecase.
11 Experiments herein presented ran on a PC equipped with a CPU Intel Core i7-

2760QM @ 2.40GHz (8 cores) and 8GB of RAM, running Ubuntu 14.04 LTS.
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flawlessly and in reasonable CPU times with all the specifications we consider in
this Section, both the intended one and the ones obtained by injecting faults. In
particular, on the intended specification, NuSMV-invar is able to find a valid
model for the specification in 37.1 CPU seconds, meaning that there exists at
least a model able to satisfy all the requirements simultaneously. Notice that
the translation time from patterns to formulas in LTL(DC) is negligible with
respect to the solving time. Our second experiment is to run NuSMV-invar on
the specification with some faults injected. In particular, we consider six different
faults, and we extend the specification in six different ways considering one fault
at a time. The patterns related to the faults are summarized in Table 4. In
case of faulty specifications, NuSMV-invar concludes that there is no model
able to satisfy all the requirements simultaneously. In particular, in the case of
F2 and F3, NuSMV-invar returned the result in 2.1 and 1.7 CPU seconds,
respectively. Concerning the other faults, the tools was one order of magnitude
slower in returning the satisfiability result. In particular, it spent 16.8, 50.4, 12.2,
and 25.6 CPU seconds in the evaluation of the requirements when faults 1, 4, 5
and 6 are injected, respectively.

The noticeable difference in performances when checking for different faults
in the specification is mainly due to the fact that F2 and F3 introduce an initial
inconsistency, i.e., it would not be possible to initialize the system if they were
present in the specification, whereas the remaining faults introduce inconsisten-
cies related to interplay among constraints in time, and thus additional search is
needed to spot problems. In order to explain this difference, let us first consider
fault 2:

Globally, it is always the case that if state init holds,
then not arm idle holds as well.

It turns out that in the intended specification there is one requirement specifying
exactly the opposite, i.e., that when the robot is in state init, then arm idle

must hold as well. Thus, the only models that satisfy both requirements are the
ones preventing the robot arm to be in state init. However, this is not possible
because other requirements related to the state evolution of the system impose
that state init will eventually occur and, in particular, that it should be the
first one. On the other hand, if we consider fault 6:

Globally, it is always the case that if arm moving holds,
then joint1 speed > 15.5 holds as well.
Globally, arm moving and proximity sensor = 10.0
eventually holds.

we can see that the first requirement sets a lower speed bound at 15.5 deg/s for
joint1 when the arm is moving, while there exists a requirement in the intended
specification setting an upper speed bound at 10 deg/s when the proximity
sensor detects an object closer than 20 cm. In this case, the model checker
is still able to find a valid model in which proximity sensor < 20.0 never
happens when arm moving holds, but the second requirements in fault 6 prohibits
this opportunity. It is exactly this kind of interplay among different temporal
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properties which makes NuSMV-invar slower in assessing the (in)consistency
of some specifications.

7 Conclusions

In this paper, we have extended basic PSPs over the constraint system DC , and
we have provided an encoding from any PSP(DC) into a corresponding LTL
formula. This enables us to deal with the satisfiability of specifications of prac-
tical interest, and to verify them using state-of-the-art reasoning tools currently
available for LTL. Noticeably, even considering the largest problem in our ex-
periments (#vars = 640, #dom = 32), more than the 60% of the problems
are solved (by aalta) within the time limit of 10 minutes. Overall, using the
specifications generated with our probabilistic model we have shown that our
approach implemented on the tool aalta scales to problems containing more
than a thousand requirements over hundreds of variables. Considering a real-
world case study in the context of the EU project CERBERO, we have shown
that it is feasible to check specifications and uncover injected faults, even with
tools other than aalta. Inconsistency explanations could be provided for all,
but the largest specifications in our benchmark base. These results witness that
our approach is viable and worth of adoption in the process of requirement engi-
neering. Our next steps toward this goal will include easing the translation from
natural language requirements to patterns, and extending the pattern language
to deal with other relevant aspects of cyber-physical systems, such as real-time
constraints and related logics (e.g., Signal Temporal Logic [34]). Further elements
will also include domain-specific strategies to search for MUCs in requirements
aiming at improving the performance of the algorithm presented in Section 4,
i.e., discovering or approximating the minimum set of requirements causing the
inconsistency while looking for the consistency of the set, instead to do it at the
end of the consistency checking, as we did in Section 4.
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